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Identifying and distinguishing cancer driver genes among thousands of candidate mutations remains 
a major challenge. Accurate identification of driver genes and driver mutations is critical for advancing 
cancer research and personalizing treatment based on accurate stratification of patients. Due to inter-
tumor genetic heterogeneity many driver mutations within a gene occur at low frequencies, which 
make it challenging to distinguish them from non-driver mutations. We have developed a novel method 
for identifying cancer driver genes. Our approach utilizes multiple complementary types of information, 
specifically cellular phenotypes, cellular locations, functions, and whole body physiological phenotypes 
as features. We demonstrate that our method can accurately identify known cancer driver genes and 
distinguish between their role in different types of cancer. In addition to confirming known driver 
genes, we identify several novel candidate driver genes. We demonstrate the utility of our method by 
validating its predictions in nasopharyngeal cancer and colorectal cancer using whole exome and whole 
genome sequencing.

The natural history of cancer is complex1 and its genetics highly heterogeneous2. Carcinogenesis depends on 
the accumulation of, and selection for, mutations in genes which are subsequently able to drive, amongst other 
processes, cell proliferation, immune evasion, genomic instability, and invasiveness. The concept of a cancer 
driver gene captures the mechanistic requirement for a cell to overcome normal cellular and tissue homeostatic 
mechanisms and initiate or promote neoplasia and malignancy. The mutations in driver genes are often recessive 
loss-of-function lesions, exemplified by tumor suppressor genes, but they can also act dominantly as oncogenes. 
Determining which mutations or genes act as bottlenecks in the generation of cancer is fraught with problems, 
as cells carrying one or more driver mutations will also carry a large set of co-selected, “passenger”, mutations 
which constitute most of the normal somatic mutation-load of the expanded cancer cell but which do not directly 
generate the neoplastic phenotype3.

Much effort has gone into developing algorithms to identify driver genes and their mutations, most of which 
are based on the frequency or pattern of mutations in multiple tumors and their predicted pathogenicity. The goal 
of identifying cancer drivers may be achieved at the level of gene, protein or pathways, and multiple approaches 
have been attempted to date4. There is no gold standard against which the success of an algorithm can be meas-
ured, although the Cancer Gene Census approaches a “gold standard” most closely, with an expert-curated dataset 
of cancer-associated genes and mutations5.
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Investigators have increasingly relied on taking a consensus of multiple methods and, where possible, 
attempted to experimentally verify driver gene status in cellular or whole organism systems6. Many thousands of 
tumors have now been sequenced in very large-scale studies of multiple cancer types, and several hundred genes 
and mutations have been identified as “drivers” – with varying support from experimental and genetic studies6. 
These methods, however, do not work well for low-intermediate and rare driver genes which may bear up to 20% 
of driver mutations7, and the identification of drivers in specific cancers and sub-types of tumor remains difficult, 
often because of small numbers of tumors available.

An alternative strategy to sequence-based ratiometric type mutation frequency based approaches is to identify 
a “fingerprint” for cancer driver genes from a range of biological and molecular data and to use this as part of a 
classifier that can filter sequence information. For example, it is possible to utilize gene annotations and biological 
properties of known driver genes in a machine learning approach and identify novel driver gene candidates8. 
Here, we report a novel method in which we use a combination of direct functional evidence, obtained through 
cell growth assays after introducing a specific mutation into cells, and related functional characteristics available 
from, for example, experiments using model organisms, to build a classifier that determines whether a gene is 
likely to become a cancer driver gene.

Public databases contain large volumes of information that relates genes or variants to phenotypes (either on 
the cellular or whole body organism level), the specific biological processes and molecular functions in which 
they can be involved, or the cellular locations at which a gene product is active. Phenotypes are systematically 
collected in the context of genotype–phenotype relations, both from human clinical information9, from model 
organism experiments10, and for cell models in cellular phenotype databases11. Information about gene functions 
is collected in databases such as Uniprot12 as well as several model organism databases.

In these databases, ontologies are used for characterizing phenotypes, gene functions and cellular locations. 
Over the past two decades a tightly integrated system of ontologies has been developed that interlinks knowledge 
about basic biological phenomena through the use of logical axioms13. Exploring the information in this system of 
ontologies can enable novel types of analysis14 and the background knowledge in the ontologies has the potential 
to significantly improve biomedical data analysis15.

We have developed a method that uses biological background knowledge about the relations between genes 
or variants and their phenotypes, either on the cellular or whole organism level, as well as gene functions and 
cellular locations, to predict driver genes and mutations. Our approach relies on neuro-symbolic deep learning 
to systematically encode background knowledge about basic biological processes and phenomena. Specifically, 
we generate “embeddings” for gene functions and gene–phenotypes associations and use a deep artificial neural 
network trained on known driver genes – and the knowledge about how they relate to functions and phenotypes 
– to discover new cancer drivers. We demonstrate that our method can predict novel driver genes by analyzing 
two cohorts of different cancers, and we demonstrate that the predicted driver genes have a significantly higher 
somatic mutation frequency, are significantly more likely to be functionally related to known drivers, and have a 
significantly higher rate of pathogenic somatic variants. We make our method and prediction results freely avail-
able from https://github.com/bio-ontology-research-group/predCAN.

Results
Representation learning. Our aim is to utilize information about the functions and phenotypes associated 
with genes to identify cancer driver genes and, subsequently, driver mutations. This information is represented 
using biomedical ontologies, and these ontologies also contain a substantial amount of background information 
about the relations between biological functions, processes, and phenotypes in the form of logical axioms and 
natural language definitions14. The information in ontologies is utilized by human experts to understand and 
interpret the implications of an association with a class in an ontology, and a comprehensive interpretation of 
these associations relies on comprehension and utilization of biological background knowledge.

We use three types of information associated with genes: cellular phenotypes observed in large-scale micros-
copy studies and recorded using the Cellular Microscopy Phenotype Ontology (CMPO)16; gene functions and cel-
lular locations recorded by Uniprot12 and encoded using the Gene Ontology (GO)17; and phenotypes of knockout 
mouse models provided by the Mouse Genome Informatics (MGI) database10 and encoded using the Mammalian 
Phenotype Ontology (MP)18.

Each of these ontologies contains logical axioms that define and restrict the classes and provide background 
knowledge about the domain of functions, cellular phenotypes, or physiological phenotypes18. Figure 1 shows an 
example of how the ontologies overlap in their content and how classes in phenotype ontologies are defined or 
constrained using classes from other ontologies.

We have developed a method that combines the associations of genes and ontology classes with the back-
ground information in ontologies (both the formal logical content and the informal natural language com-
ponents) into single feature vectors that represent each gene in our dataset. For this purpose, we utilize 
neuro-symbolic feature learning on ontologies in which machine learning models are combined with deduc-
tive inference on formally represented knowledge19; as a result, we obtain an embedding – a function from an 
ontology and its associated entities into an n-dimensional vector space – which generates feature vectors that 
encode for known associations of genes and their functions or phenotypes as well as the ontologies’ background 
knowledge.

Because different genes are covered differently in the databases we use, we generate five different representa-
tions for each gene. The first three representations are based on annotating the genes using the ontologies that 
we used one at a time, combining the ontology-based annotations and the ontology axioms within a single rep-
resentation so that the background knowledge within the ontologies becomes accessible. However, we can only 
generate the feature vectors if there are ontology-based annotations for a gene and therefore we obtain a different 
number of feature vectors when utilizing different ontologies. To determine if we can improve our predictions we 
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combine the embeddings generated from each gene if all three features are available and evaluate the performance 
on the intersection of genes for which features in all three ontologies can be generated. Finally, we determine if it 
is possible to utilize the ontology axioms. For this purpose, we merge the three ontologies (CMPO, GO, MP) into 
a single ontology model and generate the embeddings for each gene which is annotated to information in at least 
one of the three ontologies we use. We use the generated feature vectors as input to a deep neural network that we 
train to predict cancer driver genes and distinguish between 20 cancer types for which a gene can be considered 
a driver. Figure 2 illustrates our workflow.

Biological features and background knowledge predict cancer drivers. We first test how well each 
type of feature predicts cancer driver genes separately. For this purpose, we construct a machine-learning model 
to classify genes into driver genes for particular cancer types. We train this model using the known driver genes 
and non-driver genes available from the IntOGen20 database. We distinguish between 20 different types of cancer 

Figure 1. Interlinked knowledge between ontologies.

Figure 2. Overall workflow. Starting with annotation the genes from CPD with CMPO, GO and MP; and 
generates vectors with OPA2Vec. The prediction process done by training ANN in order to which cancer type 
each gene belong to discover new driver genes.
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(see Supplementary Table 1) taken from the IntOGen database20. The machine learning model we use is illus-
trated in Supplementary Fig. 1. We evaluate the results using 10-fold cross-validation and performance results are 
summarized in Table 1.

While the individual features can be used to predict driver genes in our experiment, we hypothesize that the 
different ontology-based features contain complementary information. Therefore, we merge the ontologies in a 
single ontology by combining the axioms from CMPO, GO, and MP The ontologies contain background knowl-
edge about their respective domains, and combining the ontologies allows us to combine the ontology-based 
annotations of each gene as well. When merging the ontologies and annotations we achieve a significant improve-
ment of prediction results compared to predicting based on individual features (see Table 1, Fig. 3 for ROC curves 
and Fig. 4 for the precision-recall curves). As our method can accurately predict cancer driver genes, we apply our 
model to all human genes for which we have ontology-based annotations and predict 112 novel candidate driver 
genes for 20 different cancer types (Supplementary Tables 2 and 3).

Predicted cancer driver genes are hypermutated in cancer exomes. Driver genes will generally 
accumulate more mutations than other genes in a tumor21. We use the complete list of genes in the IntOGen 
database and separate them into three disjoint groups: genes listed as confirmed cancer drivers, genes predicted 
as cancer drivers for one or more tumor types by our method but not known to be a driver gene, and genes not 
known or predicted as cancer driver genes. We use the recorded somatic mutations in the IntoGen database to 
determine the somatic mutation frequency for each human gene (i.e., the number of mutations divided by the 
length of the gene). We find that candidate predicted driver genes by our method have a significantly higher 
somatic mutation frequency than non-driver genes ( = . × −p 0 560 10 12, one-tailed t-test).

We also evaluate our predictions on a set of 26 tumor samples for nasopharyngeal cancer obtained from 
patients at King Abdulaziz University Hospital in Jeddah, Saudi Arabia, for which we have performed whole 
exome sequencing. Nasopharyngeal cancer is a type of squamous cell carcinoma of the head and neck for which 
we identify seven novel candidate driver genes (see Supplementary Table 3). In this set of samples, the predicted 
driver genes have a significantly higher somatic mutation frequency compared to non-driver genes 
( = . × −p 0 115 10 5, one-tailed t-test).

Moreover, we applied the same analysis to 114 tumor/normal samples for colorectal adenocarcinoma obtained 
from the University of Birmingham Hospital in UK. We identified 12 candidate driver genes for colorectal adeno-
carcinoma. Among the 114 samples, the predicted driver genes have a significantly higher somatic mutation fre-
quency compared to non-driver genes ( = . × −p 0 204 10 3, one-tailed t-test).

Experiments F-score AUC Number of annotated genes

CMPO 78.95% 72.96% 13,116

GO 84.23% 78.81% 17,591

MP 85.39% 79.51% 7,884

CMPO + GO + MP (Intersection) 91.20% 89.73% 7,884

CMPO + GO + MP (Union) 92.57% 94.28% 20,352

Table 1. ANN performance in identification driver/non-driver genes of different cancer types. We first 
determine the performance using each ontology-based feature separately (using each ontology individually 
as background knowledge), and then determine the performance only on genes for which we have all three 
ontology-based features (Intersection); in the “Intersection” case, embedding vectors are concatenated. Finally, 
we determine the performance on genes for which we have at least one feature (Union); in the latter case, 
ontologies are merged.

Figure 3. ROC curves and AUC values for the prediction of driver genes based on different ontology 
associations.
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Predicted cancer driver genes are functionally related to known cancer drivers. Cancer drivers 
are known to form functional modules on interaction networks22. We use the STRING interaction network23 
to determine whether the genes we predicted are functionally related to known driver genes. STRING contains 
several types of interaction between genes and proteins, including physical interactions, genetic interactions, 
co-location, and co-expression.

We find that 24 out of the 112 candidate driver genes have a direct interaction with a known driver gene within 
their respective cancer type. In a random distribution (see Methods), on average six genes are connected to a 
known driver gene, demonstrating that our predicted drivers are significantly more likely to be functionally 
related to a known driver gene ( = . × −p 0 731 10 7, one-tailed t-test).

Predicted driver genes are enriched for pathogenic variants. Our method can also be used to detect 
driver variants in tumor samples. We use seven different methods for predicting deleteriousness of variants which 
have previously been used in large-scale evaluations of driver variants6. We compare the pathogenicity scores of 
variants in candidate driver genes to known and non-driver genes in nasopharyngeal carcinoma exomes. Variants 
in the seven predicted driver genes for head and neck squamous cell carcinoma generally are scored more patho-
genic than variants in non-driver genes by most prediction tools (SIFT: p 0 324 10 5= . × − , PolyPhen-2: 

= .p 0 098, MutationAssessor: = . × −p 0 378 10 6, MutationTaster: = . × −p 0 372 10 10, CADD: = .p 0 818, 
VEST3: = . × −p 0 169 10 12 and FATHMM: = . × −p 0 912 10 14; Mann-Whitney U test).

We apply the same test on the cohort of colorectal adenocarcinoma samples. The set of variants in the pre-
dicted driver genes for colorectal adenocarcinoma (see Supplementary Table 4) are scored as significantly more 
pathogenic than variants in non-driver genes by most pathogenicity prediction methods (SIFT: 
p 0 631 10 6= . × − , PolyPhen-2: = . × −p 0 725 10 8, MutationAssessor: = . × −p 0 405 10 2, MutationTaster: 
p 0 917= . , CADD: = .p 0 811, VEST3: p 0 040= .  and FATHMM: = . × −p 0 648 10 8; Mann-Whitney U test).

Most of the prediction methods predict variants in candidate driver genes as significantly more patho-
genic than in non-driver genes. However, not all evaluation methods show significant results for both cohorts. 
Notably, CADD does not show a significant enrichment for pathogenic variants in either dataset, PolyPhen-2 
does not show this enrichment in predicted nasopharyngeal driver genes, and MutationTaster does not show 
this enrichment in predicted colorectal adenocarcinoma driver genes. A possible explanation may be that 
CADD has been trained to determine deleterious effects in germline variants24, and PolyPhen-2 as well as 
MutationTaster were trained to detect Mendelian disease variants25,26, while we apply these methods to somatic 
mutations. MutationAssessor and FATHMM, on the other hand, were specifically designed to evaluate somatic 
mutations27,28.

We can also use the pathogenicity prediction methods to suggest candidate driver mutations in the cohorts 
as well as individual patients. Supplementary Tables 4 and 5 list all rare variants in predicted driver genes in the 
predicted driver genes for nasopharyngeal carcinoma and colorectal cancer. For example, TGM3 has previously 
been studied as candidate driver in carcinomas of the head and neck29, and we identify rs200294064 in TGM3 as 
pathogenic candidate driver mutation.

Discussion
Our method can predict cancer driver genes using only public background knowledge about gene functions, cel-
lular and organism phenotypes. The key novelty of our algorithm is the ability to encode biological background 
knowledge in ontologies15, and therefore exploit inter-ontology links in the form of axioms; the predictive per-
formance of our method is best when combining different – yet related – ontologies. While many of the axioms 
that relate classes in different ontologies have been created to support ontology development and maintenance, we 
show that ontologies in the biomedical domain now form a comprehensive web of biological background knowl-
edge that can – when exploited through appropriate learning algorithms – significantly improve the interpreta-
tion and analysis of data. A crucial role for this type of connection between different ontologies is the Relation 
Ontology30 which is central to ontologies that make up the OBO Foundry13.

Figure 4. Precision–recall curves for the prediction of driver genes based on different ontology associations.
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Through the application of our method we identify novel driver genes by systematically analyzing public 
knowledge on multiple levels of granularity. One of the key novelties in our approach is the use of phenotype 
data – both on the cellular and whole organism levels of granularity – to characterize cancer driver genes. We use 
sequencing data – both public and patient-derived – as validation. This strategy is the opposite of most computa-
tional and experimental approaches in which molecular data is used as feature and additional functional evidence 
collected after predictions6,31. Our predictions determine the potential of a gene to play a role as a cancer driver in 
particular tumor types, and is independent of specific information regarding stage or gender.

Our approach can identify consensus cancer driver genes previously identified and not used in our training 
data; For example, 8 out of the 112 genes we predict have been listed in the current COSMIC database of con-
firmed consensus cancer driver genes32 (see Supplementary Table 6). Moreover, we found 12 out of the 26 rare 
variants within the predicted driver genes for both nasopharyngeal and colorectal cohorts mentioned in 
International Cancer Genome Consortium (ICGC) data33 (see Supplementary Table 7). We further compare our 
prediction results to a dataset in which 7,470 human genes have been modified through CRISPR/Cas9 in 324 cell 
lines for 19 different tissues to determine driver genes34. We find that 47 out of our 112 candidate genes overlap 
regardless of their cancer type ( = . × −p 0 22 10 17), and 16 out of the 112 candidate genes overlapped within the 
same cancer type.

conclusions
Cancer driver genes are commonly identified using computational methods applied to tumor-derived sequence 
data, or experimentally based on introducing targeted mutations in cell models. We developed a novel approach 
that computationally predicts driver genes based on known functions and phenotypes associated with genes as 
well as biological background knowledge contained in ontologies, and we evaluate the predictions using sequenc-
ing data from two cohorts of tumor patients. Our method relies on deep learning over integrated ontologies and 
biological knowledge bases, and highlights the importance of using structured and formalized resources as back-
ground knowledge in machine learning models.

Materials and Methods
Data sources and ontologies. We performed all our experiments on a set of driver/non-driver genes from 
the Mutational Cancer Drivers Database (intOGen)20 and Cellular Phenotype Database (CPD)11 downloaded 
on 18 Feb 2018. They contain a total of 60,279 genes: 24,475 of them are human protein-coding genes and the 
remaining 35,804 represent different types of RNA molecules and pseudogenes. Some of the genes are identified 
as being driver genes in one of the 28 cancer types in intOGen.

Furthermore, we used cellular phenotype annotations of genes provided by the Cellular Phenotype Database 
(CPD)11, downloaded on 18 Feb 2018, and we used function annotations provided by the Gene Ontology (GO) 
website17 downloaded on 14 Jul 2018. We further used phenotype annotations observed in mutant mouse models, 
downloaded from the Mouse Genome Informatics (MGI) database10 on 14 Jul 2018.

We mapped all gene identifiers to Entrez gene identifiers and used the mapping file between Ensembl gene 
identifiers and Entrez genes provided by the Cellular Phenotype Database (CPD)11; we converted UniProt iden-
tifiers of proteins in the GO annotations to Entrez gene identifiers using the UniProt mapping tool provided on 
the UniProt website12; and for assigning phenotypes to genes we use mouse orthologs of human genes and assign 
the phenotypes associated with loss-of-function mutations in mice in the MGI database10 to the human genes.

We started with 20,352 human genes of which 13,116 are annotated using the Cellular Microscopy Phenotype 
Ontology (CMPO)16, 17,591 are annotated using the Gene ontology (GO)17, and 7,884 are annotated with the 
Mammalian Phenotype Ontology (MP)18.

Generation of ontology annotation-based features. We used the OPA2Vec approach19 to generate 
“embeddings” representing genes based on the different ontologies and the annotations of the genes with the 
ontologies. An ontology embedding is a function that projects entities in an ontology or annotated with an ontol-
ogy into an n-dimensional real-valued space while preserving some of the ontology’s structure.

For generating the ontology embeddings using OPA2Vec, we evaluated different embedding sizes and min-
imum count parameters while fixing a window size of 5; the majority of axioms within the ontology used by 
OPA2Vec workflow contain 3 words (i.e., simple subclass axioms) and almost never exceed 10 words, for which 
a window size of 5 suffices. Among our experiments (see Supplementary Table 8), the optimal combination of 
parameters are and embedding size 100, minimum count 5, and using the default skip-gram model. We fixed 
these parameters throughout all our experiments.

Supervised training. We investigated the performance of a machine learning based classification algorithm 
in identifying new driver genes. In our experiments, we used known driver genes within 20 different cancer types 
as the positive set, and randomly selected an equal number of the non-driver genes as the negative set.

For the training and testing, we performed stratified 10-fold cross-validation. We performed a limited grid 
search for optimal sets of hyperparameters of the neural network using the Hyperas system35. We used a Rectified 
Linear Unit as an activation function36 for the hidden layers and a sigmoid function as the activation function 
for the output layer; we used cross entropy as loss function in training, and Rmsprop37 to optimize the neural 
networks parameters in training.

Sample preparation and sequencing. For nasopharyngeal cancer samples: 26 patients with nasopharyn-
geal cancer received treatment at King Abdulaziz University Hospital, Jeddah. 16/26 were male and 10/26 female. 
Patients has tumor that ranges from T1-4 and nodal involvement from N0-3 (22/26 patients). Four patients had 
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metastatic disease on radiological assessment (4/26). 20 out of 26 patients received combined treatment with 
curative intension of which 8/26 patients received concurrent chemoradiation and 12/26 patients received induc-
tion chemotherapy followed by concurrent chemoradiation. Two patients could not receive any active treatment 
and were offered only palliative measures. Four patients had metastatic disease from which 2 received palliative 
chemotherapy and the other 2 patients received induction chemotherapy followed by chemoradiation for aggres-
sive palliation as they had good response to initial chemotherapy.

Tissue samples were taken from nasopharyngeal cancer lesions and embedded in formalin at King Abdulaziz 
University Hospital in Jeddah, KSA. DNA was extracted from the tissue using Qiagen QIAamp FFPE Tissue 
DNA extraction kit (56404) following the manufacturer’s instruction. To capture the exomes and to prepare the 
sequencing libraries, a TruSeq exome kit (Illumina) was used. The indexed libraries were pooled (7 samples per 
lane), and 7 lanes in total were used for paired-end sequencing (150 bp) on a HiSeq. 4000 (Illumina). The average 
sequencing depth is 237x.

For colorectal carcinoma samples: In the patients studied, all had primary colorectal cancer, 34/54 were male 
and 20/54 were female. Two patients with rectal cancer underwent neoadjuvant chemoradiotherapy and one 
underwent neoadjuvant short course radiotherapy before excision of the primary tumour. The pathological stage 
of the resected tumours varied from between T2N0 to T4N2. Five patients presented with metastatic disease 
and 18 patients had “high risk” disease consisting of any of poor differentiation (4 patients), extra-mural vas-
cular invasion (18 patients), or threatened circumferential resection margin (2 patients). The operation types 
were abdomino-perineal excision of rectum (1 patient), anterior resection of rectum (15/54), left hemicolectomy 
(5/54), panproctocolectomy (1 patient), right hemicolectomy (14/54), sigmoid colectomy (4/54) and subtotal 
colectomy (2/54).

Colorectal cancer tissue and paired germline samples were obtained at the time of surgery and snap frozen 
in liquid nitrogen until required. For whole genome sequencing, approximately 1–3 μg of DNA was sheared and 
prepared using an Illumina TruSeq PCR-free library preparation kit. Samples were indexed and each sample was 
pooled across 4 lanes of an Illumina HiSeq 4000 using v4 sequencing chemistry, generating approximately 150 Gb 
of sequencing data per sample using a 125 bp PE sequencing strategy at an average depth of 53.7x.

Generating and annotating variant calls. For nasopharyngeal cancer samples we used GATK with 
Mutect238 for sample preparation and generating somatic short variant calling files following tumor-only mode. 
For colorectal carcinoma, Strelka39 was used with tumor/normal pairs to detect somatic mutations. We filter all 
variants that do not lie within a coding region in both cohorts.

We annotate the resulting VCF files with Annovar40 to extract variant-related information such as the gene(s) 
in which a variant lies and the start and end position of the gene, and the different pathogenicity scores.

Detection of network modules. To determine a neutral distribution of the number of connections 
between cancer driver genes within STRING empirically, we repeatedly sample 112 random nodes from the 
STRING interaction network23 and calculate the number of genes which are connected to known cancer driver 
genes. We repeat this process 10,000 times41.

Ethical considerations and consent. This work has been reviewed and approved by the Research Ethics 
Committee of King Abdulaziz University on 29 March 2017 under reference number 116-17, and the Institutional 
Bioethics Committee at King Abdullah University of Science and Technology on 15 May 2017 under reference 
number 17IBEC07-Hoehndorf. Ethical approval for work on colorectal cancer samples was obtained via the 
University of Birmingham Human Biomaterials Resource Centre Biobanking ethics (Ref 09/H1010/75). Informed 
consent was obtained from all subjects included in this study. All methods were carried out in accordance with 
the guidelines and regulations laid out by the institutional bioethics committees, the Declaration of Helsinki, and 
applicable laws and regulations governing research involving human subjects.

Data availability
All data except human genomic data is freely available from https://github.com/bio-ontology-research-group/
predCAN.

Genomic data for nasopharyngeal and colorectal cancer samples cannot be shared publicly due to ethical and 
legal restrictions. Requests for access can be sent to the University of Birmingham Human Biomaterials Resource 
Centre Biobanking and the Research Ethics Committee of King Abdulaziz University in Jeddah which will decide 
on access for researchers who meet the criteria for access to confidential data.

Received: 15 May 2019; Accepted: 29 October 2019;
Published: xx xx xxxx

References
 1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–74 (2011).
 2. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 

(2013).
 3. Garraway, L. & Lander, E. Lessons from the cancer genome. Cell 153, 17–37, http://www.sciencedirect.com/science/article/pii/

S0092867413002882 (2013).
 4. Tokheim, C. J., Papadopoulos, N., Kinzler, K. W., Vogelstein, B. & Karchin, R. Evaluating the evaluation of cancer driver genes. 

Proceedings of the National Academy of Sciences 113, 14330–14335, https://www.pnas.org/content/113/50/14330 (2016).
 5. Sondka, Z. et al. The cosmic cancer gene census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 18, 

696–705 (2018).

https://doi.org/10.1038/s41598-019-53454-1
https://github.com/bio-ontology-research-group/predCAN
https://github.com/bio-ontology-research-group/predCAN
http://www.sciencedirect.com/science/article/pii/S0092867413002882
http://www.sciencedirect.com/science/article/pii/S0092867413002882
https://www.pnas.org/content/113/50/14330


8Scientific RepoRtS |         (2019) 9:17405  | https://doi.org/10.1038/s41598-019-53454-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

 6. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18, http://www.
sciencedirect.com/science/article/pii/S009286741830237X (2018).

 7. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495, https://doi.
org/10.1038/nature12912 (2014).

 8. Chen, Y. et al. Identifying potential cancer driver genes by genomic data integration. Scientific Reports 3, 3538 (2013).
 9. Landrum, M. J. et al. Clinvar: public archive of relationships among sequence variation and human phenotype. Nucleic acids research 

42, D980–D985 (2013).
 10. Eppig, J. T. et al. The mouse genome database (mgd): facilitating mouse as a model for human biology and disease. Nucleic acids 

research 43, D726–D736 (2014).
 11. Kirsanova, C., Brazma, A., Rustici, G. & Sarkans, U. Cellular phenotype database: a repository for systems microscopy data. 

Bioinformatics 31, 2736–2740 (2015).
 12. Consortium, U. Uniprot: a hub for protein information. Nucleic acids research 43, D204–D212 (2014).
 13. Smith, B. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotech 25, 

1251–1255 (2007).
 14. Hoehndorf, R., Schofield, P. N. & Gkoutos, G. V. The role of ontologies in biological and biomedical research: a functional 

perspective. Briefings in Bioinformatics, 16, 1069–1080 (2015).
 15. Smaili, F. Z., Gao, X. & Hoehndorf, R. Formal axioms in biomedical ontologies improve analysis and interpretation of associated 

data. bioRxiv, https://www.biorxiv.org/content/early/2019/02/02/536649, https://doi.org/10.1101/536649 (2019).
 16. Jupp, S. et al. The cellular microscopy phenotype ontology. Journal of biomedical semantics 7, 28 (2016).
 17. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nature genetics 25, 25 (2000).
 18. Smith, C. L., Goldsmith, C.-A. W. & Eppig, J. T. The mammalian phenotype ontology as a tool for annotating, analyzing and 

comparing phenotypic information. Genome biology 6, R7 (2005).
 19. Smaili, F. Z., Hoehndorf, R. & Gao, X. Opa2vec: combining formal and informal content of biomedical ontologies to improve 

similarity-based prediction. Bioinformatics, 35, 2133–2140 (2018).
 20. Perez-Llamas, C., Gundem, G. & Lopez-Bigas, N. Integrative cancer genomics (intogen) in biomart. Database (Oxford) 2011, bar039 

(2011).
 21. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719, https://doi.org/10.1038/nature07943 (2009).
 22. Hofree, M., Shen, J. P., Carter, H., Gross, A. & Ideker, T. Network-based stratification of tumor mutations. Nature Methods 10, 1108, 

https://doi.org/10.1038/nmeth.2651 (2013).
 23. Szklarczyk, D. et al. String v10: protein–protein interaction networks, integrated over the tree of life. Nucleic acids research 43, 

D447–D452 (2014).
 24. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nature genetics 46, 310 (2014).
 25. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using polyphen-2. Current 

protocols in human genetics 76, 7–20 (2013).
 26. Schwarz, J. M., Rödelsperger, C., Schuelke, M. & Seelow, D. Mutationtaster evaluates disease-causing potential of sequence 

alterations. Nature methods 7, 575 (2010).
 27. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic 

acids research 39, e118–e118 (2011).
 28. Shihab, H. A. et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden 

markov models. Human mutation 34, 57–65 (2013).
 29. Wu, X. et al. Tgm3, a candidate tumor suppressor gene, contributes to human head and neck cancer. Molecular Cancer 12, 151, 

https://doi.org/10.1186/1476-4598-12-151 (2013).
 30. Smith, B. et al. Relations in biomedical ontologies. Genome Biol 6, R46, https://doi.org/10.1186/gb-2005-6-5-r46 (2005).
 31. Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274, http://science.

sciencemag.org/content/314/5797/268, https://doi.org/10.1126/science.1133427 (2006).
 32. Forbes, S. A. et al. Cosmic: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic acids research 

39, D945–D950 (2010).
 33. Zhang, J. et al. International Cancer Genome Consortium Data Portal—a one-stop shop for cancer genomics data. Database 2011, 

https://doi.org/10.1093/database/bar026 (2011).
 34. Behan, F. M. et al. Prioritization of cancer therapeutic targets using crispr–cas9 screens. Nature 568, 511–516, https://doi.

org/10.1038/s41586-019-1103-9 (2019).
 35. Pumperla, M. Keras + hyperopt: A very simple wrapper for convenient hyperparameter optimization. https://github.com/

maxpumperla/hyperas (2016).
 36. Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international 

conference on machine learning (ICML-10), 807–814 (2010).
 37. Hinton, G., Srivastava, N. & Swersky, K. Lecture 6a overview of mini-batch gradient descent. Coursera Lecture slides, https://class.

coursera.org/neuralnets-2012-001/lecture (2012).
 38. McKenna, A. et al. The genome analysis toolkit: A mapreduce framework for analyzing next-generation dna sequencing data. 

Genome Research 20, 1297–1303, http://genome.cshlp.org/content/20/9/1297.abstract (2010).
 39. Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics 28, 

1811–1817, https://doi.org/10.1093/bioinformatics/bts271 (2012).
 40. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. 

Nucleic Acids Research 38, e164–e164, https://doi.org/10.1093/nar/gkq603 (2010).
 41. Althubaiti, S. et al. Ontology-based prediction of cancer driver genes. bioRxiv, https://www.biorxiv.org/content/

early/2019/02/27/561480, https://doi.org/10.1101/561480 (2019).

Acknowledgements
A preprint of this manuscript was submitted to BioRxiv on 27 February 2019. R.H. was supported by funding 
from King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under 
Award No. URF/1/3454-01-01, URF/1/3790-01-01 and FCC/1/1976-08-01. S.A., P.N.S., G.V.G. and R.H. were 
supported by funding from King Abdullah University of Science and Technology (KAUST) Office of Sponsored 
Research (OSR) under Award No. FCS/1/3657-02-01 and URF/1/3790-01-01. A.D.B. acknowledges funding 
from the Wellcome Trust (102732/Z/13/Z), Cancer Research UK (C31641/A23923) and the Medical Research 
Council (MR/M016587/1). G.V.G. acknowledges support from H2020-EINFRA (731075) and the National 
Science Foundation (IOS:1340112) as well as support from the NIHR Birmingham ECMC, NIHR Birmingham 
SRMRC and the NIHR Birmingham Biomedical Research Centre and the MRC HDR UK. The views expressed 
in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health 
Research, the Medical Research Council or the Department of Health.

https://doi.org/10.1038/s41598-019-53454-1
http://www.sciencedirect.com/science/article/pii/S009286741830237X
http://www.sciencedirect.com/science/article/pii/S009286741830237X
https://doi.org/10.1038/nature12912
https://doi.org/10.1038/nature12912
https://www.biorxiv.org/content/early/2019/02/02/536649
https://doi.org/10.1101/536649
https://doi.org/10.1038/nature07943
https://doi.org/10.1038/nmeth.2651
https://doi.org/10.1186/1476-4598-12-151
https://doi.org/10.1186/gb-2005-6-5-r46
http://science.sciencemag.org/content/314/5797/268
http://science.sciencemag.org/content/314/5797/268
https://doi.org/10.1126/science.1133427
https://doi.org/10.1093/database/bar026
https://doi.org/10.1038/s41586-019-1103-9
https://doi.org/10.1038/s41586-019-1103-9
https://github.com/maxpumperla/hyperas
https://github.com/maxpumperla/hyperas
https://class.coursera.org/neuralnets-2012-001/lecture
https://class.coursera.org/neuralnets-2012-001/lecture
http://genome.cshlp.org/content/20/9/1297.abstract
https://doi.org/10.1093/bioinformatics/bts271
https://doi.org/10.1093/nar/gkq603
https://www.biorxiv.org/content/early/2019/02/27/561480
https://www.biorxiv.org/content/early/2019/02/27/561480
https://doi.org/10.1101/561480


9Scientific RepoRtS |         (2019) 9:17405  | https://doi.org/10.1038/s41598-019-53454-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author contributions
S.A. implemented the prediction model; S.A. and A.K. performed the computational analysis of genomic data; 
A.D., A.N., S.S.A.K., R.A., K.M. and A.D.B. contributed and processed samples; R.H. conceived of and P.N.S., 
G.V.G. and R.H. designed the study; T.G., G.V.G., P.N.S. and R.H. supervised the work; S.A., A.K., P.N.S. and 
R.H. drafted the manuscript; A.D.B., P.N.S., T.G., G.V.G. and R.H. obtained funding; all authors have read and 
approved the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-53454-1.
Correspondence and requests for materials should be addressed to R.H.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-53454-1
https://doi.org/10.1038/s41598-019-53454-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Ontology-based prediction of cancer driver genes
	Results
	Representation learning. 
	Biological features and background knowledge predict cancer drivers. 
	Predicted cancer driver genes are hypermutated in cancer exomes. 
	Predicted cancer driver genes are functionally related to known cancer drivers. 
	Predicted driver genes are enriched for pathogenic variants. 

	Discussion
	Conclusions
	Materials and Methods
	Data sources and ontologies. 
	Generation of ontology annotation-based features. 
	Supervised training. 
	Sample preparation and sequencing. 
	Generating and annotating variant calls. 
	Detection of network modules. 
	Ethical considerations and consent. 

	Acknowledgements
	Figure 1 Interlinked knowledge between ontologies.
	Figure 2 Overall workflow.
	Figure 3 ROC curves and AUC values for the prediction of driver genes based on different ontology associations.
	Figure 4 Precision–recall curves for the prediction of driver genes based on different ontology associations.
	Table 1 ANN performance in identification driver/non-driver genes of different cancer types.




