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Abstract

Motivation: Many intracellular signaling processes are mediated by interactions involving peptide

recognition modules such as SH3 domains. These domains bind to small, linear protein sequence

motifs which can be identified using high-throughput experimental screens such as phage display.

Binding motif patterns can then be used to computationally predict protein interactions mediated

by these domains. While many protein–protein interaction prediction methods exist, most do not

work with peptide recognition module mediated interactions or do not consider many of the known

constraints governing physiologically relevant interactions between two proteins.

Results: A novel method for predicting physiologically relevant SH3 domain-peptide mediated

protein–protein interactions in S. cerevisae using phage display data is presented. Like some previ-

ous similar methods, this method uses position weight matrix models of protein linear motif prefer-

ence for individual SH3 domains to scan the proteome for potential hits and then filters these hits

using a range of evidence sources related to sequence-based and cellular constraints on protein

interactions. The novelty of this approach is the large number of evidence sources used and the

method of combination of sequence based and protein pair based evidence sources. By combining

different peptide and protein features using multiple Bayesian models we are able to predict high

confidence interactions with an overall accuracy of 0.97.

Availability and implementation: Domain-Motif Mediated Interaction Prediction (DoMo-Pred) com-

mand line tool and all relevant datasets are available under GNU LGPL license for download from

http://www.baderlab.org/Software/DoMo-Pred. The DoMo-Pred command line tool is implemented

using Python 2.7 and Cþþ.

Contact: gary.bader@utoronto.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–protein interactions (PPIs) are physical associations between

protein pairs in a specific biological context. Their knowledge provides

important insights into the functioning of a cell. Previously, experimen-

tal detection of PPIs was limited to labor intensive techniques such as

co-immunoprecipitation or affinity chromatography (Skrabanek et al.,

2008). Though the detected PPIs are largely accurate, these techniques

are difficult to apply to whole proteome analysis. This led to the devel-

opment of various high-throughput PPI detection protocols such as

mass-spectrometry combined with affinity-purification, yeast two-

hybrid and next-generation sequencing to detect PPIs at whole genome

level (Braun et al., 2013; Davy et al., 2001; Ito et al., 2001; McCraith

et al., 2000; Rain et al., 2001; Uetz et al., 2000; Yu et al., 2011).

However, genome-scale methods are also highly resource intensive and

single projects and techniques do not cover all known protein inter-

actions. Further, they only cover interactions in one organism at a

time. Computational approaches designed to predict reliable and novel

PPIs based on experimental interaction datasets have the advantages

that they are inexpensive to apply to genomes, including those that are
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infeasible to tackle experimentally and this motivates their further de-

velopment (Skrabanek et al., 2008).

Multiple kinds of protein–protein interactions exist. We focus on

interactions involving peptide recognition modules (PRMs), in particu-

lar Src homology three (SH3), which are important in many cellular

signaling processes. These domains bind to small, linear sequence

motifs (peptides) within proteins (Pawson and Nash, 2003). SH3 do-

mains are approximately 60 amino acids long with five beta strands

organized into two perpendicular beta sheets interrupted by a 3–10

helix (Pawson and Gish, 1992). They often bind to proline-rich regions

and multiple classes have been recognized based on their binding

motifs. Class I SH3 domains bind to [R/K]xxPxxP and class II bind to

PxxPx[R/K] motifs (Mayer, 2001). They can also bind to proline-free

regions containing arginine or lysine (Tong et al., 2002). SH3 domains

are involved in many regulatory or signaling processes, including

endocytosis (Tonikian et al., 2009), actin cytoskeleton regulation

(Pawson and Schlessingert, 1993) and tyrosine kinase pathways

(Schlessinger, 1994). Experimental methods such as phage display

(Tong et al., 2002; Tonikian et al., 2008, 2009) and peptide microarray

(Hu et al., 2004; MacBeath and Schreiber, 2000; Stiffler et al., 2007)

have been used to identify the peptides binding to PRMs.

The computational problem under focus in this work is to use the

SH3 domain binding peptides identified from phage display experi-

ments to predict SH3 domain mediated PPIs in S. cerevisiae. A straight-

forward approach is to construct position weight matrices (PWMs)

from phage peptides and scan the whole proteome for potential bind-

ing sites in target proteins using some threshold score (Obenauer et al.,

2003). The problem with this simple approach is the lack of contextual

information, for example, the predicted binding site might not be ac-

cessible or it might lie within a structured part of protein (e.g. domain).

Fig. 1. Work flow of PRM mediated PPI prediction pipeline. (A) Proteome is scanned using a PWM built with experimentally derived binding peptides (e.g. from

phage display) of a given SH3 domain for potential interactors. (B) Separate Bayesian classifiers for peptide and protein features. (C) Integration of classifiers for

predicting interacting and non-interacting protein pairs (Color version of this figure is available at Bioinformatics online.)
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Tonikian et al. (2009) addressed this problem by combining in vitro

(phage display, peptide array screening) and in vivo (yeast two-hybrid)

data to predict SH3 domain mediated PPIs in yeast. Verifying inter-

actions using multiple experimental techniques improves the PPI confi-

dence but it is both time and resource consuming. Lam et al. (2010)

combined comparative and structural genomic features with PWMs to

reduce the number of false binding sites. But they did not consider that

PPIs are influenced by many cellular constraints including that interact-

ing proteins must be in close proximity and should be part of same pro-

cess. Peptide-only features are not sufficient for predicting high

confidence physiologically relevant PRM mediated PPIs with binding

site resolution. Jansen et al. (2003), Rhodes et al. (2005), Li et al.

(2008), Zhang et al. (2012) and others considered multiple types of cel-

lular constraints and combined different evidence sources for PPI pre-

diction, but their approaches are designed for full length proteins and

cannot be used to predict PRM mediated PPIs, including identification

of binding sites. More recently, Chen et al. (2015) combined limited

number of peptide and protein features for predicting PRM mediated

PPIs in humans. Their protein features are based on one of the earlier

the works in the field of ensemble PPI prediction (Jansen et al., 2003).

Since then many advances have been made in improving the perform-

ance of individual features in PPI prediction (Reimand et al., 2012).

Also, their method is not compatible with high-throughput binding

peptide data, such as from phage display. Here, we make use of a larger

set of evidence sources to predict SH3-mediated PPIs and their binding

sites than has been collected previously and combine peptide level and

protein level features in a single predictor.

2 Approach

PRM mediated PPIs do not occur in isolation in the cell. They are influ-

enced by different sequence-based and cellular constraints. For ex-

ample, SH3 domains can only bind surface accessible regions,

interacting proteins must be present in same cellular compartment, and

proteins in the same biological process with correlated gene expression

profiles are more likely to interact compared to randomly selected pro-

tein pairs. Thus, diverse types of information can be used to help pre-

dict physiologically relevant protein interactions. In our method,

PWMs constructed using peptides from phage display experiments are

used to scan the yeast proteome for potential targets. Peptide features:

disorder, surface accessibility, peptide conservation and structural con-

tact are combined using naı̈ve Bayesian integration to score the PWM

targets. Another naı̈ve Bayesian model is used to combine protein fea-

tures: cellular location, biological process, molecular function, gene ex-

pression and sequence signature to score the same targets. Scores from

both peptide and protein classifiers are then combined using Bayes the-

orem to predict physiologically relevant SH3 domain mediated PPIs in

yeast. Figure 1 shows the work flow of our PRM mediated PPI predic-

tion pipeline.

3 Methods

3.1 Position weight matrix and proteome scanning
Position weight matrices (PWMs) are statistical models for represent-

ing sequence motifs. They are real valued m�n matrices, where m is

the number of amino acids and n is the motif length. They are con-

structed using peptides from phage display experiments and then used

to scan a protein sequences to find motif matches above a certain P-

value threshold (Pizzi et al., 2011; Wu et al., 2000). Also, significant

positions within the PWMs are identified and used in scoring peptide

features: disordered region, surface accessibility and peptide conserva-

tion (see supplementary material for details).

3.2 Peptide features
3.2.1 Disordered region

PRMs bind to small peptide stretches containing a specific motif.

Specifically interactions between proteins having SH3 domains and

their targets are often mediated by proline rich peptide sequences

containing PXXP, [R/K]xxPxxP, PxxPx[R/K] motifs. Proline dis-

rupts the secondary structure of a protein by inhibiting the forma-

tion of helices and sheets (Morgan and Rubenstein, 2013). Also,

small linear motifs tend to accumulate in disordered regions of pro-

tein (Beltrao and Serrano, 2005; Davey et al., 2010; Linding et al.,

2003). Beltrao and Serrano showed that the binding sites of SH3 do-

mains in S. cerevisiae often lie within the disordered regions of a

protein (Beltrao and Serrano, 2005). DISOPRED, a neural network

based tool, is used to estimate the probability of the protein region

being disordered.

DR ¼

X
i

pi ¼
(

1 if amino acid i is disordered

0 otherwise

N
(1)

where pi is the disorder score of the ith significant amino acid (either

one for disordered or zero for ordered) and N is the number of sig-

nificant amino acids in the binding site.

3.2.2 Surface accessibility

Sequences present on a protein’s surface are more accessible to bind-

ing by SH3 domains than those that are buried inside a protein

structure. The degree of solvent-accessible surface area of amino

acid residues in a sequence indicates its level of exposure and is

measured in terms of relative solvent accessibility (RSA) (Adamczak

et al., 2004; Lam et al., 2010). We use SABLE (Adamczak et al.,

2004) to predict RSA values for target sequences. It uses a neural

network based nonlinear regression model for continuous approxi-

mation of RSA values. Amino acid residues with RSA value � 25%

are considered to be exposed and available for binding (Adamczak

et al., 2004).

SA ¼

X
i

pi ¼
(

1 if RSA >¼ 25%

0 otherwise

N
(2)

where pi is the surface accessibility score of ith significant amino acid

and N is the number of significant amino acids in the binding site.

3.2.3 Peptide conservation

Biologically relevant peptides binding to yeast SH3 domains are

more likely to be conserved in other yeast species (Beltrao and

Serrano, 2005; Davey et al., 2010). For measuring the conservation,

orthologs of S. cerevisiae protein sequences in C. glabrata, D. hanse-

nii, K. lactis, Y. lipolytica, C. albicans, N. crassa and S. pombe (an

optimal set as selected by (Beltrao and Serrano, 2005)) are identified

using INPARANOID (Remm et al., 2001). The orthologous se-

quences are then aligned with MAFFT (Katoh et al., 2002) and the

unweighted sum-of-pairs method from AL2CO (Pei and Grishin,

2001) is used to estimate the conservation score of each position in

the multiple sequence alignment (Lam et al., 2010).
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PC ¼

X
i

pi

N
(3)

where pi is the conservation score of the ith significant amino acid

and N is the number of significant amino acids in the binding site.

3.2.4 Structural contact

Known 3-D structures of SH3 domains complexed with peptides can

be used to assess the binding potential of a query SH3 domain and

peptide by reducing residue-residue contacts in 3-D structures to a

binary 2-D contact matrix (Chen et al., 2008; Hui and Bader, 2010).

Six yeast SH3-peptide co-complex PDB structures (1N5Z, 1SSH,

1ZUK, 2KYM, 2RQW, 2VKN) are used as base models. The Contact

Map Analysis (CMA) tool from the SPACE software suite (Sobolev

et al., 2005) is used to reduce the 3-D structures to 2-D contact maps

with residue level contact area for all base models. Query domain and

peptide sequences are aligned with all base models using the

Needleman–Wunsch algorithm and BLOSUM 62 substitution matrix

to calculate the contact distance between aligned residues.

SC ¼ max
j

X
i

cij

N
(4)

where cij is the normalized contact area of the ith aligned domain

and peptide residues of the jth base model. Alignment gaps in contact

residues will negatively impact the average contact area as only the

aligned residues are used for scoring (a gap at a position associated

with a large residue contact area will reduce the SC score more than

a gap associated with a smaller residue contact area). N is the num-

ber of aligned contact residues.

3.3 Protein features
3.3.1 Cellular location, biological process, molecular function

Physical PPIs require proteins to be in close proximity to each other i.e.

they should co-localize in the same cellular compartment. Also, inter-

acting proteins are more likely to be part of same biological process or

have the same function. The Gene Ontology (GO) contains a hierarchy

of controlled terms describing cellular location, biological process and

molecular function of proteins (The Gene Ontology Consortium,

2000). The functional relationship between two proteins can be quanti-

fied using GO. Semantic similarity can be used to quantify relationships

between different GO terms in an ontology. The higher the semantic

similarity score between GO terms annotated to two proteins, more

likely that they will interact with each other (Jain and Bader, 2010).

Topological Clustering Semantic Similarity (TCSS) (Jain and Bader,

2010) is an accurate semantic similarity measure for PPI prediction. It

normalizes the GO hierarchy before computing semantic similarity, ac-

cording to cutoffs defined in the original TCSS paper.

CC ¼ TCSSða; b; ontology ¼ C; cutoff ¼ 2:4Þ (5)

BP ¼ TCSSða; b;ontology ¼ P; cutoff ¼ 3:5Þ (6)

MF ¼ TCSSða; b;ontology ¼ F; cutoff ¼ 3:3Þ (7)

where a and b are the query proteins and C, P, F are the cellular

component, biological process and molecular function ontologies.

3.3.2 Gene expression

Gene expression as a measure for assessing the confidence and biolo-

gical relevance of high-throughput PPIs is based on the notion that

the cell is optimized to co-express genes if they function together

and if they function together, they are more likely to physically

interact than by chance (Bhardwaj and Lu, 2005; Ge et al., 2001;

Grigoriev, 2001; Jansen et al., 2002). Most PPI prediction methods

that make use of gene expression profile (GEP) correlation with PPIs

to predict novel interactions (Li et al., 2008; Rhodes et al., 2005)

rely on observations from a single expression dataset which can lead

to many false positives and true negatives, as not all genes are ex-

pressed under a particular set of experimental conditions. Using

multiple GEPs clearly improves the performance of a predictor as

shown in Supplementary Figure S1. Correlation coefficients from 86

gene expression profiles from GeneMANIA (Warde-Farley et al.,

2010) for a given pair of genes are combined using Fisher’s z trans-

formation (Faller, 1981; Jain and Bader, 2010)

EX ¼ 1� e2z þ 1

e2z � 1
(8)

z ¼ N�1
XN
i¼1

1

2
ln

1þ ri

1� ri

� �
(9)

where N is the number of profiles and ri is the Pearson correlation of

the ith profile.

3.3.3 Sequence signature

Sequence signature based PPI prediction methods are based on the

notion that protein domains are correlated with specific functions.

For instance, it has been shown that functionally related proteins

have similar domain composition or they belong to the same ‘do-

main club’ (Jin et al., 2009). Information content of co-occurring

InterPro (Apweiler et al., 2001) signatures extracted from sequences

of an experimentally verified set of 22 707 PPIs from DIP (Salwinski

et al., 2004) is used to score novel interactions, as described by

Sprinzak and Margalit (2001).

SS ¼
X

ij

�log2

pij

pipj

� �
(10)

where pij is the probability of seeing motif i on one protein and motif

j on other protein in the experimentally verified PPI set, pi is the

probability of seeing motif i and pj is the probability of seeing motif

j in the same set.

3.4 Bayesian integration
The objective of a Bayesian PPI prediction model is to estimate the

probability that a given protein pair interacts, conditioned on the

biological evidence in support of that interaction. A naı̈ve Bayesian

model simplifies this problem by assuming independence between

different types of biological evidence. While modeling the PRM

mediated PPI prediction problem a set of observations are made on

domain-peptides while others are made on full-length proteins.

Assuming that peptide and protein features are independent of

each other, two separate naı̈ve Bayes models Mpep for peptide fea-

tures and Mpro for protein features are built to independently as-

sess the class probability Y. The posterior probabilities PðYjMpepÞ
and PðYjMproÞ are combined using Bayes’ theorem (Mitchell, 1997)

(see supplementary material for details).

4 Results

4.1 Model training
The goal is to construct a generalized model which can predict high

confidence, in vivo yeast SH3 domain–peptide physical interactions.
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To achieve this, both peptide and protein classifiers are trained on

their respective positive and negative datasets. The peptide classifier

is trained on a high confidence set of 628 SH3 domain–peptide inter-

actions in yeast from the MINT database (P1) and an equal number

of randomly selected negative interactions (N1). The protein classi-

fier is trained on a high confidence set of 5215 pairwise yeast PPIs

from the iRefIndex database (P2) and an equal number of randomly

selected negative interactions (N2) (see supplementary material for

details).

4.2 Feature selection
Figure 2 shows the discriminatory power of individual features for

peptide and protein classifiers. Disordered region (DR) and surface

accessibility (SA) perform much better in separating positives from

negatives as compared to structural contact (SC) and peptide conser-

vation (PC). Prediction efficacy of PC is least among the peptide fea-

tures. This is due to the difficulty distinguishing positive and

negative interactions because both of these sets have high conserva-

tion scores caused by the high similarity of protein sequences (and

peptides they contain) in general across different yeast species

(Supplementary Fig. S2). Biological process (BP), cellular component

(CC) and sequence signature (SS) outperform molecular function

(MF) and gene expression (EX) in the protein feature set. Proteins

could have the same molecular function but still belong to different

processes and this could be one of the reasons behind molecular

function feature’s weak performance. Gene expression data alone is

not as powerful as others in discriminating positives from negatives

(Kim et al., 2014), which may be due to its moderate correlation

with protein expression (i.e. gene expression may not imply that a

functioning protein will be available for interaction) (Vogel and

Marcotte, 2012).

Highly correlated features can negatively affect the performance of

a naı̈ve Bayesian classifier. Maximal information coefficient (MIC) is

used to quantify the correlation between different features. DR and SA

in the peptide feature set and CC and BP in the protein feature set are

correlated with MICs of 0.72 and 0.5 respectively. The effect of correl-

ation on classifier performance is measured by comparing different

models without one of the correlated features. Further, to identify the

feature subset which maximizes the performance of both classifiers, all

possible combinations of features are compared using different

statistical measures, such as area under ROC curve (AUROC), area

under precision-recall curve (AUPRC), Brier score (BRIER), F1-score,

Matthews correlation coefficient (MCC) and accuracy (ACC). Peptide

and protein classifiers with all features outperformed other models on

at least one of statistical measure (see supplementary material for

details).

4.3 Model evaluation
Blind validation protocols are used to assess the predictive power of

peptide Mpep and protein Mpro naı̈ve Bayesian classifiers. The major-

ity of interactions in the P1 dataset are from two peptide array ex-

periments (Landgraf et al., 2004; Tonikian et al., 2009). This could

lead to an experimental bias therefore, for blind testing, the peptide

classifier is trained using interactions only from peptide array ex-

periments and tested using interactions from all other experiments

(no overlap between training and test datasets). Similarly, to make

an unbiased assessment, the protein classifier was trained using P2

dataset but tested using the 2304 interactions (with no missing infor-

mation) from the core subset of Database of Interacting Proteins

(DIP) (Salwinski et al., 2004) that do not overlap the P2 training set

and are based on different filtering criteria compared to the MINT-

inspired score used to select the iRefIndex P2 training set. The DIP

core database includes PPIs derived from both small-scale and large-

scale experiments that have been scored by quality of experimental

methods, occurrence of interaction between paralogs (PVM), prob-

able domain–domain interactions between protein pairs (DPV), and

comparison with expression profiles (EPR) (Salwinski et al., 2004).

In a real world prediction scenario, both classifiers are expected to

encounter cases with missing information. Therefore, the perform-

ance of both classifiers is also tested using an unfiltered blind set.

The results are summarized in Table 1. The AUROC for peptide cla-

sifier is 0.92 and ACC lies within the range [0.86, 0.87]. The protein

classifier has an AUROC within the range [0.92, 0.94] and ACC is

between [0.80, 0.83].

The efficacy of the combined peptide and protein model was

tested on the manually curated SH3 domain mediated PPI set from

Tonikian et al. (2009). Tonikian and co-workers curated inter-

actions supported by multiple experiments through an exhaustive

literature search. Not all interactions (especially those identified

using two hybrid and overlay assays) in this set are mapped to the

Fig. 2. Prediction efficacy of individual peptide features: disordered region (DR), surface accessibility (SA), peptide conservation (PC), structural contact (SC); and

protein features: cellular component (CC), biological process (BP), molecular function (MF), gene expression (EX), sequence signature (SS) (Color version of this

figure is available at Bioinformatics online.)
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peptide sequence within the interacting partner (Tonikian et al.,

2009). Therefore, these sequences are scanned using the three P1

training set PWMs to identify binding sites and significant amino

acid positions within those sites. Peptide and protein classifiers are

trained on P1 and N1 (no overlap with curated set) and P2 and N2

datasets, respectively. A randomized negative test set is created in

the same way as N1. Results from different statistical measures are

summarized in Figure 3. The combined classifier outperforms both

the peptide and protein classifiers on the curated set.

4.4 SH3 domain mediated PPI predictions
30 PWMs representing multiple binding specificities of 25 SH3 do-

mains in yeast are constructed using phage display data from

Tonikian et al. (2009) as described in Section 3.1 (Supplementary

Tables S1 and S2). These PWMs are then used to predict SH3 do-

main–peptide interactions using the combined classifier. 534 unique

PPIs (1481 binding sites) are predicted as positives for the stringent

P-value PWM threshold of 1e-05 with no missing features

(Supplementary Table S3). Approximately 55% (295 PPIs, 1139

binding sites) of these interactions are known at the PPI level

(iRefIndex and MINT) and at least 172 (464 binding sites) out of

295 PPIs are known SH3 domain mediated interactions at the pep-

tide level (with � 60% overlapping binding site). For example, the

FUS1p SH3 domain is known to bind the STE5p protein (verified by

two-hybrid assay and phage display) via an R(S/T)(S/T)SL motif,

supported by two separate studies (Kim et al., 2008; Nelson et al.,

2004). This interaction is part of the predicted set. 143 (203 binding

sites) out of 239 (342 binding sites) novel interactions are of high

confidence with the combined classifier scores � 0:9. Biological

pathway enrichment (KEGG (Kanehisa, 2002) and Reactome (Croft

et al., 2014)) of the interactors reveal that a number of over-repre-

sented processes or pathways are associated with known SH3 do-

main biology such as endocytosis (Tonikian et al., 2009; Xin et al.,

2013), MAPK signaling (Lyons et al., 1996) and Rho GTPase signal-

ing (Bishop and Hall, 2000) (Supplementary Table S4). For ex-

ample, some interacting partners of the MYO3 SH3 domain are

found to be enriched in PI3K/AKT signaling. AKT is known to regu-

late actin organization and cell motility during endocytosis

(Enomoto et al., 2005; Koral et al., 2014). MYO3 is also implicated

in actin organization for the internalization step in endocytosis

(Toret and Drubin, 2006) (Supplementary Table S5). These ex-

amples support our results and suggest that our predicted inter-

actions are biologically relevant.

5 Conclusion

We developed a novel method for predicting physiologically relevant

PPIs in yeast. This method combines diverse binding site (peptide)

features, including presence in a disordered region of the protein,

surface accessibility, conservation across different yeast species, and

structural contact with the SH3 domain, as well as protein features

such as cellular proximity, shared biological process, similar mo-

lecular function, correlated gene expression and sequence signature.

Two separate Bayesian models are used to combine peptide and pro-

tein features. Their respective posterior probabilities are further

combined using Bayes rule for predicting high confidence inter-

actions. The combination of peptide and protein models achieved a

higher accuracy of 0.97 compared to individual models on a curated

benchmark dataset from Tonikian et al. (2009). Disordered region

and surface accessibility data from the peptide feature set and biolo-

gical process, cellular location and sequence signature information

from the protein feature set are able to separate positive from nega-

tive interactions significantly better than other features. The method

presented is generic and modular in nature. Given binding peptide

and feature data, we expect it can be used to predict other PRM

mediated PPIs in yeast and other organisms. Additional features

such as network topology, protein expression and text mining

derived protein relationships can be added to our framework.

Future development includes testing this method on other PRMs in

different organisms, especially human.
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