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Abstract

Background

An ideal test for COVID-19 would combine the sensitivity of laboratory-based PCR with the

speed and ease of use of point-of-care (POC) or home-based rapid antigen testing. We

evaluated clinical performance of the Diagnostic Analyzer for Selective Hybridization

(DASH) SARS-CoV-2 POC rapid PCR test.

Methods

We conducted a cross-sectional study of adults with and without symptoms of COVID-19 at

four clinical sites where we collected two bilateral anterior nasal swabs and information on

COVID-19 symptoms, vaccination, and exposure. One swab was tested with the DASH

SARS-CoV-2 POC PCR and the second in a central laboratory using Cepheid Xpert Xpress

SARS-CoV-2 PCR. We assessed test concordance and calculated sensitivity, specificity,

negative and positive predictive values using Xpert as the “gold standard”.

Results

We enrolled 315 and analyzed 313 participants with median age 42 years; 65% were

female, 62% symptomatic, 75% had received�2 doses of mRNA COVID-19 vaccine, and
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16% currently SARS-CoV-2 positive. There were concordant results for 307 tests indicating

an overall agreement for DASH of 0.98 [95% CI 0.96, 0.99] compared to Xpert. DASH per-

formed at 0.96 [95% CI 0.86, 1.00] sensitivity and 0.98 [95% CI 0.96, 1.00] specificity, with a

positive predictive value of 0.85 [95% CI 0.73, 0.96] and negative predictive value of 0.996

[95% CI 0.99, 1.00]. The six discordant tests between DASH and Xpert all had high Ct val-

ues (>30) on the respective positive assay. DASH and Xpert Ct values were highly corre-

lated (R = 0.89 [95% CI 0.81, 0.94]).

Conclusions

DASH POC SARS-CoV-2 PCR was accurate, easy to use, and provided fast results

(approximately 15 minutes) in real-life clinical settings with an overall performance similar to

an EUA-approved laboratory-based PCR.

Introduction

Rapid and accurate detection of SARS-CoV-2 infection has been a key component of the

medical and public health response to the COVID-19 pandemic [1–3]. Despite advances

in testing, we need better tools for early diagnosis and screening, particularly as we move

toward “test and treat” strategies given several outpatient therapies for COVID-19 have

been granted FDA emergency use authorization [4–7]. To date, the “gold standard” for

accuracy, with highest analytic sensitivity, are nucleic acid amplification test (NAAT)-

based technologies such as RT-PCR [8, 9]. However, PCR testing requires centralized lab-

oratory equipment, a high level of technical expertise, is expensive, time consuming, and

is unavailable in many rural or under-resourced settings. Current rapid point-of-care

(POC) and home tests such as antigen or NAAT non-PCR-based technologies are simple

to use, but with lower sensitivity resulting in a limited ability to detect individuals early in

SARS-CoV-2 infection when pre-symptomatic or asymptomatic [10–23]. An ideal test for

COVID-19 would have the accuracy of laboratory-based PCR testing combined with the

speed and ease of use of POC rapid antigen testing [1].

To address this need, Minute Molecular Diagnostics, Inc. (m2dx.com), with support from

the U.S. National Institutes of Health (NIH) National Institute of Biomedical Imaging and Bio-

engineering (NIBIB) Rapid Acceleration of Diagnostics (RADxSM Tech) program (https://

www.nibib.nih.gov/covid-19/radx-tech-program), developed the Diagnostic Analyzer for

Selective Hybridization (DASH), a sample-to-answer platform designed for POC COVID-19

testing in healthcare settings with potential applications in the community. DASH is a recently

U.S. FDA EUA approved device (S1 File) that utilizes rapid PCR and microfluidic fabrication

technology with uniquely designed cartridges and an analyzer that are easy to use, do not

require technical expertise or specialized training, and produce results in approximately 15

minutes. DASH detects two targets in the N gene (N1 and N2) of SARS-CoV-2 in 40 PCR

cycles. In laboratory testing, DASH was found to have analytic sensitivity at the same level as

laboratory-based PCR with the ability to detect at least 150 copies/mL of SARS-CoV-2 RNA

[24–26].

The primary objective of this clinical validation study was to test the performance and accu-

racy of the DASH POC test for diagnosis of SARS-CoV-2 infection among individuals with

and without COVID-19 symptoms in outpatient settings.
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Methods

Study design, population and recruitment

We performed a cross-sectional study from June to September 2021 of adult (18 years and

older) participants with or without symptoms of COVID-19 who were tested for SARS--

CoV-2 at one of four outpatient clinical sites. Asymptomatic participants self-reported no

symptoms attributable to COVID-19 within 14 days prior to enrollment; however, prior

to August 10, 2021, several participants were enrolled under previous FDA asymptomatic

criteria of no symptoms within 48 hours. Symptomatic participants self-reported symp-

toms attributable to COVID-19 within the 24 hours prior to enrollment that started within

the prior seven days. Symptoms attributable to COVID-19 include the following (as desig-

nated by CDC): fever or chills, cough, shortness of breath or difficulty breathing, fatigue,

muscle or body aches, headache, new loss of taste or smell, sore throat, congestion or

runny nose, nausea or vomiting, and diarrhea [27]. Participants were consented remotely

via telephone utilizing Northwestern REDCap and emailed a survey link for data collec-

tion on symptoms, exposure details, demographics, vaccine history, risk factors for acqui-

sition, and co-morbidities.

We had three phases of recruitment. Initially, from June to July 2021, we prospectively

recruited and enrolled participants only at Chicago sites (Northwestern Memorial Hospital

(NMH) Infectious Diseases Center (IDC) and NMH Clinical Research Unit (CRU)) regardless

of risk or exposure and without recent known testing. Second, due to low COVID-19 preva-

lence in Chicago, in August 2021, we aimed to enhance test positivity by focusing recruitment

on younger unvaccinated participants (18 to 45 years) and those with high-risk COVID-19

exposures, again only at Chicago sites (NMH IDC, NMH CRU, and Access Community

Health Network). Finally, in September 2021, we performed enhanced recruitment where we

included participants from a high COVID-19 prevalence outpatient sites in Georgia who were

locally enrolled and consented in the Emory University “RADxtra COVID-19 Test Verifica-

tion” study. Under our enhanced recruitment, we allowed for enrollment of individuals within

seven days of testing positive for SARS-CoV-2 by a PCR-based assay. Clinical information

from participants enrolled at the Emory RADxtra site was limited to data obtained through

their study protocol.

Sample collection and testing

After we obtained informed consent and participants completed REDCap-based on-line sur-

veys, we performed a single research visit at each clinical site. At the visit, we obtained two

bilateral anterior nasal swabs from each participant in a standardized process while wearing

full PPE and abiding by all local institutional infection control policies regarding participant

rooming, collection and handling of nasal swab samples from individuals known or suspected

of having SARS-CoV-2 infection. For both anterior nasal swabs we used the Puritan Ultra 6”

sterile elongated flock swab with plastic handle and dry transport tube (SKU #25-3606-U BT).

To assure each swab was obtained from a “fresh” nostril, the study team clinician (physician or

research nurse) first swabbed the left nostril anterior nares by inserting the swab at least 1 cm

(0.5 inch) swirling the swab around the nasal wall for 10–15 seconds, then switched to the sec-

ond swab and sampled the right nostril (same procedure as above), used the second swab to

sample the left nostril, and finally switched back to the first swab to sample the right nostril.

The first swab was placed into a designated plastic sleeve, inserted into a sealed biohazard bag,

and transported for testing on DASH SARS-CoV-2 PCR (DASH) machine (Fig 1A) and the

second swab placed into 3.0 mL of viral transport media (VTM; Remel MicroTest M4RT
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Transport), lightly rotated for a few seconds, broken off, VTM tube sealed with cap, placed in a

sealed biohazard bag, and transported for Cepheid Xpert Xpress SARS-Cov-2 RT-PCR (Xpert)

testing. The DASH swab was inserted into the DASH cartridge and run on the machine as per

the Quick Reference Guide (QRG) provided by Minute Molecular Diagnostics, Inc. at POC

within 30 minutes of collection (Fig 1B). The nasal swab in VTM was transported in a sealed

biohazard bag to the Northwestern Memorial Hospital (NMH) clinical microbiology labora-

tory and run on the Xpert testing platform within 4 hours of collection. Participants were

given the results of only the Xpert standard PCR testing within 24 hours. If DASH and Xpert

testing were discordant, then if residual VTM from Xpert testing was available, we performed

tie breaker testing of residual VTM using Abbott Alinity M platform.

For research visits from May 22 to August 6, 2021, DASH testing machines were not avail-

able at the POC. During this period, the DASH nasal swab was placed into -80˚C freezer in the

NMH clinical microbiology laboratory within 4 hours of collection for temporary storage.

Once DASH machines became available at POC, then frozen DASH samples were thawed to

room temperature for at least an hour (no more than 4 hours) and placed into the DASH car-

tridge and assay run as per the QRG. Prior laboratory experiments found nasal swabs to be sta-

ble under these conditions with less than 6% difference in virus yield (S2 File).

The RADxtra study team at Emory also collected two bilateral anterior nasal swabs as per

the same study procedure detailed above and then shipped de-identified DASH swabs and cor-

responding VTM overnight to Chicago on ice packs (2–8˚C) in compliance with the Cepheid

Xpert Xpress SARS-CoV-2 Emergency Use Authorized Instructions for Use [28]. Upon deliv-

ery to Northwestern, the direct nasal swab was run on the DASH machine as per QRG and the

VTM nasal swab specimen was run on Xpert per the manufacturer instructions in the NM

clinical microbiology laboratory. Again, prior laboratory experiments found nasal swabs to be

stable under these conditions with less than 6% difference in virus yield (S1 File). We provided

RADxtra investigators at Emory a unique identifier for each participant of samples/data sent

to Northwestern. They kept this link to their study ID locally at Emory and none of the investi-

gators or team at Northwestern had access to this linkage.

A usability survey was distributed to the DASH users after each use of the machine. This

survey included questions on DASH complexity and ease of use with no specific training and

only instruction from the QRG. For this initial study, we only analyzed the survey response

from users who completed the survey after their first use of the DASH machine.

Statistical analysis

Descriptive statistics were used to summarize demographics, exposure, and COVID-19 risk

factors. Primary analyses calculated sensitivity and specificity from a 2X2 contingency table

comparing DASH to the Xpert PCR. Specifically, sensitivity was calculated as the Pr(DASH+|

Xpert+) or True Positives / (True Positives + False Negatives). Specificity was calculated as the

Pr(DASH-|Xpert-) or True Negatives / (True Negatives + False Positives). In secondary analy-

ses, we also calculated positive predictive value (PPV) and negative predictive value (NPV)

using Bayes theorem assuming an a priori specified prevalence of 8%. Given the changing

dynamic of the pandemic over the course of the study, we also estimated PPV and NPV for a

range of prevalence estimates (1% to 30%). Confidence intervals for predictive values were

Fig 1. A. Diagnostic Analyzer for Selective Hybridization (DASH) PCR machine at point-of-care in clinical space. B.

Diagnostic Analyzer for Selective Hybridization (DASH) PCR machine workflow: barcode on cartridge scanned, nasal

swab added to cartridge and snapped at break point, cartridge loaded into DASH machine, and report generated on

screen/printed after approximately 15 minutes.

https://doi.org/10.1371/journal.pone.0270060.g001
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generated using a percentile bootstrap, with 1000 bootstrap replicates. Additionally, positive

likelihood ratio (LR+) and negative likelihood ratio (LR-) were calculated as sensitivity/

(1-specificity) and (1-sensitivity)/specificity, respectfully. 95% confidence intervals (CIs) were

calculated for all estimates. Descriptive statistics were also used to summarize the DASH

usability survey.

Within the subset of participants that tested positive on both Xpert and DASH, a Pearson

correlation coefficient was used to assess the association between DASH and Xpert Ct values.

A Bland-Altman plot visualized agreement between the two measures, using percentiles for

the 95% CI to account for non-normality of differences.

All analyses were performed using R 4.1.1 (R Core Team, 2021) and the epiR (v2.0.36; Ser-

geant & Stevenson, 2021) package.

Sample size calculations

Sample size considerations were based on estimates of sensitivity and specificity, with corre-

sponding 95% CIs, necessary to meet minimum FDA performance criteria for Emergency Use

Authorization (EUA). Specifically, a sample size of at least 275 participants was required to

estimate sensitivity of 0.95 such that the lower bound of the 95% CI was greater than 0.76, and

to estimate specificity of 0.98 such that the lower bound of the CI was greater than 0.95. Calcu-

lations assumed a population prevalence of positive SARS-CoV-2 of 8% and at least 30 partici-

pants overall in the study with a positive Xpert “gold standard” test result.

Results

We enrolled 315 participants and obtained valid results from 313 participants at our four clini-

cal sites with samples run by 15 different users on three DASH machines. Among our 313 par-

ticipants analyzed, median age was 42 years, 65% were female, 75% had received two doses of

mRNA COVID-19 vaccine (Pfizer or Moderna), 62% had COVID-19 symptoms, 14% had

known exposure to someone with COVID-19, and 16% had known SARS-CoV-2 PCR positive

testing prior to study enrollment (Table 1). Excluding participants from the Emory RADxtra

site with limited clinical data (n = 116), 27% had co-morbidities.

We found a total of 51 participants tested positive on DASH and 49 participants tested posi-

tive on Xpert (Table 2). Summaries of DASH compared to Xpert testing are reported in Tables

2 and 3. Sensitivity of the DASH test was estimated at 0.96 [95% CI: 0.86, 1.00] and specificity

was estimated at 0.98 [95% CI: 0.96, 1.00]. There was concordance of 307 tests indicating an

overall agreement of 0.98 [95% CI: 0.96, 0.99]. The DASH test had a PPV of 0.85 [95% CI:

0.73, 0.96] and NPV of 0.996 [95% CI: 0.99, 1.00] as compared to the Xpert. Predictive value

estimates for a range of infection prevalence rates are depicted in Fig 2 to assess performance

across a wide range of COVID-19 prevalence. At the observed disease prevalence within the

sample (16%), DASH demonstrated a PPV of 0.92 [95% CI 0.86, 0.98] and NPV of 0.99 [95%

CI 0.98, 1.00], however this prevalence is likely an overestimate as known-positive participants

were enrolled under our enhanced recruitment strategy. Within the subgroup of participants

who tested positive on both Xpert and DASH (n = 45), Ct values for DASH and Xpert were

highly correlated (Pearson correlation coefficient = 0.89 [95% CI 0.81, 0.94], Fig 3). Bland-Alt-

man plot indicated a negative bias, such that Xpert Ct values were higher on average by 7.9

cycles (Fig 4).

Clinical and testing information for individual participants with discordant results (n = 6)

are summarized in Table 4. We had two participants with negative DASH testing and positive

Xpert testing and four participants with positive DASH testing and negative Xpert testing. All

six of these individuals had at least one COVID-19 symptom and/or known positive PCR
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Table 1. Characteristics of 313 participants with a valid Diagnostic Analyzer for Selective Hybridization (DASH)

SARS-CoV-2 PCR test result.

Characteristic N (%) or Median (IQR)

Clinical Site

Total 313 (100)

NMH IDC 112 (36)

NMH CRU 71 (23)

Access Community Health Network 14 (5)

Emory RADxtra Clinics 116 (37)

Age in years 42 (32, 57)

Sex Assigned at Birth

Female 204 (65)

Male 107 (34)

Not Reported 2 (1)

Race�

White 155 (79)

Asian 17 (9)

Black or African American 17 (9)

Other or unknown 8 (4)

Ethnicity�

Non-Hispanic or unknown 187 (95)

Hispanic 10 (5)

COVID-19 Vaccine Doses

0 55 (18)

1 23 (7)

2 229 (73)

Vaccinated unknown doses 6 (2)

Vaccine Manufacturer����

Pfizer 145 (56)

Moderna 89 (34)

Johnson & Johnson 15 (6)

Unknown type 9 (4)

Days since last vaccine dose���� 140 (101, 171)

Samples from Enrichment 51 (16)

Known SARS-CoV-2 Exposure within 2 weeks 28 (9)

Known SARS-CoV-2 Positive (PCR positive within 7 days) 50 (16)

COVID-19 Symptomatic

Yes 195 (62)

No 118 (38)

Individual COVID-19 Symptoms��

Congestion 78 (40)

Cough 78 (40)

Headache 68 (35)

Fatigue 60 (31)

Fever/Chills 59 (30)

Sore/Scratchy Throat 53 (27)

Vomiting/Nausea/Diarrhea 51 (26)

Myalgias 49 (25)

Loss of Taste/Smell 37 (19)

(Continued)
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testing for COVID prior to enrollment. Both false negatives had high Ct values (>35 cycles)

on Xpert testing, and 3 of the 4 false positives had high Ct values (>35 cycles) or an indetermi-

nate result (one of two SARS-CoV-2 gene targets detected) on the tiebreaker assay. Five of

these individuals with discordant results were late in their course of infection (at least 4 days

from onset of symptoms or prior positive PCR testing).

Ten of fifteen users completed our usability survey after their first time running a partici-

pant sample on the DASH machine. When asked to rate their agreement with the statement “I

found this DASH test was easy to use”, 40% strongly agreed (4 users), 50% agreed (5 users),

and one user was neutral. When asked, “would you recommend DASH test to someone else?”,

50% responded “definitely yes” (5 users) 40% responded “probably yes” (4 users), and one user

did not respond.

Discussion

In this cross-sectional clinical study, we found that the DASH SARS-CoV-2 PCR was easy to

use, fast (time from placement of direct nasal swab into cartridge until result of approximately

15 minutes) and performed with excellent test characteristics (sensitivity of 0.96, specificity of

0.98, and overall agreement of 0.98) compared to a “gold standard” laboratory-based PCR in

real-life outpatient healthcare settings. From 313 participants with valid results, there were

only six discordant results and each of these participants had at least one clinical symptom of

COVID-19 or known positive PCR tests. DASH was negative and missed only two infected

individuals; however, they both had high Ct values (>39) on standard PCR and thus were

unlikely to be contagious [29–32]. In contrast, DASH detected four individuals with

Table 1. (Continued)

Characteristic N (%) or Median (IQR)

Clinical Site

Shortness of Breath 25 (13)

Arthralgias 25 (13)

Abdominal Pain 20 (10)

Photophobia 15 (8)

Medical History�

Any co-morbidity 52 (26)

Hypertension 22 (11)

Asthma 9 (5)

Diabetes 7 (4)

Cancer 6 (3)

Immunodeficiency (Not HIV) 5 (3)

Coronary Artery Disease 4 (2)

Anemia 4 (2)

Other��� 9 (5)

�Excluding 116 participants from Emory RADxtra site as they did not provide this demographic or clinical

information (n = 197).

��Among those reporting symptoms (n = 195); categories are not mutually exclusive.

���Others were COPD (n = 3), renal failure (n = 2), stroke/TIA (n = 2), HIV (n = 1), and MI (n = 1).

����Among those that received at least 1 vaccine dose prior to testing (n = 258).

Abbreviations: NMH IDC, Northwestern Memorial Hospital Infectious Diseases Center; NMH CRU, Northwestern

Memorial Hospital Clinical Research Unit.

https://doi.org/10.1371/journal.pone.0270060.t001
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SARS-CoV-2 that were missed by Xpert, with only one of these as a potential false positive as

RNA was not detected on tie breaker PCR testing and the participant only had dyspnea with-

out other symptoms typical of COVID-19. Discordance only occurred at high Ct values and is

consistent with known limitations of SARS-CoV-2 PCR testing assays early or late in infection

when virus levels are low [8, 9, 33, 34]. Thus, we believe that DASH performed equivalent to

laboratory-based PCR testing and displays its potential as a rapid and highly sensitive POC

option to supplement or replace current PCR platforms in real-life clinical settings and eventu-

ally the community.

DASH improves upon current POC non-PCR NAAT technologies for SARS-CoV-2 such

as Abbott ID NOW. In several studies, the sensitivity of the ID NOW test was found to be

between 0.75–0.98 depending on number of low positive samples (Ct value>35 on standard

PCR assays) [35–40]. Limiting to positive Xpert with Ct values from 35 to 39, DASH detected

all low positive samples, thus displaying an ability to potentially detect virus earlier in the

course of SARS-CoV-2 infection compared to ID NOW. This has become an important public

health issue when testing highly vaccinated populations and those with emerging variants,

such as Omicron, who may have a shorter window of SARS-CoV-2 detection or lower levels of

virus after high-risk exposure [41–44].

In addition, DASH is easy to use (Clinical Laboratory Improvement Amendments (CLIA)-

waived) and does not require technical or laboratory training to run the machine. Our

research team of 15 different users had neither formal training nor laboratory expertise and

were able to perform DASH testing with valid results from 99.4% of participants sampled. One

downside to DASH, and several other POC SARS-CoV-2 diagnostics, is inability to perform

repeat testing on the same sample. In the event of an invalid result, patients will be required to

provide a second specimen for DASH testing. Only using instruction from the QRG, 90% of

our users assessed DASH to be easy to use and they all recommended DASH to others who

might be doing COVID testing. We plan to expand these assessments as more users have

access to DASH and perform qualitative research to optimize DASH usability in clinical and

non-clinical settings.

Correlation analyses (see Fig 3) between DASH and Xpert Ct values demonstrated a strong

association; however, Bland-Altman plots (Fig 4) indicated DASH PCR Ct values were system-

atically lower than Xpert PCR. This occurred due to several technical differences between

DASH and Xpert in sample processing standards leading to higher virus concentrations with

DASH. DASH and Xpert PCRs both detect two SARS-CoV-2 targets; however, DASH does

this in the same fluorescent channel whereby Xpert splits molecular material between two sep-

arate channels. Also, for DASH, the nasal swab was directly inserted into the cartridge whereas

Xpert swab was placed in 3 mL of VTM, and then 300 μl of liquid media added to the cartridge.

Finally, DASH processes approximately 50% of the specimen and Xpert only processes 10%.

The goal of comparing Ct values between these technologies was to assess whether DASH can

provide meaningful semi-quantitative viral load measurements, similar to laboratory-based

Table 2. Summary of Diagnostic Analyzer for Selective Hybridization (DASH) PCR results compared to Cepheid

Xpert Xpress (Xpert) PCR results.

Xpert Positive Xpert Negative Total

DASH Positive 47 4� 51

DASH Negative 2� 260 262

Total 49 264 313

�See Table 4 for summary of clinical and testing details from 6 participants with discordant DASH and Xpert results.

https://doi.org/10.1371/journal.pone.0270060.t002
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PCR, but at POC and quick enough to potentially influence clinical or public health guidance.

A more accurate comparison between DASH and Xpert would involve preparing standard

specimens with known virus concentrations and processing them with both technologiesc

[45]. Unfortunately, this was outside of the scope of this clinical validation study evaluating

SARS-CoV-2 detection using DASH.

Our study had several limitations. First, the cross-sectional design did not allow us to under-

stand test characteristics of DASH over time and throughout the course of SARS-CoV-2 infection

within individuals. Second, some of the specimens were tested on DASH after short-term (less

than 7 days) in frozen storage. However, given the stability observed in frozen samples from via-

bility testing (see S2 File), we do not believe this impacted our findings. Third, we were unable to

assess the public health safety impact of DASH testing since the test was experimental and we

were unable to give participants their result. Now that DASH has been FDA EUA approved, we

have planned follow-up clinical validation studies where this can be addressed. Fourth, most of

Table 3. Diagnostic Analyzer for Selective Hybridization (DASH) POC PCR diagnostic performance and accu-

racy compared to Cepheid Xpert Xpress PCR as “gold standard”.

Statistic n/N Estimate [95% CI]
Apparent Prevalence 49/313 0.16 [0.12, 0.21]

Sensitivity 47/49 0.96 [0.86, 1.00]

Specificity 260/264 0.98 [0.96, 1.00]

Overall Diagnostic Accuracy 307/313 0.98 [0.96, 0.99]

Positive Predictive Value� 0.85 [0.73, 0.96]

Negative Predictive Value� 0.996 [0.99, 1.00]

Positive Likelihood Ratio 63.31 [23.90, 167.71]

Negative Likelihood Ratio 0.04 [0.01, .16]

�Estimated using Bayes’ theorem assuming a prevalence of 8%.

https://doi.org/10.1371/journal.pone.0270060.t003

Fig 2. Positive (red line) and negative (green line) predictive values of Diagnostic Analyzer for Selective Hybridization (DASH) SARS-CoV-

2 PCR test by varying COVID-19 prevalence.

https://doi.org/10.1371/journal.pone.0270060.g002
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our participants were symptomatic and many known to be SARS-CoV-2 positive with only one

positive sample from an asymptomatic participant. Additionally, our participants were young,

highly vaccinated, and without major co-morbidities including immune suppression. Thus,

DASH test characteristics are less certain for those at greatest risk for severe COVID-19 or among

Fig 3. Correlation analyses for comparison of Diagnostic Analyzer for Selective Hybridization (DASH) PCR and Cepheid Xpert Xpress PCR

cycle threshold (Ct) values.

https://doi.org/10.1371/journal.pone.0270060.g003

Fig 4. Bland-Altman analyses for comparison of Diagnostic Analyzer for Selective Hybridization (DASH) PCR and Cepheid Xpert Xpress PCR

cycle threshold (Ct) values.

https://doi.org/10.1371/journal.pone.0270060.g004
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certain special populations. Although, other PCR-based SARS-CoV-2 testing technologies have

generally performed well across many different high-risk patient groups [46–51]. Finally, we

obtained anterior nasal swabs for this study and did not do a comparison of nasopharyngeal

swabs. Nasopharyngeal swabs require healthcare workers for collection and are considered the

most sensitive specimen collection method for SARS-CoV-2 [52–54]. Given a preference for less

invasive nasal testing, DASH portability and potential for future use in community non-health-

care settings, we decided to perform anterior nasal sampling for this study and the DASH FDA

EUA application. Additional sample types including saliva, nasopharyngeal and oropharyngeal

swabs will be considered and evaluated in further clinical studies.

DASH is an important advancement in molecular POC diagnostics for SARS-CoV-2 with

potential applications beyond many non-PCR NAAT technologies. DASH could decentralize

PCR diagnostics by bringing molecular testing to a wider range of community settings in the

U.S. and throughout the world. We need highly sensitive and easy to use technologies with the

ability to quantify virus for monitoring SARS-CoV-2 infection dynamics and when to safely

end isolation. Further research will allow us to understand how DASH could be utilized for

detecting emerging SARS-CoV-2 variants, community surveillance, or large non-health care

screening of travelers, students, educators, and front-line workers.
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