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1. INTRODUCTION 

 Dementia is not a specific disease but a denomination for 
deterioration in mental capability severe enough to interfere 
with daily life. It describes a broad range of symptoms relat-
ed with a decline in memory or other thinking skills leading 
to reduce a person's ability to perform everyday activities. 
Alzheimer's disease (AD) accounts for 60 to 80 % of cases 
of dementia. Vascular dementia, which happens following a 
stroke, is the second most prevalent dementia type, but there 
are several other conditions that can lead to symptoms of 
dementia, including reversible ones, such as thyroid prob-
lems and vitamin deficiencies [1]. 
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 Dementia is often mistakenly referred to as "senility" or 
"senile dementia," which reveals the formerly universal but 
wrong belief that severe mental decay is a typical aspect of 
aging. Alzheimer’s is not just a disease related to old age. 
Younger-onset, also known as early-onset, Alzheimer’s af-
fects people under 65, and it is estimated that up to 5% of the 
more than 5 million Americans with Alzheimer’s, have 
younger-onset [1]. Many people with early onset are in their 
40s and 50s and they have families, careers or are even have 
to take care of themselves when Alzheimer's disease strikes. 

 It is currently estimated that 46.8 million people world-
wide have dementia with a global cost at US$818 billion in 
2010. By 2030, it is estimated that there will be 74.7 million 
people with dementia, and the burden of caring for these 
individuals could rise to some US$2 trillion [2]. 
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 Despite the large number of hit and lead compounds 
identified in silico and the development of many clinical 
trials [3], only four cholinesterase inhibitors and memantine 
have demonstrated sufficient safety and efficacy to allow 
marketing approval at international level. These five agents 
are symptomatic treatments, temporarily ameliorating 
memory and thinking problems being their clinical effect 
limited; they do not treat the underlying cause of AD and do 
not slow the rate of incidence [4]. 

 AD drug failures are due to lack of sufficient target en-
gagement or to toxic effects. Efforts to bring new AD drugs 
to market have failed because a number of causes such as 
incomplete understanding of AD pathogenesis, the multifac-
torial aetiology and complex pathophysiology of the disease, 
the slowly progressive nature of AD and the high rate of 
comorbidity within the elderly population [2]. 

1.1. QSAR (Quantitative Structure Activity Relationships) 

 QSAR stands for the establishing quantitative relation-
ships between molecular structure and activity, using math-
ematical equations. The present review analyzes the contri-
bution of QSAR to the discovery of novel anti-Alzheimer 
drugs during the last 10 years. Moreover, given the notable 
performance demonstrated by QSAR based on Molecular 
Topology (MT), a significant part of this review will be de-
voted to MT-QSAR as a strategic tool to discovery new ef-
fective drugs against Alzheimer.  

 There is general consensus that QSAR born in 1964, 
when Corwin Hansch and Toshio Fujita [5] introduced the 
idea that the experimental properties of molecules could be 
expressed as a function of different physicochemical parame-
ters capable to evaluate electronic and steric characteristics. 
This way they coined the concept of quantitative structure-
activity relationships (QSAR). 

 So, QSAR analysis is a study correlating the properties or 
activities of compounds with their structures employing the 
interdisciplinary knowledge of chemistry, mathematics, bi-
ology and physics. The idea is to establish one or several 
equations which correlate the real property or activity, ex-
pressed either as a categorical or a quantitative way, with a 
set of molecular descriptors whose nature can be physical, 
physicochemical or even purely mathematical (topological). 
Within this framework, any physical, chemical or biological 
property of compounds can be mathematically related to 
their structure and thereby to the structures of new or novel 
compounds (they may even have not a physical existence). 

 This way, using the properties of known molecules we 
can find new or novel compounds showing better properties 
[6] and that can be done by screening molecular databases or 
designing ex novo novel compounds.  

 Many QSAR models employ 2D-descriptors; among 
them stand as the most relevant the topological descriptors, 
also called graph invariants. The invariance of a molecular 
descriptor means that its value is independent of the particu-
lar characteristics of the molecular representation, such as 
atom numbering or labelling, spatial reference frame, molec-
ular conformations, etc. Invariance is assumed in QSAR as a 

basic requirement for any descriptor [7]. This is particularly 
important for topological indices, which are descriptors de-
rived from molecular topology. MT can be defined as a part 
of mathematical chemistry consisting of the topological de-
scription of molecular structures under the graph-theory 
framework. Such description deals mainly with the connec-
tivity of the atoms in the molecule and must be based on 
numerical descriptors, which are invariant under deformation 
or in general under any three-dimensional (3D) feature. 
Physical or physicochemical magnitudes as molecular de-
scriptors are not considered in this scenario [8].  
 In Fig. (1), a simple molecule such as isopentane is rep-
resented as a graph. In a graph, atoms are represented by 
points called vertices and bonds by segment named edges. 
Once a graph is created, it is transformed into a matrix called 
topological or adjacency matrix, which is calculated by la-
belling with an ordinal number each of graph vertices. Then, 
the matrix is built so that any entry ij has value 1 if there is 
an edge or link between vertices i and j; otherwise it is 0. 
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Fig. (1). The graph for isopentane and its relative adjacency matrix. 

 
 MT’s advantages can be summarized as follows [9]: 

• Molecular structure is depicted in single mathe-
matical (matrix) terms. 

• The procedure is easily computerized.  

• The approach enables the quick and accurate 
screening of large number of compounds as well as 
the design of novel ones by the reverse process 
(property à structure). 

 This way, graph theory and surrounding disciplines stand 
as basic tools for MT development. 
 Finally, the 3D-QSAR has emerged as a natural extension 
to the classical Hansch and Free-Wilson approaches, which 
exploits the three-dimensional properties of the ligands to 
predict their biological activities using robust statistical 
techniques such as PLS (Partial Least Squares), generalized 
PLS, ANN (Artificial Neural network), etc [10].  
 Fig. (2) shows a standard layout for a typical QSAR 
study. The first step consists of the data collection. After 
that, molecular descriptors are calculated and one or more 
predictive models are developed. The robustness of the mod-
els is checked and if the desired level of quality is met, mod-
els are applied first on a test set and then on the virtual 
screening in databases searching for new molecules. The 
goal is usually the identification of new hit and lead com-
pounds.  
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Fig. (2). A schematic example of QSAR strategy. 
 

2. ALZHEIMER - 10 YEARS OF QSAR  

2.1. 2D QSAR Studies 
 A compelling register of last 10 years essential results in 
the field of 2D QSAR is reported. Topological and other 2D 
descriptors will be considered. In order to make easier  
the reader comprehension, results will be addressed in 
chronological order.  
2.1.1. 2007-2011 
 In 2008 Saracoglu and Kandemirli investigated the struc-
ture-activity relationships for a class of acetyl cholinesterase 
(AchE) inhibitors related to tacrine, using the Electron-
Topological Method (ETM) (see Fig. 3) [11]. Optimized 
geometry data and electronic characteristics for a series of 
tacrine analogues were used for ETMs study. A set of 44 
molecules were collected. According to the activity level, 
molecules under study were divided into 3 groups: 

1. Active compounds (20 molecules with IC50 ≤ 
1.3µM); 

2. Low active compounds (4 molecules with 1.3 > 
IC50< 3.7µM); 

3. Inactive compounds (20 molecules with IC50 ≥ 
3.7µM) compounds. 

 The structural parameters responsible for the activity 
form a matrix called electron topological sub matrix of activ-
ity (ETSA), and are derived from an ETMC that represents 
one of the most active compounds (“a template” for compar-
ison). For each template compound, its ETMC was com-
pared with the ETMCs of the rest of compounds in the three 
series mentioned above. Based on pharmacophores and anti-
pharmacophores calculated as sub-matrices encoding im-
portant information from the spatial and quantum-chemical 
viewpoints, a system for activity prediction is developed. 
The system was tested on a few compounds with molecular 
skeletons other than those that were characteristic of the 
training sets. This allows identifying the presence/absence of 
human AChE binding affinity, at a level of probability of 84-
89%, for structurally heterogeneous molecules. The initial 
data analysis reveals a close relation between activity and 
spatial and electronic characteristics of molecules. Any 
changes in the values of the matrices exceeding the limits 
allowed, because diminishing or complete loss of activity. 

 In 2009, a work by Solomon et al. presented a QSAR 
study on a series of 88 N-aryl derivatives which display in-
hibitory activity towards both acetylcholinesterase (AChE) 
and butyrylcholinesterase (BChE) [12]. Fig. (4) shows some 
N-aryl derivatives used in this QSAR study. 

 QSAR models were derived for 53 and 61 compounds for 
each target, respectively, with the aid of genetic function 
approximation (GFA), which is an approach that uses topo-
logical, molecular shape, electronic and structural de-
scriptors. The predictive ability of the QSAR model was 
evaluated using a test set of 26 compounds for AChE 
(r2=0.860, r2

pred = 0.857 and q2 = 0.803) and 20 compounds 
for BChE (r2=0.880, r2

pred = 0.882 and q2 = 0.857). The 
QSAR models point out that AlogP98, Wiener, Kappa-1-
AM, Dipole-Mag, and  are important descriptors effec-
tively describing the bioactivity of the compounds (see Eq. 1 
and Eq. 2). 
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Fig. (3). Set of Tacrine Analogues used in the ETMC study. 

           Eq. 1 

           
Eq. 2

 



852   Current Neuropharmacology, 2018, Vol. 16, No. 6 Zanni et al. 

Where:  

 WIENER = Graph–theoretical descriptor for the sum of 
chemical bonds between atoms; ALOGP98 = Thermodynamic 
descriptor for the logarithm of partition coefficient;  
and = Molecular connectivity indices; PHI = Molecular 
flexibility indices; KAPPA-1-AM = Molecular shape kappa 
indices. 

 During the following year, Isela García, Yagamare Fall 
and Generosa Gómez used topological indices to predict new 
anti-Alzheimer and anti-parasitic GSK-3 inhibitors by multi-
target QSAR through an in silico screening [13]. Several 
topological descriptors for a large series of 3370 active/non-
active compounds were calculated with the ModesLab soft-
ware. Linear Discriminant Analysis (LDA) was used to fit 
the classification function and predict activity in heterogene-
ous series of compounds. Among the most significant de-
scriptors used in this work stand valence connectivity index-
es ( , Zagreb M indexes (M1) and Balaban de-
scriptor (J). LDA study for the selected topological function 
led to an overall accuracy of 91.1% in training series and 
86.8% in validation series.  

 Also in 2010, Kumar and Bansal developed several 
QSAR studies on the estimation of monoamine oxidase-A 
inhibitory activity using topological descriptors [14].  

 Quantitative structure activity relationship analysis was 
performed with 32 synthetically derived analogues for their 
inhibitory effects on monoamine oxidase-A(see Fig. 5), us-
ing two-dimensional topological descriptors. 
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Fig. (5). Chemical structure of pyrrol – 2 carboxamide analogues 
used in the Kumar and Bansal work. 
 
QSAR models were generated using multiple linear regres-
sion algorithms. Selected QSAR equation was: 

= 32 ; r2 = 0.84 ; r2
adj = 0.80 ; F = 26.23 ; r2

(CV) = 0.80 ; r2
pred 

= 0.83 ; SEE = 0.95 ; q2 = 0.88 

Where: 

DECC= Eccentric index; PHI= Kier Flexibility index; 
SPI=Superpendentic index; WAP= All-path Wiener in-
dex;Xt= Total structure connectivity index; n= number of 
compounds and F= Fisher distribution parameter.  

 As it can be seen, the correlation parameters reveal a 
good predictive capability of Equation (3). The cross-
validation correlation parameter along with the q2 correlation 
parameter satisfied a minimum of acceptance. Altogether, 
this research revealed significant correlation between MAO-
A inhibitory activity and topological descriptors. 

2.1.2. 2012-2017 

 The contributions about the importance of 2D descriptors 
in drug design during these years are many. The growing 
awareness on the effectiveness of topological indexes led 
many scientists to follow this approach as a reliable tool for 
the identification of novel hit and lead compounds.  

 In 2012 Bharateet al. [15] carried out a QSAR study for a 
series of meridianin analogues inhibiting Dyrk1A, just to 
find out structural features which are crucial for biological 
activity (see Fig. 6). Dual-specificity tyrosine phosphoryla-
tion-regulated kinase 1A (Dyrk1A), is a protein kinase with 
diverse functions in neuronal development and adult brain 
physiology. High levels of Dyrk1A have been associated to 
the pathology of neurodegenerative diseases and are thought 
to be implicated in some neurobiological alterations of Down 
syndrome, such as mental retardation. 

The selected regression function was: 

          Eq. 4 

Where: 

X1=Kier Chi4 path/cluster index; X2=Total lipole; X3= 
VAMP polarization ZZ component; X4=Dipole moment Z 
component and X5=logP.  

 QSAR model shows a good correlation coefficient (r > 
0.9), high F value (F > 20) and an excellent predictive power 

(r2
cv and r2

pred> 0.6). Activity of naturally occurring merid-
ianins was also predicted. The study shows that Kier’s Chi4 
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Fig. (4). QSAR study of N-aryl derivatives with varied inhibitory activity towards both acetylcholinesterase (AChE) and butyrylcholinester-
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path/cluster, total lipole, VAMP polarization ZZ component, 
dipole moment Z component and log P, play important role 
in Dyrk1A inhibition. 

 The same year Chitranshi et al. [16] developed a study to 
discover new inhibitors of the acetylcholinesterase (AChE). 
The quantitative structure–activity relationship (QSAR) equa-
tion was developed based on 44 AChE inhibitors: 34 training 
set compounds and 10 test set compounds (see Fig. 7). 

 The model was developed using five information-rich 
descriptors—HBA, log P, HOF, EE, and dipole—which are 
important in determining AChE inhibitory activity. QSAR 
model (Eq. 5) yielded good statistical data, r2 = 0.723; q2 = 
0.703; N = 34 for training set.  

Where:  

HBA = Hydrogen bond acceptor; log P = Solubility; HOF = 
Heat of formation in kcal; DIPOLE = Dipole moment in 
Debye; EE = Electronic energy in electron volt.  

 This model was further validated using leave-one-out 
cross-validation approach, Fischer statistics, Y randomisa-
tion test and prediction based on the test data set. A compre-
hensive docking study was also carried out, using different 
AutoDock softs. 

 Probably, one of the most relevant results obtained in the 
field of 2D drug design is the one by Galvez et al. in 2014 in 
collaboration with Pasinetti and the Mount Sinai School of 

Medicine of New York [17]. In that paper, the use of molec-
ular topology led to the identification of several brand new 
anti-Alzheimer compounds with dual activity, namely β-
amyloid (Aβ)-lowering and anti-oligomerization activities. 
Eight of the molecules were subsequently patented (see Fig. 
8), what represents a record in finding novel anti-Alzheimer 
molecules.  

 This is also a good example of using MT-QSAR to com-
bine pre-existing data with molecular structure, to develop a 
mathematical characterization of the desired functional out-
come, based on a specifically defined set of biological prop-
erties and/or therapeutic targets. 

 In 2015, Toporova et al. employed the QSAR models for 
the pIC50 (binding affinity) of 233 gamma-secretase inhibi-
tors (see Fig. 9), jointly with the Monte Carlo method using 
CORAL software. Their results showed the synergy derived 
from the joint use of the two methodologies to select novel 
potential gamma-secretase inhibitor [18].  

2.2. 3D QSAR Studies  

 The other main branch of QSAR, is about 3D descriptors. 
It takes into account 3D properties such as polarizability and 
chirality. Moreover, it deals with structure based techniques 
such as docking, molecular dynamics and pharmacophore 
design.  

2.2.1. 2007-2011 

 In 2008, Kim et al. developed a three-dimensional com-
mon feature pharmacophore model by using HipHop pro-

gram provided in Catalyst software. Subsequently, it was 
used as a query for screening database in search of novel 
GSK-3b inhibitors [19]. Sequential virtual screening proce-
dure (SQSP) was conducted by applying the common feature 
pharmacophore and RP model. The final 56 hit compounds 
were carefully selected considering the expected docking 
mode in crystal structures. Subsequent enzyme assay for 
human GSK-3b protein confirmed that three of the com-
pounds exhibited inhibitory activity at the micromolar level 
(see Fig. 10). 

 The work by Mathura et al. in 2010, led to a 3D-QSAR 
model used to identify, in a dihydropyridine-like compound 
library, novel inhibitors of amyloid beta (Aβ) production 
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Fig. (7). Structure of 1-indanone derivatives as AChE inhibitors. 
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[20]. A set of 24 compounds analogues to 1,4dihy-
dropyridine (DHP) showing Aβ inhibitory activity, were 
used as training set. From them, a 3D-QSAR model was 
built up using the Phase soft. (SchrÖdinger, USA). The 
model performed very well in a test set of compounds.  

 Fig. (11) shows five pharmacophore points for dihydro-
pyriden analogues. 

 Moreover, they used the model to screen a 1043 DHP-
like compounds library, finding that the model can effective-

ly find out potent hits. The in vitro screen distribution of 
compounds at 5 µM, showed 56 SH compounds that inhibit-
ed Aß by more than 90%, 146 compounds showed a medium 
potency, 173 a low potency and 668 were classified as inac-
tive. The in silico screen was carried out on the 100 top and 
bottom compounds based on their predicted potency. Among 
the 100 bottom compounds, 99% showed no Aβ lowering 
activity and only one displayed marginal Aβ lowering activi-
ty (20% inhibition at 5 µM). Within the top 100 compounds, 
the model identified over 66% of active compounds, among 
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Fig. (8). Structures of eight compounds that are able to exert dual Aβ-lowering and anti-oligomerization by in vitro testing [17]. 
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them 18 were the most potent in the library. The probability 
of finding SH compounds in the top 100 is three times greater 
using the QSAR model as compared to a “by chance” finding. 
Finally, authors set out to screen a small focused library of 
DHP like molecules and determined their IC50 for Aβ produc-
tion. The best 3D-QSAR model was able to predict the test set 
with a correlation coefficient of 0.7. 

2.2.2. 2012-2017 

 In 2012, three works are reported in which 3D-QSAR 
studies were carried out to predict anti-Alzheimer properties. 
In one of them, Hajjo et al. [21] presented a chemocentricin-
formatics approach to drug discovery focused on the identi-
fication and experimental validation of selective estrogenic 
receptors modulators as ligands of 5-hydroxytryptamine-6 
receptors and as potential cognition enhancers. Several data-
bases were used, as for instance DrugBank and PubChem, to 
build up the dataset. Then, several combinatorial techniques 
were used to generate the regression equations. The first ap-

proach relied on k-nearest neighbour (kNN) model optimiza-
tion method using Dragon’s descriptors, and the second was 
a classification based on association (CBA) and subgraphs 
(SG) descriptors. Once the equations were obtained, a virtual 
screening on both the 59000 molecules within the WDI 
chemical library and 1300 DrugBank compounds included in 
the cmapdatabase was carried out. Subsequently, Connectivi-
ty Map for potential anti-Alzheimer agents was used. 

 Fig. (12) shows some of the compounds selected, which 
are related to several therapeutically classes. 

 The paper by Souza et al. introduced the use of hologram 
QSAR models to identify novel potential anti-Alzheimer 
agents [22]. A series of 36 inhibitors (29 training set and 7 
test set compounds) of acetyl/butyrylcholinesterase (AChE/ 
BChE),were used to build the models. A data set of 36 4-
[(diethylamino) methyl]-phenol AChE/BChE inhibitors was 
compiled from the work of Yu et al. [23]. The HQSAR 
models (N = 29) exhibited significant cross-validated 
(AChE, q2 = 0.787; BChE, q2 = 0. 904) and non-cross-
validated (AChE, r2 = 0.965; BChE, r2 = 0.952) correlation 
coefficients.  

 The best HQSAR model for the AChE inhibitors was 
generated using bonds (B) and connections (C) as fragment 
distinction parameters and 9–12 as the fragment size, show-
ing q2 = 0.787 and r2 = 0.965. For the BChE inhibitors, the 
best HQSAR model was developed using atoms (A) and 
bonds (B) as fragment distinction parameters and 9–12 as the 
fragment size, showing q2 = 0.904 and r2 = 0.952. 

 A complete HQSAR analysis involves the investigation 
of important molecular fragments directly related to the bio-
logical activity variation so that one may suggest structural 
modifications. Thus, the HQSAR models can be graphically 
displayed as color-coded structure diagrams in which the 
colour of each atom reflects its contribution to the potency 
variation. The red and green ends of the spectrum correspond 
to negative and positive contributions respectively, whereas 
atoms with intermediate contributions are white [15]. The 
most active compounds, in terms of individual atomic con-
tributions as (compounds 26 and 24), selected according to 
the best HQSAR models, are displayed in Fig. (13). 

 Contribution maps show that structural fragments contain-
ing aromatic moieties and long side chains increase potency. 

 Finally, the same year, Liu et al. explored the binding of 
BACE-1 inhibitors using comparative binding energy analysis 
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(COMBINE) [24]. The inhibition of β-secretase (BACE-1) 
activity is a potentially important pathway for Alzheimer's 
treatment. To explore the mechanism of inhibition, the au-
thors describe the use of 46 X-ray crystallographic BACE-
1/inhibitor complexes to derive quantitative structure-
activity relationship (QSAR) models. The inhibitors were 
aligned by superimposing 46 X-ray crystallographic BACE-
1/inhibitor complexes, and gCOMBINE software was used to 
perform COMparativeBINding Energy (COMBINE) analy-
sis on these 46 minimized BACE-1/inhibitor complexes. 

 By considering the protein residues contributions to the 
electrostatic and van der Waals intermolecular interaction 
energies, two predictive and robust COMBINE models were 
developed: (i) the 3-PC distance-dependent dielectric con-
stant model (built from a single X-ray crystal structure) with 
a q2 value of 0.74 and an SDEC value of 0.521; and (ii) the 
5-PC sigmoidal electrostatic model (built from the actual 
complexes present in the Brookhaven Protein Data Bank) 
with a q2 value of 0.79 and an SDEC value of 0.41. 

 Fig. (14) shows the chemical structure and biological 
activity of the three most active compounds of the data set of 
46 co-crystallized ligands of BACE-1. 

 In 2013, Islam et al. compare quercetin with convention-
al AchE inhibitors to search for a better drug candidate 
through an in silico QSAR study [25] (see Fig. 15). Physico-
chemical properties of conventional drugs and quercetin 
were predicted using bioinformatics tools. Molecular dock-
ing of these compounds on the active site of AchE was per-
formed using AutoDock and comparative analysis was per-
formed. Later, modification on the basic structure of querce-
tin with different functional groups was done to perform 
QSAR analysis. Quercetin showed a similar drug likeness 
score to the conventional drugs. The binding strength for 
quercetin in the active site of the enzyme was - 8.8 kcal/mol, 
which was considerably higher than binding scores for some 
of the drugs such as donepezil (binding score -7.9 kcal/mol). 
Fifteen hydrogen bonds were predicted between quercetin 
and the enzyme, whereas conventional drugs had fewer or 
even no hydrogen bonds. It implies that quercetin can act as 
a better inhibitor than conventional drugs. To improve the 
results, similar structures of quercetin were searched through 
SIMCOMP database and modified structurally. A methyla-
tion in the 4-OH position of the molecule showed better 
binding affinity than parent quercetin. The QSAR study in-
dicated that O-4 methylation was specifically responsible for 
better affinity. 

 In 2014, an interesting article by Bautista-Aguilera et al. 
shows the design, synthesis, biochemical evaluation, AD-
MET, molecular modelling, and QSAR analysis of novel 
donepezil-pyridyl hybrids [26]. The 3D-quantitative struc-
ture-activity relationship study was used to define 3D-
pharmacophores for the inhibition of MAO A/B, acetylcho-
linesterase (AChE), and butyrylcholinesterase (BuChE) en-
zymes and to design DPHs as novel multi-target drug candi-
dates with potential impact in the therapy of AD. 

 One of the most interesting works is the one by Goyal et 
al. in 2014 [27]. It is relevant because along with the one by 
Galvez et al. [17] presents a QSAR study for the identifica-
tion of new drugs against Alzheimer using a dualistic strate-
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Fig. (12). Some compounds of different therapeutic classes obtained from QSAR-based VS and cmap. 
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Fig. (13). Chemical structures and biological activity (IC50, nM) for 
the 4-[(diethylamino) methyl]-phenol analogues that were the most 
active as AChE and BChE inhibitors. 



Alzheimer: A Decade of Drug Design. Why Molecular Topology Current Neuropharmacology, 2018, Vol. 16, No. 6    857 

gy. In contrast with the work by Galvez et al. this study uses 
3D-QSAR descriptors. The main objective consisted of de-
termine dual inhibitors of !-amyloid cleavage enzyme 
(BACE-1) and of acetylcholinesterase (AChE). To do so, 
fragment-based QSAR and molecular Docking were em-
ployed. The data set was made of a group of fragments of 20 
1,4-dihydropyridine (DHP) derivatives. Descriptors were 
calculated and a large combinatorial library of DHP ana-
logues was created. In this study, the convincing parametric 

values for GQSAR model were observed in terms of correla-
tion coefficient r2 = 0.851, predicted correlation coefficient 
r2

pred= 0.752, cross-correlation coefficient q2= 0.682, and low 
standard error SE= 0.085, which implied that the model can 
be considered stable and accurate. Moreover, high values of 
other statistical parameters like Fest=34.4 provided additional 
support that the model was significant and robust with min-
imum chance of failure. 
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 Docking studies for 3405 molecules of combinatorial 
library were carried out against AchE and BACE-1. Among 
these molecules, a total of 1310 and 1482 compounds having 
good binding affinity for BACE-1 and AChE, respectively, 
were identified using HTVS. After HTVS, the highest dock-
ing scores for both targets, BACE-1 and AChE, were found 
to be −10 kcal/mol and −12 kcal/mol, respectively. Com-
pounds with Glide score above −8 kcal/mol for BACE-1 and 
−6 kcal/mol for AChE were then subjected to XP protocol 
for further refinement of Glide score. The two top scoring 
compounds, namely, (4R)-1-ethyl-4-fluoro-N- [(2R,3S)-4-
hydrazinyl-3-hydroxy-1-phenylbutan-2-yl]-2,6- dimethyl-5-
(1,3-oxazole-5-carbonyl)-1,4-dihydropyridine-3- carbox-
amide and (4R)-4-fluoro-N-[(2R,3S)-4-hydrazinyl-3- hydroxy-
1-phenylbutan-2-yl]-2,6-dimethyl-5-(1,2-oxazole-3- carbonyl)-
1-(prop-2-en-1-yl)-1,4-dihydropyridine-3-carboxamide(further 
referred to as EDC and FDC, resp) were found possessing dual 
target inhibitory capability (see Fig. 16). 

 The very same year, Hung et al. made an in silico screen-
ing on compounds belonging to traditional Chinese medicine. 
The objective was to identify new molecules able to inhibit 
histone deacetylase 2 in patients with Alzheimer [28]. Three 
prediction models were used: multiple linear regression 
(MLR), support vector machine (SVM), and the Bayes net-
work toolbox (BNT). Moreover, Molecular dynamics simula-
tion provided the protein-ligand interactions of compounds. 
The bioactivity predictions of pIC50 values suggest that the 
TCM candidates m (−)-Bontlferulate, monomethylcurcumin, 
and ningposides C, have a greater effect on HDAC2 inhibition 

(see structures in the Fig. 17). Authors found that there was a 
great influence of hydrogen bonds and hydrophobic moieties 
on the protein-ligand interactions. 

 In the same year as well, Valasani et al. used several 2D 
and 3D-QSAR approaches to study the identification of nov-
el Cyclophilin D inhibitors [29]. To be exactly, they devel-
oped a structure-based design and synthesis study through 
pharmacophoremodelling, virtual screening and molecular 
docking. Since appropriately designed small organic mole-
cules might bind to CypD and block its interaction with Aβ, 
20 trial compounds were designed using known procedures 
that started with basic pyrimidine and sulfonamide scaffolds 
known to have useful therapeutic effects. 2D-QSAR was 
applied to 40 compounds with known IC50 values, which 
formed the training set, followed by a trial set of 20 designed 
compounds. A correlation analysis was carried out compar-
ing the statistics of the measured IC50 with predicted values 
for both sets. Selectivity-determining descriptors were inter-
preted graphically in terms of Principal Component Analysis 
(PCA). These descriptors can be very useful for predicting 
activity enhancement for lead compounds. A 3D pharmaco-
phore model was also created and molecular dynamics simu-
lations were carried out for the 20 trial compounds with 
known IC50 values. Molecular descriptors were included in 
the 2D-QSAR studies using the Lipinski rule-of-five. Fifteen 
of the 20 molecules satisfied all 5 Lipinski rules, and the 
remaining 5 satisfied 4 of the 5 Lipinski criteria and nearly 
satisfied the fifth. Altogether, the use of 2D-QSAR, 3D 
pharmacophore models and molecular docking experiments 

N

FCH3

CH3

O

CH3 O

HN
H
N

NH2

OH

O
N

N

FCH3

CH3

O

O

HN
H
N
NH2

OH

H2C

NO

EDC
FDC

 

Fig. (16). Structure of selected molecules, EDC and FDC (1,4-dihydropyridine derivatives) possessing dual inhibitory property, BACE and 
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has demonstrated to be successful to predict activity, particu-
larly for screening a large number of new compounds as ac-
tive drug candidates. 

 Finally, in 2016 Mahmoodabadi and Ajloo developed a 
QSAR study using docking and molecular dynamics to study 
polyphenols as inhibitors of β-amyloid aggregation [30]. The 
inhibitory effect on amyloid-β aggregation was investigated 
on 25 polyphenolic compounds. After optimizing molecular 
geometry, it was employed Dragon 5.0 software to calculate 
the molecular descriptors. In order for variable selection, the 
multiple linear regression method (MLR) was performed 
based on the construction of a linear mathematical model 
with regard to the observed fibrillation constants. The dataset 
was randomly divided into two groups, training and test set.  

The best regression Equation was: 

here: 

JGI2 = Mean topological charge index of order2 (Galvez 
topol. charge indices); Mor07v = 3D-MoRSE—signal 
07/weighted by atomic van der Waals volumes (3D-MoRSE 
descriptors); RDF045v = Radial distribution function - 
4.5/weighted by atomic van der Waals volumes (RDF de-
scriptors); DISPv = d COMMA2 value/weighted by atomic 
van der Waals volumes (Geometrical descriptors); GATS6e 
= Geary autocorrelation—lag 6/weighted by atomic Sander-
son electronegativities (2D autocorrelations). 

 In this Equation, the presence of the so called autocorre-
lation indices, such as Mor7v and GATS6e is relevant. 

 Moreover, PCA analysis showed that considering five 
components (PC1−PC5) is a good choice because they  
explain over 88% of variance and the curvature of screen 
plot changes slowly and smoothly after PC5. Therefore, a 
model including five descriptors was chosen as illustrated 
following: 

 Where PC = Principal Components describing biological 
activities and molecular diversity of heterocyclic aromatic 
ring fragments. 

 To predict the binding energy of inhibitors to β-amyloid 
peptide, Autodock software was used. For each inhibitor, 
250 independent docking runs were conducted. The setting 
of parameters was as follows: population sizes of 50, a max-
imum number of 25 million energy evaluations, a maximum 
number of 27000 generations, a cross-over rate of 0.8, elit-
ism of 1 and a mutation rate of 0.02.  

 Docking studies on the polyphenolics derivatives showed 
that the binding pocket includes some amino acids such as Asp1, 
Glu3, Lys16, Leu17, Val18, Phe19, Phe20, Ala21, Glu22, 
Asp23, Ser26, and Asn27. Interaction modes between Aβ and 
the most active inhibitor molecules, namely Maritimetin 2, 
Luteolin 18, and Transilitin 22, were investigated (see Fig. 18).  

 MD simulations were carried out by the GROMACS. 
Here, we describe simulation of Aβ (16–22) dimer in the 

presence of different inhibitors, focusing on the process of 
protein aggregation. The results revealed that compounds 2, 
18, and 22, reduce protein aggregation and unfold enzyme 
structure. Therefore, interaction of these inhibitors with Aβ 
is stronger than that of compounds 3, 14, and 25. 

2.3. Example of Application of Molecular Topology for 
the Search of Potential AD Agents 

 As a summary of what collected in this review, in this 
section, we present a practical example of application of 
MT-QSAR in the search of new active compounds for AD. 
Our target is acetylcholinesterase, AChE, and the enzymatic 
inhibition of a group of 44 1-indanone derivatives. The da-
taset together with donepezil (as reference drug), are listed in 
Table 1, where can be realized that the AChE inhibitory ac-
tivity (IC50) ranges from 0.035 to 22.1 µM. All data were 
obtained from the reference [31]. 

 Each molecule was drawn with the ChemDraw Profes-
sional 16.0.Software and stored in MDL Molfile format.Cpd: 
compound; P.:position; Scaff.: scaffold;-m:Meta;-p: Para. 

 In this study, the Kier and Hall topological connectivity 
indices have been used upto the fourth order, m(χ)t(indexes 
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Fig. (18). Structures of the most active Aβ inhibitor molecules, Maritimetin, Luteolin, and Transilitin. 

            Eq. 7 

             
Eq. 6
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Table 1. Structure and biological activities of 44 indanone derivatives as AChE inhibitors. 

 

Cpd* R1 R2 P. Scaff. IC50exp(µM) pIC50exp pIC50calc 

Donep.     0.02 7.80  

2 a H m- A 1.10 5.96 5.81 

3 a CH3 m- A 0.82 6.09 5.68 

4 a H p- A 0.21 6.68 6.57 

5 a CH3 p- A 0.15 6.82 6.43 

6 c H m- A 2.28 5.64 6.14 

7 c CH3 m- A 1.36 5.87 5.96 

8 c H p- A 0.10 7.00 6.90 

9 c CH3 p- A 0.22 6.66 6.72 

10 d H m- A 2.66 5.58 6.01 

11 d CH3 m- A 1.96 5.71 5.89 

12 d H p- A 0.05 7.30 6.78 

13 d CH3 p- A 0.14 6.85 6.66 

14 e H m- A 3.18 5.50 5.80 

15 e CH3 m- A 3.58 5.45 5.71 

16 e H p- A 0.15 6.82 6.57 

17 e CH3 p- A 0.13 6.89 6.48 

18 f H m- A 14.6 4.84 5.05 

19 f CH3 m- A 22.1 4.66 4.75 

20 f H p- A 1.30 5.89 5.84 

21 f CH3 p- A 3.14 5.50 5.52 

22 g H m- A 6.41 5.19 4.95 

23 g CH3 m- A 17.6 4.75 4.76 

24 g H p- A 1.42 5.85 5.73 

25 g CH3 p- A 2.98 5.53 5.53 

26 a H m- B 2.14 5.67 5.68 

27 a H p- B 0.42 6.38 6.56 

28 b H m- B 0.49 6.31 5.92 

29 b H p- B 0.27 6.58 6.80 

30 c H m- B 0.44 6.35 6.20 

31 c H p- B 0.04 7.46 7.08 

32 d H m- B 0.24 6.63 6.29 

33 d H p- B 0.05 7.35 7.16 

34 e H m- B 0.16 6.79 6.16 

35 e H p- B 0.10 6.99 7.03 

(Table 1) contd…. 
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Cpd* R1 R2 P. Scaff. IC50exp(µM) pIC50exp pIC50calc 

36 a H m- C 3.74 5.43 5.42 

37 a H p- C 1.38 5.86 6.30 

38 b H m- C 0.69 6.16 5.66 

39 b H p- C 0.38 6.42 6.54 

40 c H m- C 1.48 5.83 5.96 

41 c H p- C 0.29 6.54 6.83 

42 d H m- C 2.58 5.59 6.07 

43 d H p- C 0.15 6.81 6.94 

44 d H m- C 0.66 6.18 5.96 

45 d H p- C 0.12 6.91 6.82 
*The compounds marked in bold belong to the test group. 

 

 
Fig. (19). Graphic representation of pIC50exp versus pIC50calc from selected topological model. 

 

that evaluate fundamentally the topological assembly of 
molecules) [32], topological charge indices, Gi, Ji, (which 
evaluate the intramolecular charge transfer) [33] and a group 
of constitutional indices (including the number of atoms, 
degree of branching, etc.) [34]. Altogether 62 descriptors 
obtained with the program DESmol1 [35] were calculated. 

 Multi-linear regression analysis was carried out using the 
TIs as independent variables and the inhibitory activity, in its 
logarithmic transformation, pIC50 = -LogIC50, as dependent 
variable. 80% of the compounds were included in the train-
ing group whereas the remaining 20% (molecules marked in 
bold in Table 1), were left apart as an external test group for 
model validation. The selection of both groups was done 
randomly. 

The best regression equation achieved was: 

      Eq. 8 

N= 35 r2=0.855  r2
pred = 0.835 q2

cv = 0.817
 SEE = 0.27 F(3,31)=61.0 p>0.00000 

 The TIs that appear in Eq. 8 evaluate exclusively topo-
logical aspects (D1=1χ-1χv and C4P=4χp/4χp

v) and com-
pounds’ degree of branching (PR2). 

 The equation shows a good statistical record, for example 
the value of regression coefficient, r2 = 0.855, is indicative of 
a high predictive capability. When applying the equation to 
the external test group, the predictive efficiency remains at the 
same level, r2

pred = 0.835. The internal validation test (leave-
one-out) shows a predictive rate above 80%, Q2

cv = 0.817, 

 
Fig. (20). Graphic representation of q2

cv (prediction coefficient), 
versus r2 (correlation coefficient) calculated with randomization test 
obtained with the selected topological model. 
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which excludes the presence of outliers among the molecules 
used in the analysis. In addition, the value of SEE = 0.27 
indicates that the uncertainty that accompanies the prediction 
of activity is 9.6% of the range in which the activity lies. 
Table 1 and Fig. 19 show the observed and calculated pIC50 
values. 

 Furthermore, the test of randomness applied to the train-
ing group indicates that the predictive equation is highly 
stable, although the numerical range of activity is small 
(pIC50min = 4.66; pIC50max = 7.46) (see Fig. 20). 

 Once the mathematical model for AChE inhibitory activi-
ty has been validated, it can be used to search new potential-
ly active molecules, within a structural environment similar 
to that of the reference drug donepezil. As an example, we 
performed a molecular virtual screening with the help of the 
ChemIDplus Database [36]. Based on the structure of 
donepezil, we have indicated that it shows all those mole-
cules registered in the database and that present a structural 
similarity superior to 70%. 

 Fig. (21) shows some of the molecules selected by the 
model, all predicted to be more potent than donepezil. The 
compound CAS: 4803-57-0, with a pCI50pred = 8.70, which 
implies an IC50 of 2nM, stands out as 8-fold more potent than 
donezepil (IC50 = 15.8 nM). The other molecules have a pre-
dicted IC50 below 10nM. 

 This example illustrates the potential of MT-QSAR as a 
robust tool for the search of novel anti-AD candidates, what 
is nothing else that confirming what already demonstrated 
experimentally. 

CONCLUSION 

 From what outlined in this review, it is noteworthy that 
the QSAR methods represent a powerful tool for the search 
and design of new drugs effective in Alzheimer's disease 
(AD). However, as was to be expected, the additional use of 
other complementary techniques, such as those based on 
molecular mechanics and molecular dynamics or docking, 
allows improved results because they add conformational 
constraints and, in general 3D features, which are necessary 
for a correct evaluation of the drug-receptor interaction. 
 Within the QSAR techniques, those based on molecular 
topology (MT-QSAR) have shown to be especially effective 
in the search for new anti-AD drugs. This efficiency has in-
creased over the past 10 years by adding more powerful sta-
tistical approaches, such as neural networks, to the traditional 
ones (multi-linear regression, discriminant analysis, cluster 
analysis, principal component analysis, etc.). This has allowed 
the use of MT-QSAR to generate patents of several new lead 
compounds active in vivo in animal experiments, including 
some that follow dual mechanisms of action and that, in 
principle, are expected to show greater therapeutic efficacy. 
Altogether, a renewed interest on the topic may be expected 
in the next coming years. 
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Fig. (21). Selection of potential active agents against AChE, obtained when applying the topological model, Eq. 8, to the virtual screening 
performed in the ChemIDplus database. 
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