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For many tasks such as retrieving a previously viewed object, an observer

must form a representation of the world at one location and use it at another.

A world-based three-dimensional reconstruction of the scene built up from

visual information would fulfil this requirement, something computer

vision now achieves with great speed and accuracy. However, I argue that

it is neither easy nor necessary for the brain to do this. I discuss biologically

plausible alternatives, including the possibility of avoiding three-dimensional

coordinate frames such as ego-centric and world-based representations. For

example, the distance, slant and local shape of surfaces dictate the propensity

of visual features to move in the image with respect to one another as the

observer’s perspective changes (through movement or binocular viewing).

Such propensities can be stored without the need for three-dimensional refer-

ence frames. The problem of representing a stable scene in the face of

continual head and eye movements is an appropriate starting place for under-

standing the goal of three-dimensional vision, more so, I argue, than the case

of a static binocular observer.

This article is part of the themed issue ‘Vision in our three-dimensional

world’.
1. Introduction
Many of the papers in this issue consider vision in a three-dimensional world

from the perspective of a stationary observer. Functional magnetic resonance

imaging, neurophysiological recording and most binocular psychophysical

experiments require the participant’s head to be restrained. While this can be

useful for some purposes, it can also adversely affect the way that neuroscientists

think about three-dimensional vision, since it distracts attention from the more

general problem that an observer must solve if they are to represent and interact

with their environment as they move around. It is logical to tackle the general

problem first and then to consider static binocular vision as a limiting case.

Marr famously described the problem of vision as ‘knowing what is where

by looking’ [1]. But ‘where’ is tricky to define. It requires a coordinate frame of

some kind and it is not obvious what this (or these) should be. Gibson [2]

emphasized the importance of ‘heuristics’ by which visual information could

be used to control action, such as the folding of a gannet’s wings [3], without

relying on three-dimensional representations and sometimes he appeared to

deny the need for representation altogether. However, it is evident that animals

plan actions using representations, for example when they retrieve an object that

is currently out of view, but the form that these representations take is not yet

clear. I will review the approach taken in computer vision, since current systems

based on three-dimensional reconstruction work very well, and in the visual

system of insects, since they use quite different methods from computer

vision systems and yet operate successfully in a three-dimensional environment.

Current ideas about three-dimensional representation in the cortex differ

in important ways from either of these because biologists hypothesize inter-

mediate representations between image and world-based frames; I will
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discuss some of the challenges that such models face and

describe an alternative type of representation based on quite

different assumptions.
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2. Possible reference frames
(a) Computer vision
Computer vision systems are now able to generate a represen-

tation of a static scene as the camera moves through it and to

track the 6 d.f. movement of the camera in the same coordi-

nate frame. This ‘simultaneous localization and mapping’

(SLAM) can be done in real time [4] with multiple moving

objects [5] and even when nothing in the scene is rigid [6].

Nevertheless, in all these cases, the rotation and translation

of the camera are recovered in the same three-dimensional

frame as the world points. The algorithms are quite unlike

those proposed in the cortex and hippocampus since the

latter involves a sequence of transformations from eye-

centred to head-centred and then world-centred frames (see

§2c). In computer vision, the scene structure and camera

motion over multiple frames are generally recovered in a

single step that relies on the assumption of a stable scene [7].

Early three-dimensional reconstruction algorithms gener-

ally identified small, robust features in the input images

that can be tracked reliably across multiple frames [7–9].

The output is a ‘cloud’ of three-dimensional points in a

world-based frame, each point corresponding to a tracked fea-

ture in the input images (e.g. figure 1a). Modern computer

vision systems can carry out this process in real time giving

rise to a dense reconstruction (figure 1b) and a highly reliable

recovery of the camera pose [4,11]. Many SLAM algorithms

now also incorporate an ‘appearance-based’ element, such

as the inclusion of ‘keyframes’ where the full video frame or

omnidirectional view is stored at discrete points along the

path which aids re-orientation when normal tracking is lost

and helps with ‘loop-closure’ [13,14]. A ‘pose graph’ describes

the relationship between the keyframes (figure 1d). Neverthe-

less, the edges of the graph are three-dimensional rotations

and translations and there are local three-dimensional

representations at each node. More recent examples abandon

the pose graph and demonstrate how it is possible to build a

detailed, three-dimensional, global, world-based representation

for large-scale movements of the camera [15].

On the other hand, some computer vision algorithms have

abandoned the use of three-dimensional reference frames to

carry out tasks that, in the past, might have been tackled

by building a three-dimensional model. For example, Rav-

Acha, Kohli, Rother and Fitzgibbon [16] show how it is

possible to add a moustache to a video of a moving face

captured with a hand-held camera. In theory, this could be

achieved by generating a deformable three-dimensional

model of the head, but the authors’ solution was to extract a

stable texture from the images of the face (an ‘unwrap

mosaic’), add the moustache to that and then ‘paste’ the new

texture back onto the original frames. The result appears con-

vincingly ‘three-dimensional’ despite the fact that no three-

dimensional coordinates were computed at any stage. Closely

related image-based approaches have been used for a localiz-

ation task [17]. In the movie industry and in many other

applications, the start and end points are images, in which

case an intermediate representation in a three-dimensional

frame can often be avoided. Another case is image
interpolation, using images from two or more cameras. In

theory, this can be done by computing the three-dimensional

structure of the scene and projecting points back into a new,

simulated camera. But for some objects, like the fluffy toy in

figure 1c, this is hard. The best-looking results are obtained

by, instead, optimizing for ‘likely’ image statistics in the

simulated scene, using the input frames to determine these stat-

istics [12] and once again avoiding the generation of a three-

dimensional model. A very similar argument can be applied

to biology. Both the context for and the consequence of a move-

ment are a set of sensory signals [18], so it is worth considering

whether the logic developed in computer graphics might also

be true in the brain, i.e. that a non-three-dimensional represen-

tation might do just as well (under most conditions) as a

putative internal three-dimensional model.
(b) Image-based strategies
It is widely accepted that animals achieve many tasks using

‘image-based’ strategies, where this usually refers to the

control of some action by monitoring a small number of par-

ameters such as the angular size of an object on the retina

and/or its rate of expansion as the animal moves. Even in

insects, these strategies can be quite sophisticated. Cartwright

and Collett [19] showed how bees remember and match the

angles between landmarks to find a feeding site and, when

the size of a landmark is changed, they alter their distance

to match the retinal angle with the learned size. Ants show

similar image-based strategies in returning to a place or fol-

lowing a route [20,21]. Equally, it is widely accepted that

many simple activities in humans are probably achieved

using image-based rules, such as the online correction of

errors in reaching movements [22,23], and the fixation locations

chosen by the visual system during daily activities often make

it particularly easy for the brain to monitor visual parameters

that are useful for guiding action, e.g. fixating a target object

and bringing the image of the hand towards the fovea [24].

There is evidence for many tasks being carried out using

simple strategies including cornering at a bend [25], catching

a fly-ball [26] or timing a pull shot in cricket [27] and there is

a long history of using two-dimensional image-based strategies

to control robots [28].

Movements take the observer from one state to another

(hand position, head position, etc.) and hence, in the case

of visually guided movements, from one set of image-based

cues (or sensory context) to another. Image-based strategies

are ad hoc, unlike a ‘cognitive map’ whose whole purpose is

to be a common resource available to guide many different

movements [29]. But image-based strategies require some
sort of representation that goes beyond the current image.

Gillner and Mallot [30], for example, have measured the

ability of participants to learn the layout of a virtual town,

navigate back to objects and find novel shortcuts. They

suggested that people’s behaviour was consistent with them

building up a ‘graph of views’, where the edges are actions

(forward movement and turns) and the nodes are views

(figure 2b). Similarly, data by Schnapp and Warren (in an

abstract form, [31,32]) have tested participants’ ability to navi-

gate in a virtual reality environment that does not correspond

to any possible metric structure. It contains ‘wormholes’ that

transport participants to a different location and different

orientation in the maze without them being aware that this

has happened (see figure 2a). Because they are translated and
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Figure 1. Computer vision approaches. (a) Early photogrammetry methods tracked features across a sequence of frames and calculated a set of three-dimensional
points and a camera path that would best explain the tracks (Image courtesy of Oxford Metrics (OMG plc), [10]). (b) ‘Dense SLAM’ now achieves the same result but
for a very dense reconstruction of surfaces and is done in real time (& Reprinted from Newcombe et al. [11] with permission from IEEE). (c) Sometimes it is very
difficult to calculate the three-dimensional structure of a scene, as here, and for many purposes solutions that avoid three-dimensional reconstruction are optimal (in
this case, synthesising a novel view given several input views; & Reprinted from Fitzgibbon et al. [12] with permission from IEEE). (d ) Recent approaches to SLAM
incorporate views at certain locations (S1 and S2 here, called ‘keyframes’) and store these, along with the rotation and translation required to move between them, as
a graph (Reprinted from Twinanda et al. [13] with permission from the authors). (Online version in colour.)
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rotated as they move through the wormhole, no coherent

(wormhole-free) two-dimensional map of the environment is

possible. The fact that participants do not notice and can per-

form navigation tasks well suggests that they are not using

a cognitive map but their behaviour is consistent with a

topological representation formed of a graph of views.

Some behaviours are more difficult to explain within a

view-based or sensory-based framework. Path integration

by ants provides a good example: they behave as if they

have access to a continually updated vector (direction and

distance) that will take them back to home. This can be

demonstrated by transporting an ant that has walked away

from its nest and releasing it at a new location [33]. Müller

and Wehner do not use this evidence to propose a cognitive

map in ants but, instead, argue that the pattern of systematic

errors in the path integration process suggests that the ants

are using a simple mechanism that is closely analogous to

homing by matching a ‘snapshot’, i.e. a classic image-based

strategy. Nevertheless, for some tasks it is difficult to imagine

image-based strategies: ‘Point to Paris!’, for example. People

are not always good at these tasks and they often require

considerable cognitive effort. It is not yet clear whether, in

these difficult cases, the brain resorts to building a three-

dimensional reconstruction of the scene or whether there

are yet-to-be-determined view-based approaches that could

account for them.
(c) Cortical representations
It is often said that posterior parietal cortex represents the

scene in a variety of coordinate frames [34,35], as shown in

figure 3a. The clearest case for something akin to a three-

dimensional coordinate frame is in V1. Here, receptive

fields are organized retinotopically and neurons are sensitive

to a range of disparities at each retinal location (e.g. [37]).

Described in relation to the scene, this amounts (more or

less) to a three-dimensional coordinate frame centred on the

fixated object. In theory, a rigid rotation and translation

could transform the three-dimensional receptive fields in V1

into a different frame, e.g. one with an origin and axes

attached to the observer’s hand. If this were the case, one

would expect a very rapid and quite complex re-organization

of receptive fields in posterior parietal cortex as the hand

translated or rotated. But that would be substantially more

complex than the type of operations that have been proposed

up to now. For example, ‘gain fields’ demonstrate that one

parameter, such as the position of the eyes in the head, can

modulate the response of neurons to visual input [38,39]. In

some cases, operations of this type can give rise to receptive

fields that are stable in a non-retinotopic frame (e.g. [40]).

Beyond posterior parietal cortex, a further coordinate

transformation is assumed to take place to bring visual infor-

mation into a world-based frame. Byrne et al. [36] describe

steps that would be required to achieve this (figure 3b). An
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Figure 2. Non-Euclidean representations. (a) In an experiment by Schnapp
and Warren [31], participants explored a virtual environment that either
corresponded to a fixed Euclidean structure (left) or something that was
not Euclidean (right) because, in this case, participants were transported
through a ‘wormhole’ between the locations marked on the map by red
lines but the views from these two locations were identical so there was
no way to detect the moment of transportation. In the wormhole condition,
the relative location of objects has no consistent geometric interpretation
(sketch of virtual maze adapted from Schnapp and Warren [31]). (b) Four
places, p1 – p4, are shown as nodes in a graph whose edges are the views
from each place. The views themselves can be described as a graph
(right). In this case, the edges are actions (rotations on the spot or trans-
lations between places). (& Reprinted from Gillner & Mallot [30] with
permission from MIT Press.) (Online version in colour.)
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on the basis of an ego-centric input from parietal cortex (PW). A signal
from head-direction (HD) cells could ‘gate’ the information and so ensure
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(Copyright & 2007 by the American Psychological Association. Reproduced
with permission.) (Online version in colour.)
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ego-centred representation, assumed to come from parietal

cortex, would need to be duplicated many times over so

that a signal from a head direction cell could ‘gate’ the

information passing to ‘boundary vector cells’ (BVC) in para-

hippocampal gyrus. This putative mechanism deals with

rotation. A similar duplication would presumably be

required to deal with translation.

Anatomically nearby, but quite different in their proper-

ties, ‘grid cells’ in the dorsocaudal medial entorhinal cortex

provide information about a rat’s location as it moves [41].

The signals from any one of these neurons are highly ambig-

uous about the rat’s location. Three grid cells at each of

three spatial scales could, in theory, signal a very large

number of locations, just as nine digits can be used to

signal a million different values, but the readout of these

values to provide an unambiguous signal that identifies a

large number of different locations would be difficult [42]

especially if realistic levels of noise in the grid cells were to

be modelled. Instead, arguments have been advanced that

‘place’ cell receptive fields are not built up from ‘grid’ cell

input but that, instead, information from place and grid

cells complement one another [43,44]. In relation to this

volume, which is about vision in a three-dimensional

world, it is relevant to note that grid cells are able to operate

very similarly in the dark and the light [41], so the visual

coordinate transformations discussed above are clearly not
necessary to stimulate grid cell responses. Indeed, some

have argued that grid cells play a key role in navigation

only in the dark [44].
(d) Removing the origin
Instead of representing space as a set of receptive fields, e.g.

with three-dimensional coordinates defined by visual direc-

tion and disparity in V1 as discussed in §2c, an alternative

is that it could be represented by a set of sensory contexts

and the movements that connect these (like a graph, as dis-

cussed in §§2a and 2b). Similarly, shape and slant could be

represented by storing the propensity of a shape to deform

in particular ways as the observer moves—again, it is the

linking of sensory contexts via motor outputs that is impor-

tant [45]. The idea is not to store all motion parallax as an

observer moves. Any system that did this would be able (in

theory) to compute the three-dimensional structure of the

scene and the trajectory of the observer. Instead, the idea is

that what is stored is some kind of ‘summary’ that is useful

for action despite being incomplete. I will refer throughout
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this section to movement of the observer (or optic centre), but

the key is that the scene is viewed from a number of different

vantage points. A limiting case is just two vantage points,

including a static binocular observer, but the principles

should apply to a much wider range of eye and head

movements.

For example, consider a camera or eye rotating about its

optic centre so that, over many rotations, it can view the

entire panoramic scene or so-called optic array. If the axis

and angle that will take the eye/camera from any point on

this sphere to any other is recorded, then these relative

visual directions provide a framework to describe the

layout or ‘position’ of features across the optic array ([46];

figure 4a). In practice, the number of relative visual directions

that need to be stored can be significantly reduced by

organizing features hierarchically, e.g. storing finer scale fea-

tures within coarser scale ones ([46,48,49], see figure 4b). This

means that every fine-scale feature has a location within a

hierarchical database of relative visual directions. Saccades

allow the observer to ‘paint’ extra detail into the represen-

tation in different regions, like a painter adding brush

strokes on a canvas, but the framework of the canvas remains

the same [50].

When the optic centre translates (including the case of

binocular vision, where the translation is from one eye to

the other), information becomes available about the distance,

slant and depth relief of surfaces:
— Distance. Some features in the optic array remain relatively

stable with respect to each other when the optic centre

translates [46]. Examples of these are shown in figure 4a
(shown in green). For large angular separations, when

pairs or triples of points do not move relative to one

another in the face of optic centre translation, the points

must be distant. These points form a stable background

against which the parallax (or disparity) of closer features

can be judged (shown in red in figure 4a). This type of

representation of ‘planes plus parallax’ is familiar in com-

puter vision, where explicit recovery of three-dimensional

structure can be avoided, and many tasks simplified, by

considering a set of points in a plane (sometimes these

are points at infinity) and recording parallax relative to

these points [51–53]. Representing the propensity of

features to move relative to a stable background allows

one to encode information about the relative distance of

objects without necessarily forming a three-dimensional,

world-based representation.

— Depth relief. Given that the definition of visual direction

of features is recorded hierarchically in the proposed

representation, there is a good argument for storing defor-

mations in a hierarchical way, too. So, if a surface is

slanted and translation of the optic centre causes a lateral

compression of the image then the basis vector or coordi-

nate frame for recording the visual direction of finer scale

features should become compressed too. Koenderink and

van Doorn [54] describe the advantages of using a ‘rubber

sheet’ coordinate system like this. It has the effect that fea-

tures on the slanted plane are recorded as having ‘zero’

disparity (or motion) and any disparity (or motion) sig-

nals a ‘bump’ on the surface (shown in red in figure 4b).

There is good evidence that the visual system adopts a

‘rubber sheet’ coordinate frame of this sort from
experiments on binocular correspondence [55], perceived

depth [56] and stereoacuity [57,58].

— Slant. Figure 4c shows how the slant of a surface patch

might be represented in a way that is short of a full

metric three-dimensional description of its angle and

yet useful for many purposes. Information about the

image deformation of a surface patch provides infor-

mation about the angle of tilt of the surface and some

qualitative information about the magnitude of its slant

(e.g. [59]). Figure 4c shows how moving in different direc-

tions is, in image terms, a bit like pulling and pushing a

rubber sheet that contains rigid parallel rods: the more

slanted the surface, the more elastic the connection

between the green rods (shown as red lines in figure 4c).

The tilt of the rods indicates the tilt of the surface. The

rods can change in length (and the whole patch with

them) if the optic centre moves towards or away from

the surface.

Thus, for distance, slant and depth relief we have identified

information about the propensity of two-dimensional image

quantities to change in response to observer movement (or

binocular viewing). It is important to emphasize that this

‘propensity’ to change is neither optic flow [59,60] nor a

three-dimensional reconstruction but somewhere in between.

Figure 5 illustrates the point. Viewing a slanted surface gives

rise to different optic flow depending on the direction of

translation of the optic centre (figure 5a) but if the visual

system is to use the optic flow generated by one translation

to predict the flow that will be generated by a different

head movement then it must infer something general about

the surface. This need not be the three-dimensional structure

of the surface, although clearly that would be one general

description that would support predictions. Instead, the

visual system might store something more image-based, as

illustrated in figure 4. Neurally, this could be instantiated as

a graph of sensory states joined by actions [45,61,62]. For

example, if all the images shown in figure 5a correspond to

nodes in a graph (figure 5c) and translations of the optic

centre correspond to the edges, then the relationship between

the nodes and the edges carries information about the surface

slant: if a relatively large translation is required to move

between nodes (the ‘propensity’ of the image to change

with head translation is relatively low), then the surface

slant is shallow. The same type of graph could underlie the

idea of a ‘canvas’ on which to ‘paint’ visual information as

the eyes move (figure 5b), as discussed above. The edges in

this case are saccades [45,46,63–65].

Taken together, we now have a representation with many

of the properties that Marr and Nishihara [66] proposed

when they discussed a 21
2D sketch. The eye can rotate freely

and the representation is unchanged. Small translations in

different directions (including from left to right eye, i.e. bin-

ocular disparity) give information about the relative depth

of a surface, its slant relative to the line of sight and the

relief of fine-scale features relative to the plane of the surface.

It is, in a sense, an ego-centric representation in that the eye is

at the centre of the sphere. Yet, in another sense, it is world-

based, since distant points remain fixed in the representation,

independent of the rotation and translation of the observer.

This applies to an observer in a scene, moving their head

and eyes, which is the situation Marr and Nishihara envi-

saged when they described their 21
2D sketch. For larger
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Figure 4. Image consequences of observer movement. Information about the distance, slant and local shape of surfaces can be gathered from the propensity of
features to move relative to one another in the optic array as the observer moves in different directions in a static scene. (a) Static distant objects (in this case, purple
cubes) do not change their relative visual direction as the observer moves (green arcs) whereas the image of near objects (shown in cyan) change relative to distant
objects and relative to each other (red arcs). The white sphere shows the optic array around an optic centre in the centre of the sphere. The inset images show the
optic array for two different locations of the optic centre (same static scene). Purple rays come from distant cubes, cyan rays come from near, cyan objects. The
lengths of the arcs and the angles between them provide a description of the ‘relative visual direction’ of features in the optic array. For the green arcs, these remain
stable despite reasonably large translations of the optic centre. (b) Considering a much smaller region of the optic array, a patch on a surface can also be considered
in terms of features that remain constant despite observer movement versus those that change. The patch shown is slanted with respect to the line of sight and
compresses horizontally as the observer translates. Most of the features compress in the same way as the overall compression of the patch (green arcs), as if drawn
on a rubber sheet, whereas one feature moves (shown in red). It has depth relief relative to the plane of the surface patch [47]. (c) The tilt and qualitative
information about the slant of the patch are indicated by the distortion of the rubber sheet. For any component of observer translation in a plane orthogonal
to the line of sight (i.e. not approaching or backing away from the surface), different directions of observer movement produce effects shown by the coloured
arrows (compression, red; expansion, green; shear, purple; a mixture, orange). The green rods stay the same length and remain parallel throughout; their orientation
defines the tilt of the surface. The red lines joining the green rods indicate the ‘elasticity’ of the rubber sheet: the more elastic they are the greater the surface slant.
Any component of observer translation towards the surface causes a uniform expansion of the whole sheet (including the green rods).
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translations, such as walking out of the room, a graph of

views is still an appropriate representation [30] but many of

the relationships illustrated in figure 4 would no longer

apply for such ‘long baseline’ translations.

The purpose of Marr’s primal sketch [67] and the 21
2D

sketch was that they were summaries, where information

was made explicit if it was useful to the observer. That is

also a feature of the representation described here, in that

information can be left in ‘summary form’ or filled in in

greater detail when required. In the case of an eye/camera

rotating about its optic centre, there is ‘room’ in the represen-

tation to ‘paste in’ as much fine-scale detail as is available to
the visual system [68], even though, under most circum-

stances, observers are unlikely to need to do this and, as

many have argued, fine-scale detail need not be stored in a

representation if it can be accessed readily by a saccadic eye

movement when required (‘assuaging epistemic hunger’ as

soon as it arises [69]).

Similarly, there is nothing to stop the visual system using

the information from disparity or motion in the represen-

tation in a more sophisticated and calibrated way than

simply recording measures such as ‘elasticity’ between fea-

tures as outlined above. For example, it has been proposed

that there is a hierarchy of tasks using disparity information
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in black). The image immediately to the right (in cyan) shows how the right eye receives an image that is expanded laterally. The black dashed line shows the
outline of the surface in the original (central) image. The top and bottom rows show the image consequences of the original (left eye) viewpoint moving up or
down respectively and the columns show the consequences of the viewpoint moving left or right. These transformations can be understood in relation to a stable
three-dimensional structure of the surface or in terms of the ‘propensity’ of parts of the image to change when the viewpoint moves. (b) An eye is shown viewing a
static scene and rotating about its optic centre. The image from one viewing direction (shown in blue) overlaps with the image from another viewing direction
(shown in red) and both these images can be understood in relation to a stable two-dimensional sphere of visual directions, as shown on the right. (Reprinted from
Glennerster et al. [46] with permission from Elsevier.) (c) As discussed in the text, both these concepts (‘propensity’ and a stable ‘canvas’ on which to paint images)
might be implemented using a graph where the nodes are sensory states and the edges are actions (translations of the head in (a) or rotations of the eye in (b)).
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[70,71] which goes from breaking camouflage at the simplest

level through threading a needle, determining the bas-relief

structure of a surface, comparing the relief of two surfaces

at different distances to, at the top of the hierarchy, judging

the Euclidean shape of a surface. These tasks lie on a

spectrum in which more and more precise information is

required, either about the disparities produced by a surface

or about its distance from the observer, in order to carry

out a task successfully. Judgement of Euclidean shape

demands a calibration of disparity information—a precise

delineation of the current sensory context relative to

others—to such an extent that performance is compatible

with the brain generating a full Euclidean representation.

What is important in this way of thinking, though, is that

the top level of calibration of disparities is only carried out

when the task demands it (which is likely to be rare and, in

the example in §3, occurs only once). If the visual system

never used ‘summaries’ or short-cuts, then the storage of

disparity and motion information would be equivalent to a

full metric model of the environment.
3. Examples
(a) An example task
As we said at the outset, for a representation to be useful to a

moving observer, information gained at one location must be

capable of guiding action at another. Consider a task: a

person has to retrieve a mug from the kitchen, starting

from the dining room. How can this be achieved, unless the

brain stores a three-dimensional model of the scene? The
first step is to rotate appropriately, which requires two

things. The visual system must somehow know that the

mug is behind one door rather than another, even if it does

not store the three-dimensional location of the mug. In com-

puter graphics applications, ‘portals’ are used in a related

way to upload detailed information about certain zones of

the virtual environment only when required [72]. The pro-

blem of knowing whether an item is down one branch or

another of a deep nested tree structure is well known in rela-

tional databases [73] but is not considered here. Second, the

direction and angle of the kitchen door relative to the current

fixated object must be stored in the representation since it is

currently out of view. Next, the person must pass through

the door and rotate again so as to bring the mug into view.

Each of these states and transitions could be considered as

nodes and edges in a graph, with fairly simple actions joining

the states.

The final parts of the task require a different type of inter-

action with the world, because the person must reach out and

grasp the mug. The finger and thumb must be separated by

an appropriate amount to grasp the mug and there is good

evidence that information about the metric shape of an

object begins to affect the grasp aperture before the hand

comes into view [74–76]. It is possible that information

from a number of sources, both retinal and extra-retinal,

about the distance and metric structure of the target object

can be brought to bear just at this moment (because, once

the hand is in view, closed loop visual guidance can play a

part [23,76–78]). As discussed above, the fact that a range

of sources of relevant information can be brought to bear at

a critical moment (when shaping the hand before a grasp)



F
A

H2

Figure 6. Potential evidence of head-centric adaptation. If a participant were
to fixate a point F and adapt to a stimulus (e.g. a drifting grating) presented
at A in the head-centric midline then turn their head to point in the direction
H2 and test the effect of adaptation over a wide range of test directions, the
predictions of retinotopic, spatiotopic and head-centric adaptation would
differ. In this case, the peak effects should occur at A for retinotopic and
spatiotopic adaptation and at H2 for head-centric adaptation. (Online version
in colour.)
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makes it very difficult to devise an experimental test that

could distinguish between the predictions of competing

models, i.e. a graph-based representation versus one that

assumes the mug, hand and observer’s head are all rep-

resented in a common three-dimensional reference frame

with the shape of the mug described in full, Euclidean,

metric coordinates.

That may seem slippery, from the perspective of design-

ing critical experiments, but it is an important point. A

graph of contexts connected by actions is a powerful and flex-

ible notion. If the task is only to discriminate between bumps

and dips on a surface, then the contexts that need to be dis-

tinguished can be very broad ones (e.g. positive versus

negative disparities). On the other hand, the context corre-

sponding to a mug with a particular size, shape and

distance is a lot more specific. It may require not only more

specific visual information but also information from other

senses such as proprioception, including vergence, in order

to narrow it down. All the same, it remains a context for

action. During the mug-retrieving task, most of the steps do

not require such a narrow, richly-defined context including

all the stages at which visual guidance is possible or the

action is a pure rotation of the eye and head. But some do,

and in those cases it is possible to specify more precise,

multi-sensory contexts that will discriminate between

different actions.
(b) Example predictions
When putting forward their stereo algorithm, Marr and

Poggio [79] went to admirable lengths to list psychophysical

and neurophysiological results that, if they could be demon-

strated, would falsify their hypothesis. Here are a few that

would make the proposals described above untenable

(§2d). Using Marr and Poggio’s convention, the number of

stars by a prediction (P) indicates the extent to which the

result would be fatal and A indicates supportive data that

already exist.

— (P***) Coordinate transformations. Strong evidence in favour

of true coordinate transformations of visual information in

the parietal cortex or hippocampus would be highly pro-

blematic for the ideas set out in §2d. If it could be shown

that visual information in retinotopic visual areas like V1

goes through a rotation and translation ‘en masse’ to gener-

ate receptive fields with a new origin and rotated axes in

another visual area, where these new receptive fields

relate to the orientation of the head, hand or body then

the ideas set out in §2d will be proved wrong, since they

are based on a quite different principle. Equally fatal

would be a demonstration that the proposal illustrated in

figure 3b is correct, or any similar proposal involving mul-

tiple duplications of a representation in one coordinate

frame in order to choose one of the set based on idiothetic

information. Current models of coordinate transformations

in parietal cortex are much more modest, simulating ‘par-

tially shifting receptive fields’ [80] or ‘gain fields’ [38]

which are two-, not three-dimensional transformations.

Similarly, models of grid cell or hippocampal place cell

firing do not describe how three-dimensional transform-

ations could take place taking input from visual receptive

fields in V1 and transforming them into a different,

world-based three-dimensional coordinate frame [81–83].
—(P***) World-centred visual receptive fields. This does not refer

to receptive fields of neurons that respond to the location

of the observer [84]. After all, the location of the observer

is not represented in any V1 receptive field (it is invisible)

so no rotation and translation of visual receptive fields

from retinotopic to egocentric to world-centred coordinates

could make a place cell. A world-centred visual receptive

field is a three-dimensional ‘voxel’ much like the three-

dimensional receptive field of a disparity-tuned neuron

in V1 but based in world-centred coordinates. Its structure

is independent of the test object brought into the receptive

field and independent of the location of the observer or the

fixation point. For example, if the animal viewed a scene

from the south and then moved, in the dark, round to

the west, evidence of three-dimensional receptive fields

remaining constant in a world-based frame would be

incompatible with the ideas set out here. In this example,

the last visual voxels to be filled before the lights went

out should remain in the same three-dimensional location,

contain the same visual information (give or take general

memory decay across all voxels) and remain at the same

resolution, despite the translation, rotation and new fix-

ation point of the animal. An experiment that followed

this type of logic but for pointing direction found, on the

contrary, evidence for gaze-centred encoding [85].

—(A*) Task-dependent performance. If all tasks are carried out

with reference to an internal model of the world (a ‘cogni-

tive map’ or reconstruction), then whatever distortions

there are in that model with respect to ground truth

should be reflected in all tasks that depend on that

model. Proof that this is the case would make the hypoth-

esis set out in §2d untenable. However, there is already

considerable evidence that the internal representation

used by the visual system is something much looser and,

instead, that different strategies are used in response to

different tasks. Many examples demonstrate such ‘task-

dependence’ [71,86–89]. For example, when participants
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compare the depth relief of two disparity-defined surfaces

at different distances they do so very accurately while, at

the same time, having substantial biases in depth-to-height

shape judgements [71]. This experiment was designed to

ensure that, to all intents and purposes, the binocular

images the participant received were the same for both

tasks so that any effect on responses was not due to differ-

ences in the information available to the visual system. The

fact that biases were systematically different in the two

tasks rules out the possibility that participants were

making both judgements by referring to the same internal

‘model’ of the scene. Discussing a related experiment that

demonstrates inconsistency between performance on two

spatial tasks, Koenderink et al. [86, p. 1473] suggest that

it might be time to ‘. . . discard the notion of “visual

space” altogether. We consider this an entirely reasonable

direction to explore, and perhaps in the long run the

only viable option’.

—(P**) Head-centred adaptation. A psychophysical approach

could be, for example, to look for evidence of receptive

fields that are constant in head-centred coordinates. For

example, if an observer fixates a point 208 to the right of

the head-centric midline and adapts to a moving stimulus

208 to the left of fixation (i.e. on the head-centric midline),

do they show adaptation effects in a head-centric frame

after they rotate their head to a new orientation while

maintaining fixation (see figure 6)? Evidence of a pattern

of adaptation that followed the head in this situation
would not be expected according to the ideas set out in

§2d. As figure 6 illustrates, this prediction is different

from either retinal or spatiotopic (world-based) adaptation

[90–92]. There is psychophysical evidence that gaze

direction can modulate adaptation [93,94] consistent with

physiological evidence of ‘gain fields’ in parietal cortex

[38] but the data do not show that adaptation is spatially

localized in a head-centred frame as illustrated in figure 6.

4. Conclusion
If a moving observer is to use visual information to guide

their actions, then they need a visual representation that

encodes the spatial layout of objects. This need not be

three-dimensional, but it must be capable of representing

the current state, the desired state and the path between the

two. Computer vision representations are three-dimensional,

predominantly, as are most representations that are hypoth-

esised in primates but, I have argued, there is good reason

to look for alternative types of representation that avoid

three-dimensional coordinate frames.
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