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The human microbiota is comprised of more than 10–100 trillion microbial

taxa and symbiotic cells. Two major human sites that are host to microbial

communities are the gut and the skin. Physical exercise has favorable effects

on the structure of human microbiota and metabolite production in sedentary

subjects. Recently, the concept of “athletic microbiome” has been introduced.

To the best of our knowledge, there exists no review specifically addressing

the potential role of microbiomics for swimmers, since each sports discipline

requires a specific set of techniques, training protocols, and interactions

with the athletic infrastructure/facility. Therefore, to fill in this gap, the

present scoping review was undertaken. Four studies were included, three

focusing on the gut microbiome, and one addressing the skin microbiome.

It was found that several exercise-related variables, such as training

volume/intensity, impact the athlete’s microbiome, and specifically the

non-core/peripheral microbiome, in terms of its architecture/composition,

richness, and diversity. Swimming-related power-/sprint- and endurance-

oriented activities, acute bouts and chronic exercise, anaerobic/aerobic

energy systems have a differential impact on the athlete’s microbiome.
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Therefore, their microbiome can be utilized for different purposes, including

talent identification, monitoring the effects of training methodologies, and

devising ad hoc conditioning protocols, including dietary supplementation.

Microbiomics can be exploited also for clinical purposes, assessing the effects

of exposure to swimming pools and developing potential pharmacological

strategies to counteract the insurgence of skin infections/inflammation,

including acne. In conclusion, microbiomics appears to be a promising

tool, even though current research is still limited, warranting, as such,

further studies.
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Introduction

The human microbiota is comprised of more than 10–100
trillion microbial (bacterial, and non-bacterial, such as archaeal,
viral, fungal, eukaryal, and parasitical) taxa and symbiotic cells
(Ursell et al., 2012), the majority of which reside in the gut
(Thursby and Juge, 2017). The human microbiome, a term
coined by Dr. Joshua Lederberg in 2001, is the comprehensive
catalog of genes harbored by these microbial communities
(Lederberg and McCray, 2001; Liu, 2016): more than three
million genes constitute the intestinal microbiome. Reflecting
the mixture of microbes and the diversity of the microbial
ecosystem, this consists of several components or compartments
(Matijašic et al., 2020): namely, the bacteriome (Donaldson
et al., 2016), the archaeome (Borrel et al., 2020), the virome
(Liang and Bushman, 2021), the mycobiome (Chin et al.,
2020), the eukaryome (Hamad et al., 2016), and the parasitome
(Marzano et al., 2017).

Two major human sites that are host to microbial
communities are the gut and the skin (De Pessemier et al.,
2021). Both microbiomes are extremely heterogeneous,
dynamic, and plastic, consisting of a highly diverse population
of microbes that can have both beneficial and detrimental
impacts on human health (Ogunrinola et al., 2020). In
particular, the gut microbiome is composed of more than
1,200 species of bacteria (Jandhyala et al., 2015), including
Bacteroides, Actinomycetes, Firmicutes, Proteobacteria, and
Verrucomicrobia. It plays different immunometabolic functions,
ranging from nutrient absorption (in particular, micro-
nutrient uptake), and processing to vitamin synthesis, energy
harvest, and metabolic homeostasis (including promoting
and favoring insulin sensitivity), and fine-tuning/modulation
of the immune system and of the inflammatory response
at the host level, protecting especially newborns from
respiratory and intestinal infections and pathogen invasion
(Belkaid and Hand, 2014). It can also provide the individual
with sources of energy, by fermenting and processing

short-chain fatty acids (SCFAs), like butyrate, acetate,
and propionate (den Besten et al., 2013; Portincasa et al.,
2022).

The skin microbiome is complex, dynamic, and
heterogeneous as well (Stacy and Belkaid, 2019). Skin represents
the body’s first line of defense against invading microorganisms.
The skin microbiome has been shown to provide immunity
against exogenous bacterial colonization (Byrd et al., 2018).
Some environmental (terrestrial, marine, and freshwater)
exposures, including, for instance, recreational water exposures,
may alter the skin microbiome and potentially induce skin
infections (Nielsen and Jiang, 2019; Patra et al., 2020).

Physical exercise has favorable effects on the structure of
gut microbiota and metabolite production in sedentary subjects
(Cella et al., 2021; Clauss et al., 2021). The body of currently
available evidence is mostly from animal studies: microbial
community architecture has been found to exert beneficial
effects in terms of microbial composition, structure, richness,
and diversity, favoring and promoting the establishment of
commensal bacteria, and an anti-inflammatory milieu and
counteracting/mitigating against pro-inflammatory effects, and
optimizing performance-related outcomes. Moreover, it can
interact with diet and other lifestyles to further enhance
performance (Donati Zeppa et al., 2019; Cella et al., 2021). Of
note, alterations in the microbiome can also be a consequence
of sports and physical activity (such as swimming) (Barton et al.,
2018; Mohr et al., 2020).

Recently, the concept of “athletic microbiome” (Barton
et al., 2018; Mohr et al., 2020) has been introduced.
Whereas some reviews have synthesized current state-of-
art concerning endurance exercise (Mach and Fuster-Botella,
2017) and competitive sports (Wegierska et al., 2022),
to the best of our knowledge, there exists no review
specifically addressing the potential role of microbiomics for
swimmers, since each sports discipline requires a specific set
of techniques, training protocols, and interactions with the
athletic infrastructure/facility (in this case, the swimming pool)
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(Xu et al., 2022). Research has shown that swimming can
exert a plethora of regulatory effects on the microbiome, in
terms of immunometabolic and neuroimmunological ones, as
demonstrated by a number of animal studies (Huang et al., 2019;
Xie et al., 2022). However, little is known about the impact of
training protocols on the microbiome among swimmers and
whether adjustments in an athletic program impact overall
changes in the gut microbiome in swimmers, with a particular
focus on high-level/elite athletes. Also, there is a lack of
prospective, longitudinal studies on the temporal changes and
trends at the microbiome level. Therefore, to fill in this gap of
knowledge, the present scoping review was undertaken.

Materials and methods

We devised the present review as scoping review, in that the
research question was broad and intersectional, across several
disciplines (sports sciences, microbiology, biotechnology,
and molecular biology). A scoping review is an innovative
technique to rapidly synthesize and map the literature on a
designated topic in terms of major concepts, sources, and
types of evidence (Arksey and O’Malley, 2005; Khalil and
Tricco, 2022; Pollock et al., 2022). Several methodologies
and guidelines exist: in particular, we leveraged Arksey and
O’Malley’s six-stage approach (Arksey and O’Malley, 2005).
Firstly, we identified the research question and we built
and developed our multidisciplinary team. We used the
“population/participants-concepts-context” (PCC) mnemonic.
“Population/participants” were athletes of any competitive
level, national or international, short- or long-distance,
and the main concept was about the potential applications
of microbiomics within this specific sports discipline. The
“context” was worldwide (our search was not confined
to a particular territory/geographic location). Based on
a preliminary literature search, an a priori protocol was
devised. MEDLINE, a major scholarly, electronic biomedical
database, was accessed via PubMed, a freely available interface.
No time or language restrictions were applied. The search
string consisted of two major components: microbiome
and swimmers, with synonyms/variants properly linked
by using Boolean operators [(microbiome OR microbiota
OR “bacterial community” OR “bacterial communities” OR
“bacterial flora”) AND (swimming OR swimmer)]. “Medical
subject headings” (MeSH) terms and wild-card (truncated
words) options were used. Extensive cross-referencing was
carried out. Further, specific target journals were hand-
searched. Moreover, also gray literature was consulted, by
mining Google Scholar. Then, studies were selected for
inclusion based on pre-specified inclusion and exclusion
criteria, which were formulated based both on the PCC
mnemonic and the “population/participants-intervention-
comparator/comparison-outcome-study design” (PICOS)

components. Studies were included if focusing on a population
of swimmers (P), of any competitive level, subjected to a
particular training protocol (I). Studies were deemed eligible
if comparing swimmers against the general population. Other
comparisons of interest included gender- and age-specific
comparisons or related to a particular swimming style (C).
Outcomes of interest were the quantification of the changes
in the microbiome, in terms of architecture/composition,
richness, or diversity (O) (see Tables 1, 2). Any study design was
eligible for inclusion: retrospective, prospective, quantitative,
observational, interventional, randomized, or non-randomized
(S). Included studies were synthesized in a narrative fashion.
Major topics/themes were identified by means of thematic
analysis and overviewed qualitatively. Furthermore, we
followed the “Preferred Reporting Items for Systematic Reviews
and Meta-Analyses” (PRISMA) extension for scoping reviews
(PRISMA-Scr) (Tricco et al., 2018). Finally, a formal quality
appraisal was not conducted given that is not a mandatory
component of scoping reviews.

Results

The initial search yielded 195 items. One hundred eighty-
six studies were discarded after reading the title and/or the
abstract, as they were irrelevant to the topic under study.
Nine studies were screened in full text. Five studies were
excluded with reason, since they did not meet our PICOS
criteria (the population consisted of non-athletes). Finally, four
studies were included in the present scoping review. Three of
them focused on the gut microbiome, and one addressed the
skin microbiome.

TABLE 1 Microbiome-related terms/expressions.

Microbiome-related
term/expression

Explanation

Richness The total number of
microbial species in a given
microbiome

Diversity The amount of individual
microbes from each species
present in a given
microbiome

Alpha diversity A measure of microbiome
diversity related to a single
sample (within-sample
diversity)

Beta diversity A measure of
similarity/dissimilarity of
different
communities/populations
(between-sample diversity)
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TABLE 2 Search strategy adopted in the present scoping review.

Search strategy component Related item(s)

Searched databases PubMed/MEDLINE, Google scholar

Search string used (microbiome OR microbiota OR
“bacterial community” OR “bacterial
communities” OR “bacterial flora”) AND
(swimming OR swimmer)

Inclusion criteria PCC

Population/participants: athletes of any
competitive level, national or
international, short- or long-distance

Concept: the potential applications of
microbiomics within the sports discipline
of swimming

Context: worldwide

PICOS

Population/participants: swimmers, of any
competitive level

Intervention: any training protocol

Comparator/comparison: swimmers
against the general population; gender-
and age-specific comparisons or
comparison related to a particular
swimming style

Outcome(s): quantification of the changes
in the microbiome, in terms of
architecture/composition, richness, or
diversity

Study design: any study design
(retrospective, prospective, quantitative,
observational, interventional,
randomized, or non-randomized)

Time restriction None applied

Language filter None applied

Sports microbiomics in swimmers:
Effects of training and probiotic
consumption

Bielik et al. (2022) sampled from a longitudinal prospective
study and recruited 17 and 7 young competitive male and female
swimmers, respectively, aged 16–25 years. The authors assessed
the impact of a 7-week, high-intensity training (HIT) program
with or without probiotic (Bryndza sheep-cheese) consumption
(30 g, 3–4 times per week) on swimming performance-related
outcomes during the Slovak Swimming National Championship
over a long course (being the pool 50 m in length). The probiotic
contains 3 microbial families, 24 genera, and 44 species. Total
DNA was extracted from stool samples and amplified utilizing
primers that specifically target the V1-V3 regions of 16SrDNA.
300 bp pair-end reads were obtained, collected, and processed.
The HIT program was comprised of swimming lengths of
12.5, 25, 50, and 100 m, carried out at an intensity of > 90%
of maximum speed. The authors were able to find a HIT-
induced increase in alpha diversity [in terms of operational
taxonomic units (OTUs), Shannon index, but not Simpson

index], independently of probiotic consumption. In particular,
in the HIT group, among the most represented phyla, Firmicutes
decreased from 80.2 to 76.3%, whereas Bacteroidota and
Actinobacteriota increased from 17.7 to 21.6% and from 0.99 to
1%. In the HIT + probiotic consumption (HITB), Firmicutes
and Actinobacteriota decreased from 82.3 to 77.7% and from
2.1 to 1.1%, respectively, whilst Bacteroidota increased from
14.1 to 19.9%. The phyla Proteobacteria, Verrucomicrobiota,
Cyanobacteria, Desulfobacterota, Fusobacteriota, Fibrobacterota,
Patescibacteria, and Campylobacterota were detected with an
abundance lower than 1% in the HIT group. Similarly,
in the HITB group, these phyla (with the exception of
Fusobacteriota, and Fibrobacterota) could be reported. In
terms of families, the Lachnospiraceae family was abundant
both in the HIT and HITB groups. It was found to
increase in the former group (from 41.5 to 43.5%) and to
decrease in the latter (from 47.6 to 45.4%). Other abundant
families in both groups were Ruminococcaceae, Bacteroidaceae,
Prevotellaceae, and Oscillospiraceae. Furthermore, in terms
of genera, Faecalibacterium, Blautia, Bacteroides, Roseburia,
Subdoligranulum, Ruminococcus, Prevotella_9, Agathobacter,
Coprococcus, and the Ruminococcus torques group could be
identified in both groups. In terms of statistical significance,
Bacteroidiota increased in both groups (p = 0.005 in HIT,
p = 0.0260 in HITB). Concerning lactic acid bacteria, the
order Lactobacillales (p = 0.015) and the family Streptococcaceae
(p = 0.019) were significantly different pre vs. post in the HITB
group. Lactococcus spp. was found to be increased in both
groups (p = 0.046 in HIT, p = 0.008 in HITB), with a higher effect
size in the probiotic consumers (12.8-fold vs. 5-fold change).
The increase in HIT was reflected in the increase in anaerobic
metabolism (namely, increased concentrations of pyruvate, and
lactate, and decreased levels of acetate, and butyrate) as well as
in the increase of bacterial species producing SCFA metabolites,
such as Butyricimonas (p = 0.028) and Alistipes (p = 0.010).
The latter increased also in the HITB group, but only in a
borderline fashion (p = 0.060). Finally, by means of a machine-
learning approach (random forest), the authors were able to
build a set of parameters (acetate, pyruvate, Butyricimonas,
butyrate, Bacteroidetes, Alistipes, and α-diversity measured
by means of the Shannon index; pyruvate, lactate, acetate,
α-diversity/Shannon index, and butyrate) able to differentiate
pre- vs. post-intervention in HIT and HITB, respectively, with
Area under the Curve (AUC) values of 0.78 and 0.99.

Sports microbiomics in swimmers:
Effects of detraining

Hampton-Marcell et al. (2020) recruited a sample of 13
(8 women and 5 men) collegiate swimmers aged 18–24 years
from a Division 1 university. Microbial community small-
subunit (SSU) rRNA genes were amplified using barcoded
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PCR primers targeting the V4 region and barcoded SSU
rRNA amplicons were, subsequently, cleaned and processed.
150 nt sequences were obtained from the pooled DNA,
and 79 samples were collected, totaling 395,000 16S rRNA
sequences and 7,684 OTUs. The most abundant bacterial
phyla were Bacteroidetes (46.5%) and Firmicutes (46.6%)
phyla, with an average ratio of Firmicutes: Bacteroidetes of 2:1
at the peak of the training program. The most represented
families were Bacteroidaceae (39.5%), Lachnospiraceae
(16.6%), and Ruminococcaceae (14.0%) over the entire
study period. Porphyromonas (9.2%), Sutterella (7.9%), and
unclassified genera within the families Lachnospiraceae and
Ruminococcaceae (5.8%) were identified as the commonest
taxa. Whilst no differences in terms of body composition
and anthropometric measurements (fat mass, fat-free mass,
or weight) could be computed, in terms of Bray-Curtis
dissimilarity between study training phases, microbial
community diversity and structure were impacted by
changes in training volume and shifted 43% on average.
Along with changes in beta diversity, alpha diversity
changed too, positively correlating with yardage per week,
decreasing and paralleling decreases in training volume, as
quantitatively assessed utilizing both the Shannon index and
community evenness (the inverse Simpson index). This ratio
gradually decreased to 1:1, with the decreases in training.
Detraining was reflected in reduced energy harvesting and
expenditure/consumption by Firmicutes-derived microbes.
A “core” component of the microbiome could be identified,
with 82% of the OTUs being consistent over time and
the different study phases, and being similar among the
swimmers. Finally, two major families (Lachnospiraceae and
Ruminococcaceae), and two major genera (Coprococcus and
Faecalibacterium) robustly correlated with short-term changes
in training volume.

Genetic and allelic regulation and
sports microbiomics in swimmers:
Correlations with performance
outcomes

The GALANTL6 gene, at 4q34.1, consists of 21
exons and is expressed mainly in adult testis, brain,
spinal cord, and cerebellum, as well as at the level
of the skeletal muscle tissue. It encodes the enzyme
polypeptide N-acetylgalactosaminyltransferase like type
6, which plays a key role in the metabolic homeostasis
(specifically of lactate) and regulation of the gut microbiota
via O-glycosylation and degradation of glycans. In
particular, the gene can modulate the cycle (synthesis
and resynthesis) and properties (anti-inflammatory
effects) of the microbial species processing and producing
SCFAs. Li et al. (2015) and Zmijewski et al. (2021)

assessed the hypothesis that the T allele of the GALNTL6
rs558129 single-nucleotide polymorphism (SNP) could
positively impact anaerobic metabolism and athletic
performance in a sample of 147 Polish short-distance
and 49 long-distance swimmers, taking part into national
or international competitions. These elite athletes (aged
20.31 ± 2.67 years) were matched with 379 sedentary
students, acting as controls (aged 22.6 ± 2.8 years). The
study cohort was genotyped using the real-time polymerase
chain reaction (real-time PCR). The SNP was in Hardy-
Weinberg equilibrium in controls and in the entire study
population. When compared to their CC homozygote
counterparts, carriers of the T allele (CT + TT) displayed
a 1.56 times higher likelihood of being short-distance
swimmers. There was an overrepresentation of the T
allele among swimmers, even though this correlation
did not achieve statistical significance in long-distance
swimmers. Finally, no significant effect of sex and gender
could be computed.

Clinical microbiomics in swimmers

Cutibacterium acnes (C. acnes, formerly known as
Propionibacterium acnes) is an opportunistic pathogen that
plays a major role in the etiopathogenesis of acne. Swimmers
should be protected against this dermatological disease, in
that they regularly have immersion in antimicrobial chlorine,
even though some reports have shown that chlorine in the
pools can affect the swimmer’s microbiome and metabolome
(van Veldhoven et al., 2018; Morss-Walton et al., 2022).
However, it is a commonly reported clinical observation
that adolescent swimmers may suffer from acne and even
develop standard therapies-resistant acne. Besides some
potential mechanisms (such as skin dryness, and impaired
barrier function) that can be hypothesized, another driver
of the so-called “swimmer’s acne” could be the presence of
microorganisms, such as the family Pseudomonadaceae (a
family of gram-negative bacteria, including Pseudomonas
aeruginosa), associated with recreational water, hot tubs, and
swimming facilities. Morss-Walton et al. (2022) investigated the
microbial dynamics of C. acnes and Pseudomonadaceae pre-
vs. post-swimming in a sample of 16 swimmers (8 girls and 8
boys, 75% whites), belonging to a local competitive swimming
club, seven of which suffering from acne. Coproporphyrin
III (CPIII), the main porphyrin produced by C. acnes, was
measured by means of fluorescence photography to quantify
the absolute abundance of the pathogen on the face of each
participant. The technique of 16S rRNA gene sequencing using
primers targeting the V4 region was exploited to characterize
the skin microbiome, after the collection of skin swabs. CPIII
fluorescence levels were found to be reduced after 1 h of
swimming (p-value < 0.001), whereas the relative abundances
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of C. acnes and of Pseudomonadaceae were stable (slightly
increasing from 15.0 to 19.0%) and increased (p = 0.027,
from 0.4 to 1.7%), respectively. The relative abundances
of Gemellales, Lactobacillales, Pasteurellales, Pasteurellaceae,
Streptococcus, and Lautropia significantly decreased. Of note,
after swimming, alpha diversity of the skin microbiome
decreased in terms of the Shannon index, the Chao1 index,
and observed OTUs (p-value < 0.001 for all three metrics).
On the contrary, beta diversity (in terms of the OTU Bray-
Curtis distance) increased after swimming. In conclusion, the
authors found that decolonization and colonization of C. acnes
and Pseudomonadaceae may result in skin dysbiosis and acne.

Discussion and conclusion

Microbiomics represents an emerging field (Neu et al.,
2021), with increasing applications in the sports arena.
Microbial metrics can well characterize an athlete’s energy
utilization, even when changes in physical activity levels and
adjustments of training protocols do not reflect in biochemical
(such as total cholesterol, insulin, or glucose) (Bielik et al.,
2022), body composition and anthropometric (like fat mass, fat-
free mass, or weight), or fitness measures (Hampton-Marcell
et al., 2020). The human microbiome is an excellent predictor
of changes in host phenotype and, more generally speaking,
in phenome (Ursell et al., 2012; Neu et al., 2021), explaining
up to 20% of host adaptation and related cellular/molecular
phenomena, whilst the genome can explain up to less than 2%
of host-related modifications.

Comprehensive sophisticated approaches, including
high-throughput quantitative polymerase chain reaction
(qPCR)/real-time PCR, amplicon and shotgun genomic DNA
sequencing, as well as 16S rRNA gene sequencing, can be
exploited to thoroughly characterize the human microbiome
in athletes (Han et al., 2020).

Whereas 70–80% of the microbiome (defined as the
“core microbiome”) remains stable over time, the so-
called non-core or peripheral microbiome is susceptible
to environmental/external stimuli and exposures. A “core
microbiome” can be defined as “any set of microbial taxa, or
the genomic and functional attributes associated with those
taxa, that are characteristic of a host or environment of interest”
(Neu et al., 2021).

Several exercise-related variables, such as training
volume/intensity, impact the athlete’s microbiome, and
specifically the non-core/peripheral microbiome, in terms of its
architecture, composition, richness, and diversity. Swimming-
related power-/sprint- and endurance-oriented activities, acute

bouts, and chronic exercise, anaerobic and aerobic energy
systems have a differential impact on the athlete’s microbiome,
specifically in the swimmers (Li et al., 2015; Hampton-Marcell
et al., 2020; Zmijewski et al., 2021; Bielik et al., 2022). Therefore,
their microbiome can be utilized for different purposes,
including talent identification, monitoring the effects of training
methodologies, and devising ad hoc conditioning protocols,
including the administration of supplements and probiotics.

Moreover, given the marked inter-individual variability
in microbial changes and shifts, microbiomics could be a
valuable tool to monitor athletes’ response to exercise and diet,
personalizing training protocol as well as sports nutrition to
enhance performance-related outcomes (Hughes, 2020; Sorrenti
et al., 2020; Hughes and Holscher, 2021). Microbiomics can
be exploited also for clinical purposes, assessing the effects of
exposure to water facilities (swimming pools) and developing
potential pharmacological strategies to counteract the
insurgence of skin infections and inflammation, including acne.

In conclusion, microbiomics appears to be a promising tool
to investigate the impact of training, detraining, dietary intake
and supplements/probiotics use among swimmers, as well as
clinical effects of interactions with swimming facilities, even
though current research is still limited, warranting, as such,
further studies.
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