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Abstract
An important component of efforts to manage the ongoing COVID19 pandemic is the

Rapid Assessment of how natural selection contributes to the emergence and

proliferation of potentially dangerous SARS-CoV-2 lineages and CLades (RASCL). The

RASCL pipeline enables continuous comparative phylogenetics-based selection

analyses of rapidly growing clade-focused genome surveillance datasets, such as those

produced following the initial detection of potentially dangerous variants. From such

datasets RASCL automatically generates down-sampled codon alignments of individual

genes/ORFs containing contextualizing background reference sequences, analyzes

these with a battery of selection tests, and outputs results as both machine readable

JSON files, and interactive notebook-based visualizations.

Availability: RASCL is available from a dedicated repository at

https://github.com/veg/RASCL and as a Galaxy workflow

https://usegalaxy.eu/u/hyphy/w/rascl. Existing clade/variant analysis results are

available here: https://observablehq.com/@aglucaci/rascl.

Contact: Dr. Sergei L Kosakovsky Pond (spond@temple.edu).

Supplementary information: N/A
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Rapid characterization and assessment of the clade-specific molecular features of

individual persistent or rapidly expanding SARS-CoV-2 lineages has become an

important component of efforts to monitor and manage the COVID19 pandemic.

Analyses of natural selection have been broadly incorporated into such assessments as

a primary tool for inferring the selective processes under which novel SARS-CoV-2

variants evolve (Tegally et al., 2021, Faria et al., 2021, D. Martin et al., 2021, MacLean

et al., 2021). Ongoing monitoring of emergent variants of interest (VOI) or concern

(VOC) can detect potentially adaptive mutations before they rise to high frequency, and

help establish the relationships between individual mutations and key viral

characteristics including pathogenicity, transmissibility, and drug resistance (Hamed et

al., 2021, Young et al., 2021, Luchsinger et al., 2021, Abdool et.al., 2021, Cyrus Maher

et al., 2021). Molecular patterns of ongoing selection that are evident within sequences

sampled from particular VOI or VOC clades may also reveal the sub-lineages within

these clades that carry potentially fitness-enhancing mutations and which are therefore

most likely to drive future viral transmission (Rambaut et al., 2020).

Here, we present RASCL (Rapid Assessment of SARS-CoV-2 CLades), an analytic

pipeline designed to investigate the nature and extent of selective forces acting on viral

genes in SARS-CoV-2 sequences through comparative phylogenetic analyses (Figure

1A). RASCL is implemented as an easy-to-use, standalone pipeline and as a web

application, integrated in the Galaxy framework and available for use on powerful public

computing infrastructure (Afgan et al., 2018).
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Figure 1. (A) A flowchart diagram of the main analytic engine of RASCL. (B) Examples

of the ObservableHQ visualization notebook elements for the main Omicron clade

(BA.1).

The RASCL pipeline takes as input (i) a “query” dataset comprising a single FASTA file

containing unaligned SARS-CoV-2 full or partial genomes belonging to a clade of

interest (e.g., all sequences from the PANGO lineage, B.1.617.2) and (ii) a generic

“background” dataset that might comprise, for example, a set of sequences that are

representative of global SARS-CoV-2 genomic diversity assembled from ViPR (Pickett

et al., 2012). It is not necessary to remove sequences in the query dataset from the

reference dataset -- the pipeline will do this automatically. The choice of “query” and

“background” datasets is analysis-specific. For example, if another clade of interest is

provided as background it is possible to identify sites that are evolving differently

between two clades directly. Other sensible choices of query sequences might be:

sequences from a specific country/region, or sequences sampled during a particular

time period. Following the disassembly of whole genome datasets into individual coding
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sequences (based on the NCBI SARS-CoV-2 reference annotation), the gene datasets

(each containing a set of query and background sequences) are processed in parallel.

Using complete linkage distance clustering implemented in the TN93 package

(https://github.com/veg/tn93), RASCL subsamples from available sequences while

attempting to maintain genomic diversity; the clustering threshold distance is chosen

automatically to include no more than a user-specified number of genomes (e.g., 300).

A combined (query and background) alignment is created with only the sequences that

are divergent enough to be useful for subsequent selection analyses being retained

from the background dataset. Inference of a maximum likelihood phylogenetic tree

(RAxML-NG, Kozlov et al., 2019, or IQ-TREE, Nguyen et al., 2015) is performed on the

combined dataset and the query and background branches of this tree are labeled.

Selection analyses are then performed with state of the art molecular evolution models

implemented in HyPhy (Pond et al., 2020).

1. SLAC: performs substitution mapping (Pond and Frost, 2005)

2. BGM: identifies groups of sites that are apparently co-evolving (Poon et al.,

2008)

3. FEL: locates codon sites with evidence of pervasive positive diversifying or

negative selection (Pond and Frost, 2005),

4. MEME: locates codon sites with evidence of episodic positive diversifying

selection, (Murrell et al., 2012)

5. BUSTEDS: tests for gene-wide episodic selection (Wisotsky et al., 2020)

6. RELAX: compare gene-wide selection pressure between the query clade and

background sequences (Wertheim et al., 2015),

7. CFEL: comparison site-by-site selection pressure between query and

background sequences (Pond et al., 2021).

8. FADE: identify amino-acid sites with evidence of directional selection (Pond

et.al., 2008)

To mitigate the potentially confounding influences of within-host evolution and

sequencing errors, these analyses are performed only on internal branches of the
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phylogenetic tree (Lorenzo-Redondo et al., 2016). Results are combined into two

machine readable JSON files (“Summary” and “Annotation”) that are used for web

processing. A feature-rich interactive notebook in ObservableHQ (Perkel 2021,

https://observablehq.com/@aglucaci/rascl) is used to visualize and summarize RASCL

results (Figure 1B)

RASCL is currently available in two distributions:(i) through a web interface via the

Galaxy Project as a workflow (https://usegalaxy.eu/u/hyphy/w/rascl); and (ii) as a

standalone pipeline via a dedicated GitHub (https://github.com/veg/RASCL) repository.

For the web application implementation, the alignment, tree and analysis results are

stored and made web-accessible via the Galaxy platform. Results are visualized with an

interactive notebook hosted on ObservableHQ (Figure 1B; Perkel 2021) that includes an

alignment viewer, a visualization of individual codons/amino acid states at user-selected

sites mapped onto the tips of a phylogenetic tree, and detailed tabulated information on

analysis results for individual genes and codon-sites.

RASCL has been used to characterize the role of natural selection in the emergence of

the Beta (Tegally et al., 2021), Gamma (Faria et al., 2021), and Omicron (Moyo et al.,

2021) VOC lineages, and for identifying patterns of convergent evolution in N501Y

SARS-CoV-2 lineages (Martin et al., 2021). Whenever future genomic surveillance

efforts reveal new potentially problematic SARS-CoV-2 lineages, we anticipate that

RASCL will be productively used to analyze these too. Finally, RASCL has been

designed so that, with minimal modification, it can also be adapted to analyze any other

viral pathogens for which sufficient sequencing data is available.
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