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Abstract: This narrative review was conducted using searches of the PubMed/Medline and Google
Scholar databases from inception to November 2019. Clinical trials and relevant articles were identi-
fied by cross-referencing major depressive disorder (and/or variants) with the following terms: folate,
homocysteine, S-adenosylmethionine (SAMe), L-acetylcarnitine, alpha-lipoic acid, N-acetylcysteine,
L-tryptophan, zinc, magnesium, vitamin D, omega-3 fatty acids, coenzyme Q10, and inositol. Man-
ual reviews of references were also performed using article reference lists. Abnormal levels of
folate, homocysteine, and SAMe have been shown to be associated with a higher risk of depres-
sion. Numerous studies have demonstrated antidepressant activity with L-methylfolate and SAMe
supplementation in individuals with depression. Additionally, the amino acids L-acetylcarnitine,
alpha-lipoic acid, N-acetylcysteine, and L-tryptophan have been implicated in the development of
depression and shown to exert antidepressant effects. Other agents with evidence for improving
depressive symptoms include zinc, magnesium, omega-3 fatty acids, and coenzyme Q10. Potential
biases and differences in study designs within and amongst the studies and reviews selected may
confound results. Augmentation of antidepressant medications with various supplements targeting
nutritional and physiological factors can potentiate antidepressant effects. Medical foods, particularly
L-methylfolate, and other supplements may play a role in managing depression in patients with
inadequate response to antidepressant therapies.

Keywords: depression; adjunctive therapy; antidepressants; nutritional deficiencies; inflammation;
L-acetylcarnitine

1. Introduction

Major depressive disorder (MDD) is among the most common and debilitating medical
conditions [1]. Since the 1950s, the monoamine theory influenced the development of
mainstay antidepressant treatments, including selective serotonin reuptake inhibitors
(SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs) [2]. However, more
recently, other biochemical and physiological factors have been shown to contribute to
the pathophysiology of MDD [3]. As a result, there are a growing number of novel
MDD treatment options, including nutritional augmentation strategies, that have become
available based on this evolving knowledgebase [4].

This narrative review will discuss how nutritional imbalances, in particular, af-
fect pathogenic processes in MDD and other mood disorders and will review evidence
for nutritional interventions with an emphasis on essential and conditionally essential
nutrients found in the body, including established medical foods, amino acids, and
other supplements.
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2. Proposed Nutritional and Other Novel Contributors to the Pathogenesis of MDD

MDD is a heterogeneous disorder, and accumulating research has revealed multifacto-
rial processes involved in the symptomatology of MDD, beyond dysfunction of monoamine
neurotransmitter regulation [5–7]. Along with the biopsychosocial, cognitive, and behav-
ioral components of MDD [8]. nutritional imbalances can impact mood and neurological
functions [9–12]. Nutrients, including vitamins, minerals, fatty acids, and essential amino
acids, influence neurological hormonal, neurotransmitter, and signaling pathways that
modulate brain functions, including cognition and mood [13]. Similar pathways in the
gut influence neurotransmitter function and neuroinflammation, which ultimately affect
mood [14].

The inflammatory system has been implicated in the onset, phenomenology, and co-
morbidity of mood disorders [15]. In particular, inflammation can alter mood, energy, sleep,
cognition, and motivation, which are key aspects of MDD. Neuroinflammation has been
extensively studied in mood disorders and has been implicated in depressive symptoms
and neurodegeneration, two commonly comorbid conditions [16]. Inflammation induces
neurodegenerative processes, as evidenced by neuronal and glial cell atrophy/loss, in
addition to reducing neuroprotection and neuronal repair. It has been suggested that a
mechanistic link between inflammation and depression is the impact of cytokines on sero-
tonin levels, glutamate metabolism, the dopamine pathway, the hypothalamic-pituitary-
adrenal (HPA) axis, microglial activation, and brain structure. [15,17,18] Increased levels of
C-reactive protein ([CRP]; ≥1.0 mg/L), interleukin-6, interleukin-1, and tumor necrosis
factor-α (TNF-α) have been repeatedly shown in clinical trials and meta-analyses to have a
positive correlation with MDD [15,17,19–22]. Furthermore, cytokines may interfere with
oligodendrocytes, which modulate glutamate transmission, by contributing to glutamate
excitotoxicity and axonal damage in the white matter of the brain [23]. This cascade of
events ultimately impacts neural plasticity through excitotoxicity, decreased neurogenesis,
increased glutamatergic activation, oxidative stress, and induction of apoptosis [18]. These
inflammation-mediated changes may have implications for the long-term course of MDD,
including response to treatment, so managing inflammation is likely an important aspect of
treating MDD. In particular, levels of IL-6 and CRP have been associated with an increased
likelihood of experiencing treatment-resistant depression, suggesting that there is a role
for anti-inflammatory interventions to be used as adjunctive treatments for patients with
MDD [24].

More recently, epigenetic mechanisms have been identified in the pathophysiology
of depressive symptoms and potentially increase the risk for developing MDD [24,25].
Epigenetic factors are inherited and acquired mechanisms that regulate gene function, by
altering DNA methylation and chromatin structure, without modifying DNA sequence [24].
Nucleosomes, the basic units of chromatin, are formed by wrapping DNA around histone
octamers, which can be modified via acetylation to increase gene expression or methylation
to activate or repress gene transcription, depending on the amino acid involved [26]. These
epigenetic modifications to DNA and histones often occur secondary to stress and may
result in downstream effects that exaggerate or reduce depression-like behavior [26,27].
When considering management approaches to target the different mechanisms behind
MDD, there is an opportunity to incorporate established medical foods and supplements,
and also explore the use of additional products in certain subsets of patients.

3. Dysregulation of the One-Carbon Cycle in MDD
3.1. Vitamin B12 and Folate

Vitamin B12 and folate are critical to central nervous system (CNS) development and
function by acting as cofactors in converting homocysteine to methionine, an essential
amino acid involved in numerous methylation processes critical for synthesizing proteins,
lipids, nucleic acids, neurotransmitters, and hormones [28]. Vitamin B12 deficiency is
known to disrupt infant brain development and cause neural tube defects, supporting its
connection to brain function [29]. Altered vitamin B12 levels also are associated with issues
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well beyond infancy, particularly with inflammatory conditions that result in psychiatric
disorders, including depressive disorders [10,30,31]. Inflammation and depressive symp-
toms have a bidirectional relationship, facilitating and promoting one another, as evidenced
by elevation in various inflammatory biomarkers in a subgroup of susceptible MDD pa-
tients. [19,22,32] From a mechanistic standpoint, inflammation can trigger activation of
microglia and subsequently release proinflammatory cytokines, which induce depressive
symptoms by altering production, metabolism, and transport of neurotransmitters that
affect mood (e.g., dopamine, glutamate, serotonin) [33,34].

Folate deficiencies may cause depressive symptoms by elevating homocysteine and
intracellular one-carbon metabolism (Figure 1) [10,28]. The one-carbon cycle is critical to the
numerous transmethylation processes occurring in the CNS and is involved in metabolizing
monoamine neurotransmitters such as serotonin, norepinephrine, and dopamine [35,36].
Folic acid must first be converted by 5,10-methylenetetrahydrofolate reductase (MTHFR)
to the metabolically active form, L-5-methyl-tetrahydrofolate (MTHF), which is the only
form of folate that crosses the blood-brain barrier (BBB). [28,35,37] Upon entering the
CNS, MTHF acts as the methyl donor in numerous methylation-dependent processes,
including the methylation of homocysteine to form methionine and S-adenosylmethionine
(SAMe). Methionine is an essential amino acid and acts as the substrate for SAMe, a methyl
group donor in more than 100 methylation reactions in the body [28]. Methionine also is
a precursor to glutathione, a naturally occurring antioxidant that modulates glutamate
activity and maintains cellular oxidative balance by scavenging and neutralizing reactive
oxygen and nitrogen species [38–40].
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Figure 1. One-carbon folate methylation cycle [38]. BHMT, betaine:homocysteine methyltransferase; CBS, cystathionine-
β-synthetase; DMG, dimethylglycine; GSH, glutathione; Hcy, homocysteine; MAT, l-methionine S-adenosyltransferase;
MTHF, 5-methyltetrahydrofolate; MTHFR, 5-methyltetrahydrofolate reductase; SAH, S-adenosylhomocysteine; SAHH,
S-adenosylhomocysteine hydrolase; SAMe, S-adenosylmethionine; THF, tetrahydrofolate.



Nutrients 2021, 13, 767 4 of 26

Augmenting antidepressants with folate may benefit MDD patients who are pre-
disposed to or already have low folate levels. Folic acid supplementation can improve
depressive symptoms, cognition, and oxidative imbalances, and induce hippocampal
neurochemical changes [41]. Despite these positive outcomes, L-methylfolate (i.e., L-5-
methyl-tetrahydrofolate) may be a better alternative than folic acid due to its ability to
pass the BBB [28,37]. Unlike folic acid, L-methylfolate does not carry the risk of masking
symptoms of vitamin B12 deficiency and may have fewer drugs interactions that inhibit
dihydrofolate reductase [37].

Two multicenter, sequential, parallel-comparison trials evaluated the effect of aug-
mentation with L-methylfolate (DEPLIN®

, Alfasigma USA, Inc., Covington, LA, USA) in
patients with SSRI-resistant MDD (Table 1) [42,43]. In Trial 1, there were no significant
differences in treatment outcome between the groups. Trial 2 used the same design, but
assessed a higher dose of L-methylfolate (15 mg/day; n = 75). Patients who augmented
their SSRI therapy with L-methylfolate demonstrated a significantly better treatment re-
sponse with minimal adverse events. Furthermore, post-hoc analyses revealed that patients
with certain biomarkers (i.e., high levels of TNF-α, CRP, IL-8, BMI ≥ 30 kg/m2) had sig-
nificant improvements in depressive symptoms with L-methylfolate augmented SSRI
treatment [44,45].

Table 1. Review of the clinical evidence for supplementation in depression.

Study Design Size Efficacy Safety

L-methylfolate

Ginsberg et al.
2011. [46]

Retrospective analysis of
L-methylfolate as

adjunctive therapy to
SSRI/SNRI in patients

with MDD

242 patients

L-methylfolate in addition
to SSRI/SNRI therapy was

superior to SSRI/SNRI
monotherapy in improving
depressive symptoms and

functions (CGI severity
reduction ≥ 2: 19% vs. 7%;

p = 0.01) within 60 days

There were no major
differences in adverse

events between the two
groups. The most

commonly reported
adverse events included

sexual dysfunction,
somnolence, nausea,
dizziness, insomnia,

agitation, constipation,
and fatigue.

Papakostas et al.
2012. [42]

Two randomized,
double-blind,

parallel-sequential trials
Trial 1: Patients with

SSRI-resistant MDD were
randomized to placebo or

L- methylfolate
7.5 mg/day for 60 days, or

placebo for 30 days and
then L- methylfolate as

adjunctive to SSRIs
Trial 2: Patients with

SSRI-resistant MDD were
randomized to placebo or

L- methylfolate 15 mg/day
for 60 days, or placebo for

30 days and then L-
methylfolate as adjunctive

to SSRIs

Trial 1: 148 patients
Trial 2: 75 patients

In Trial 1, 7.5 mg
adjunctive L-methylfolate

was not superior to
placebo; however, Trial 2

demonstrated that
L-methylfolate 15 mg was
associated with a higher

response rate than placebo
(32% vs. 15%; p = 0.05) and

significant improvement
on the QIDS-SR score and

CGI severity scale.

Comparable side effect
profile with placebo;

most common side effect
categories were

gastrointestinal (17%),
somatic (14%), and

infectious (11%)
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Table 1. Cont.

Study Design Size Efficacy Safety

Papakostas et al.
2014. [44]

Post hoc analysis of
Papakostas et al. 2012. 74 patients

Patients with genetic
markers at baseline

showed a greater mean
change from baseline on

the 28-item HAM-D
(p < 0.05) and response rate

(p < 0.05) with
L-methylfolate compared

with placebo. Genetic
markers with the greatest

mean change from baseline
were MTHFR 677 CT/TT +

MTR 2756 AG/GG,
GCH1TC/TT + COMT GG,

and GCH1 TC/TT +
COMT CC.

N/A

Shelton et al.
2015. [45]

Exploratory, post-hoc
analysis of Papakostas et al.

2012.
74 patients

Significant changes in
mean change on the

17-item HAM-D were
reported with

L-methylfolate versus
placebo (p < 0.05) for those
with greater than median
baseline levels of TNF-α,
IL-8, hsCRP, and leptin.

Patients with BMI
≥30 kg/m2 with TNF-α,
IL-6, IL-8, IL-12, hsCRP,

and leptin had statistically
significant treatment effects
versus placebo (p ≤ 0.05).

N/A

S-adenosylmethionine (SAMe)

Papakostas et al.
2010. [47]

Single-center, randomized,
double-blind study of

SAMe augmentation of
SRIs in nonresponding

patients with MDD

73 patients

Four patients discontinued
placebo and two

discontinued SAMe due to
inefficacy. Based on

HAM-D scores, 18 patients
in the SAMe group

responded and 14 remitted,
compared with 6 patients
in the placebo group who

responded and 4 who
remitted (p = 0.01, and
p = 0.02, respectively).
Based on CGI ratings,

remission and response
rates were greater in

SAMe-treated
patients versus

placebo-treated patients.

Three placebo and two
SAMe patients

discontinued treatment
due to intolerance of

treatment. No
statistically significant
differences in adverse
events were reported,
although there was a

marginally higher mean
supine systolic blood

pressure reading in the
SAMe arm (mean

difference 3.1 mm Hg).
No serious adverse

events were reported.

Williams et al.
2005. [48]

Systematic review of
studies, reviews, case

reports, and pilot projects
investigating SAMe in

depression among humans

11 studies
(5 intervention trials,
2 randomized clinical

trials, 2 reviews,
1 controlled
clinical trial,

1 meta-analysis)

All intervention studies
and randomized trials
favored oral SAMe to

placebo and had significant
effect on the HAM-D.

N/A
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Table 1. Cont.

Study Design Size Efficacy Safety

Galizia et al.
2016. [49]

A Cochrane systematic
review conducted to
investigate SAMe as

monotherapy and
adjunctive in the treatment

of MDD in adults

8 clinical trials
comparing SAMe

with placebo,
imipramine,

desipramine, or
escitalopram in

934 adults

Overall, there was low
quality evidence. Based on

change from baseline in
HAM-D and MADRS score,

there was no strong
evidence of a difference
between the SAMe and
placebo groups (SMD
−0.54, 95% CI −1.54 to

0.46, p = 0.29), along with
SAMe and escitalopram

(MD 0.12, 95% CI −2.75 to
2.99, p = 0.93). Low quality

evidence suggested
comparable change in
depressive symptoms
between SAMe and

imipramine monotherapy
(SMD −0.04, 95% CI, −0.34

to 0.27; p = 0.82).
Additionally, low quality

evidence showed that
SAMe was superior to
placebo as adjunctive

treatment to SSRIs (MD
−3.90, 95% CI −6.93 to

−0.87, p = 0.01).

2 incidences of
mania/hypomania of

441 participants
receiving SAMe

L-acetylcarnitine (LAC)

Nasca et al.
2018. [50]

Translational study of
evaluating the role of LAC

in MDD
116 participants

Mean concentration of
LAC in patients with MDD

were significantly lower
than that of healthy

controls (6.1 µmol/L ± 0.3
vs. 8.3 µmol/L ± 0.4,

respectively; p < 0.0001).
There was an inverse
correlation between

severity of MDD based on
17-item HAM-D scores and

ALCAR concentrations
(p = 0.04, r = 0.35). LAC

also was shown to be
predictive of moderate to

severe MDD (p = 0.04).
Furthermore, earlier age of

onset of depression
correlated with lower
concentration of LAC

(p = 0.04). Additionally,
patients with MDD and a

history of TRD were
associated with a decrease

in LAC levels.

N/A
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Table 1. Cont.

Study Design Size Efficacy Safety

Veronese et al.
2018. [51]

Systematic review and
meta-analysis of
12 randomized
controlled trials

393 patients who
received LAC and

398 controls

Administration of LAC
was associated with a

significant reduction of
depressive symptoms

using various outcomes
with an emphasis on the
HAM-D compared with

controls (SMD −1.10; 95%
CI −1.65 to −0.56;

p < 0.001), although there
was some evidence of

publication bias (Egger test,
−6.69 ± 2.65; p = 0.040).

Higher LAC doses resulted
in better test results when

assessing depressive
symptoms (p = 0.01). LAC
showed a similar effect on

treating depressive
symptoms compared with

conventional
antidepressants (SMD 0.06;

95% CI −0.22 to 0.34;
p = 0.686)

Patients receiving LAC
had a similar frequency

of adverse effects
compared with those on
placebo, but showed a

79% reduction in adverse
effects when compared

with antidepressants (OR
0.21; 95% CI 0.12–0.36;

p < 0.001)

Alpha-Lipoic Acid (ALA)

Brennan et al.
2013. [52]

A randomized,
placebo-controlled trial of

LAC and ALA versus
placebo as augmentation
treatment in those with
inadequate response to
standard treatments for

bipolar depression

68 participants

There were no significant
differences in mean

MADRS score found
between LAC/ALA and

placebo.

Most frequently reported
adverse events were

diarrhea (30%),
foul-smelling urine
(25%), rash (20%),

constipation (15%), and
dyspepsia (15%)

N-acetylcysteine (NAC)

Zheng et al.
2018. [53]

Meta-analysis of
randomized controlled

trials of NAC vs. placebo
in patients with

schizophrenia, bipolar
disorder, or MDD

Schizophrenia:
3 trials, n = 307

Bipolar disorder:
2 trials, n = 125

MDD: 1 trial, n = 269

In patients with MDD,
there were no significant

differences in clinical
efficacy between add-on

NAC and placebo based on
the MADRS.

Patients in the NAC
group experienced more
gastrointestinal (33.9% vs.

18.4%; p = 0.005) and
musculoskeletal (3.9% vs.
0%; p = 0.025) compared

with placebo

Fernandes et al.
2016. [54]

A meta-analysis of
double-blind, randomized
controlled trials of NAC

compared to placebo

5 studies; 574
participants

Adjunctive NAC resulted
in moderate improvement
in MADRS and HAM-D
scores (SMD 0.37; 95% CI
0.19–0.55; p < 0.001), but
consistently better scores
on the CGI-S at follow-up
compared with placebo

(SMD 0.22; 95% CI
0.03–0.41; p < 0.001).

Incidences of severe
adverse events were

similar between placebo
and NAC groups (OR 1.04;
95% CI 0.43–2.51; p = 0.920).
NAC was associated with

an increase in minor
adverse events (OR 1.61;

95% CI 1.01–2.59; p = 0.049).
Frequently reported minor

adverse events were
gastrointestinal issues such
as nausea and heartburn,

and musculoskeletal issues
such as back and joint pain.
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Table 1. Cont.

Study Design Size Efficacy Safety

Berk et al. 2014.
[55]

A double-blind,
randomized,

placebo-controlled trial
comparing adjunctive

NAC with placebo in the
acute treatment of

moderate to severe MDD

252 participants

Over the course of the
study, NAC-treated and
placebo-treated patients

had similar MADRS scores;
however, at week 16, there
was significantly greater

response in the NAC group
than placebo (36.6% vs.

25.0%, respectively;
p = 0.027). There was a

higher likelihood of
reaching remission with
NAC than with placebo

(17.9% vs. 6.2%,
respectively; p = 0.017).

Furthermore, a
significantly greater

proportion of patients in
the NAC-treated group

had reduction of symptom
severity (p = 0.001) and

greater improvements in
functioning (p = 0.001)

than placebo.

N/A

Magalhaes et al.
2011. [56]

Secondary exploratory
analysis of NAC in
bipolar depression

17 participants

Compared with placebo,
NAC was associated with
significant improvements

in symptom severity,
function, and quality of life.

80% of NAC-treated
patients (n = 8) had a 50%

reduction in MADRS
scores compared with

1 patient in the placebo
group with the same

outcome (OR 24, 95% CI
1.74–330.80, p = 0.015).

Side effects were minor
and included headache,

abdominal pain,
and diarrhea

Zinc

Siwek et al.
2010. [57]

Placebo-controlled,
double-blind study of

adjunctive zinc in patients
receiving imipramine

for MDD

60 patients

Treatment-resistant
patients demonstrated
lower concentrations of

zinc than
treatment-non-resistant

patients. Zinc levels were
inversely correlated with
MADRS score (p = 0.001).

Patients who reached
remission were found to

have a significantly higher
zinc level compared to

those who had not
reached remission.

N/A
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Table 1. Cont.

Study Design Size Efficacy Safety

Maserejian et al.
2012. [58]

An analysis of
cross-sectional,
observational

epidemiological data from
a population-based,

random stratified cluster
sample survey from 2002

through 2005

3708 patients

Among women with low
dietary zinc intake, there

was an 80% increased risk
of having depressive
symptoms (CES-D)

compared to those with
high dietary zinc intake

(Ptrend = 0.004) a and those
taking supplemental zinc
had a lower probability of

having depressive
symptoms (Ptrend = 0.03).

In women, the odds of
ongoing depressive

symptoms among SSRI
users reduced by half (OR

0.44, 95% CI 0.24–0.80,
p = 0.007) in those with
moderate-to-high zinc

intake (OR 2.05, 95% CI
1.28–3.28, p = 0.003),

compared to those with
low zinc intake <12.8

mg/day (OR 4.01, 95% CI
2.56–6.29, p < 0.0001).

N/A

Swardfager et al.
2013. [59]

A meta-analysis of
zinc concentrations

in depression
23 studies

Mean peripheral blood
zinc concentrations were

1.85 µmol/L lower in
depressed patients versus
controls (95% CI −2.51 to
−1.19, p < 0.00001). In

studies examining
depressive symptom

severity using numerous
scales, greater mean
depressive symptom

severity was associated
with greater differences in

zinc between depressed
patients and controls.

N/A

Magnesium

Tarleton et al.
2017. [60]

Randomized, open-label,
crossover study evaluating
the effects of magnesium

supplementation on
symptom improvement

in mild-to-
moderate depression

126 patients

Unadjusted PHQ-9
depression scores

improved with magnesium
supplementation

(−4.3 points, 95% CI −5.0
to −3.6), with a net

improvement of
−4.2 points. Unadjusted

GAD-7 anxiety scores also
improved with magnesium
(−3.9 points, 95% CI −4.7

to −3.1), with a net
improvement in anxiety of

−4.5 points.

The most common side
effect was diarrhea,

which was reported by
8 participants.
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Table 1. Cont.

Study Design Size Efficacy Safety

Vitamin D

Spedding et al.
2014. [61]

A systematic review of
vitamin D supplementation

in depression
15 articles

Of the 15 articles, two
studies were identified to
be without flaws, which

showed a statistically
significant positive effect of
vitamin D in depression of

0.78 (CI 0.24 to 1.27).
Among the studies with

biological flaws, there was
a statistically significant

negative effect of vitamin
D with an effect size of
−1.1 (CI −0.7 to −1.5).

Various ratings scales were
used in these studies.

ALA, alpha-lipoic acid; BMI, body mass index; CI, confidence interval; CES-D, Center for Epidemiological Studies—Depression; CGI,
Clinical Global Impressions; CGI-S, Clinical Global Impressions-Severity of Illness; COMT, catechol-O-methyltransferase; GAD-7, General-
ized Anxiety Disorders-7; GCH1, GTP cyclohydrolase 1; HAM-D, Hamilton Depression Rating Scale; hsCRP, high-sensitivity C-reactive
protein; IL, interleukin; LAC, L-acetylcarnitine; MD, mean difference; MDD, major depressive disorder; MTHFR, methylenetetrahydrofolate
reductase; MTR, methionine synthase; NAC, N-acetylcysteine; PHQ-9, Patient Health Questionnaire-9; QIDS-SR, Quick Inventory of
Depressive Symptomatology-Self-Rated; SAMe, S-adenosylmethionine; SMD, standardized mean difference; SRI, serotonin reuptake
inhibitor; SSRI, selective serotonin reuptake inhibitor; TNF-α, tumor necrosis factor α; TRD, treatment-resistant depression. a Linear tests
for trend were assessed using the median values of deciles of intake to represent the exposure of all participants in the same decile.

MTHFR polymorphisms are also implicated in the development of depressive symp-
toms and reduce the ability to adequately synthesize monoaminergic neurotransmitters;
thus the effectiveness of SSRIs and SNRIs may be limited in these patients [62–64]. Real-
world evidence of adjunctive L-methylfolate has demonstrated increased response and
symptom improvement in patients with treatment-resistant depression [65], particularly
in those with the MTHFR gene mutation [66], with a favorable safety profile [67]. How-
ever, it is important for clinicians to exercise caution when using MTHFR gene testing
to guide their prescribing strategy, but to rather use it in a confirmatory fashion, as the
gene tests may not always be accurate in all cases and may lead to over-methylation with
folate supplementation. An American Psychiatric Association research council task force
published the following statement in the American Journal of Psychiatry in 2018: “They find
that, at present, there are insufficient data to support the widespread use of combinatorial
pharmacogenetic testing in clinical practice, although there are clinical situations in which
the technology may be informative, particularly in predicting side effects [68].”

L-methylfolate is generally safe and well tolerated, and lacks the side effects of other
standard-of-care therapies for depression [46]. As an adjunct, L-methylfolate has been
shown to cause minimal adverse events [42,46]. Potential candidates for L-methylfolate
augmentation include treatment-resistant patients with signs of inflammation, hyperhomo-
cysteinemia, and genetic polymorphisms, or low serum folate values.

3.2. Homocysteine

Although homocysteine is not considered a nutritional factor, it is an inflammatory
marker that may indicate vitamin B12 and folate methylation disturbances [69]. Homo-
cysteine is an amino acid that cannot be obtained through diet and can only be formed
and removed through the methylation cycle (Figure 1) [38]. In the methylation cycle,
S-adenosylhomocysteine (SAH) is converted to homocysteine by SAH-hydrolase within
the cell. This conversion is reversible; however, under normal physiologic conditions,
homocysteine is quickly removed and concentrations are usually low. One way that low
intracellular homocysteine concentrations are maintained is through methylation of homo-
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cysteine via receipt of a methyl group from 5-MTHF, which then forms methionine and
tetrahydrofolate. This requires vitamin B12 for transferring the methyl group. Notably,
methylation of homocysteine in the CNS can only occur with MTHF as the methyl donor.

Homocysteine is an indicator of select B vitamin deficiencies, as folate and vitamin
B12 are involved in the conversion of homocysteine to methionine [38,70]. Hyperhomocys-
teinemia (i.e., an increase in serum homocysteine concentration above the normal plasma
or serum homocysteine level) confers risk for vascular disease, impaired bone remod-
eling, cancer, Parkinson’s disease, Alzheimer’s dementia, mental retardation, and signs
and symptoms of neurological dysfunction, including MDD and schizophrenia [38,70–73].
Normal blood homocysteine levels are 4–15 µmol/L, while levels above 15 are considered
high and levels below 12 are considered low. Optimal homocysteine levels are below
10–12 [74]. Hyperhomocysteinemia will ultimately result in neurotoxicity secondary to
impaired methylation, excitotoxicity, oxidative stress, and CNS ischemia [38]. Homocys-
teine is critical for producing neurotransmitters; therefore, altered homocysteine levels may
impact mood [70]. Additionally, hyperhomocysteinemia can increase the permeability of
the BBB, and can contribute to numerous cerebrovascular pathologies [75].

Elevated mean (SD) plasma homocysteine levels (17.7 [5.4] µmol/L) have been cor-
related with higher Hamilton Depression Rating Scale (HAM-D) scores, indicating a link
between homocysteine dysregulation and depressive symptoms [10]. These patients also
had significantly lower red cell and serum folate levels. Plasma homocysteine levels
≥15.0 µmol/L have been linked with depressive symptoms [76–79]. Testing homocysteine
levels in depressed individuals can identify those with folate or vitamin B12 deficiency and
determine whether patients would benefit from folate supplementation. Expert recom-
mendations include testing serum levels of vitamin B12, folate, and methylmalonic acid
(MMA) [80]. Folate and/or vitamin B12 supplementation is expected to decrease homocys-
teine, which may contribute to improved methylation and neurotransmitter metabolism
and release [38].

3.3. S-adenosylmethionine (SAMe)

SAMe can be considered an initial MDD treatment for patients who prefer complemen-
tary or alternative approaches; however, it can induce mania in depressed patients on the
bipolar spectrum [28,81–84]. SAMe is a naturally occurring methyl donor involved in over
100 methyltransferase reactions for critical metabolic pathways, including methylation of
DNA bases, proteins, phospholipids, free amino acids, catecholamines, and neurotransmit-
ters. [81,82,84] DNA methylation acts to turn off gene transcription, while demethylation is
linked to transcriptional activation; therefore, aberrant methylation can negatively impact
CNS disorders [81,85]. SAMe is generated from L-methionine in the one-carbon cycle,
which is dependent upon sufficient levels of folate and vitamin B12, both of which are
linked to depressive symptoms [83].

There are several mechanisms potentially responsible for the antidepressant activity
of SAMe. As a donor of methyl groups, SAMe may exert antidepressant effects through the
methylation of plasma phospholipids, which results in alteration of the neuronal membrane
fluidity and function of proteins in the membrane, including monoamine receptors and
transporters [84]. Lower SAMe levels may cause a decrease in monoamine synthesis,
thereby increasing risk of depression. In animal models, increased SAMe levels were
positively correlated with monoamine neurotransmitter concentrations in the brain [28].
SAMe may be taken orally up to 1600 mg/d, a significantly bioavailable and non-toxic
dose [49]. Patients receiving SAMe 800 mg/day in addition to their normal antidepressant
have shown significantly greater changes in HAM-D scores from baseline and higher
remission rates compared with placebo (p < 0.05) (Table 1) [47]. In a systematic review, all
studies demonstrated a significantly positive effect for SAMe up to 1600 mg on the HAM-D
in MDD [48]. SAMe produces a rapid onset of action, with nearly a 5-point difference
in HAM-D scores from baseline to week 1 [47]. In a Cochrane systematic review, 8 trials
that included 934 participants investigated the effects of SAMe versus placebo or SSRIs in
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MDD [49]. Compared with placebo, SAMe was more efficacious as an adjunctive treatment
in terms of response and remission; however, the level of evidence was low.

SAMe is generally well tolerated and has a favorable safety profile. Frequently
reported adverse events associated with SAMe are nausea, diarrhea, and abdominal dis-
comfort [81]. As previously mentioned, SAMe may induce mania and hypomania, even in
patients without a previous history of bipolar disorder [49].

4. Role of Amino Acids in MDD
4.1. L-acetylcarnitine (LAC)

L-carnitine is an essential nutrient found in almost all tissues of the human body,
including the brain [86]. Intracellular carnitine levels are depleted under specific circum-
stances such as diabetes, hemodialysis, and carnitine deficiency secondary to genetic
conditions that requires supplementation [86,87]. L-carnitine facilitates the transfer of
activated long chain fatty acids (LCFA) through the carnitine shuttle, which is a series
of reactions that transport fatty acids into the mitochondria, as acyl-carnitine ester, for
β-oxidation. The carnitine shuttle prevents buildup of harmful LCFA and long chain
acyl-coenzyme A (acyl-CoA) [86]. Carnitine also assists with transferring toxic compounds
out of the mitochondria [87].

LAC is the acetyl derivative of L-carnitine with 2 carbons in the acyl moiety and is com-
monly found in plasma and body tissue [87]. Carnitine, along with LAC, passes through
the BBB and accumulates in the cerebral cortex, of which 10–15% is the LAC moiety. LAC
is important for metabolic processes, such as modulating glucose metabolism, stimulating
glycogen synthesis, increasing plasma adenosine triphosphate (ATP) concentration, and
improving neurological function.

Although the exact mechanism of LAC for managing depressive symptoms is unclear,
it has been hypothesized that its neuroplasticity effect, neurotransmitter regulation, and
metabotropic glutamate (mGlu) receptor upregulation likely contribute [86,88]. LAC has
neuroprotective, anti-inflammatory, and antioxidant properties that also may improve
depressive symptoms. In animal depression models, LAC rapidly improved depressive-
like behaviors, restored glutamate levels, and increased type 2 mGlu (mGlu2) expression
through epigenetic modification, specifically histone acetylation [25]. In a recent study,
lower LAC levels were reported in MDD patients compared with controls (Table 1) [50].
Furthermore, lower LAC levels in patients with MDD were associated with greater severity
and earlier onset of depressive symptoms. A significantly greater proportion of patients
with treatment-resistant depression had a decrease in LAC levels (p = 0.01), indicate a po-
tential for augmenting antidepressants with LAC. A meta-analysis of studies investigating
the effects of LAC on depressive symptoms showed that LAC was significantly decreased
depressive symptoms compared with placebo (standardized mean difference [SMD] −1.10;
95% confidence interval [CI] −1.65, −0.56; p < 0.001) [51]. Furthermore, patients taking
LAC had a comparable rate of adverse events (AEs) as those taking placebo/no interven-
tions (odds ratio [OR] 0.86; 95% CI: 0.46, 1.63; p = 0.648) and a significantly lower risk of
AEs compared with antidepressants (OR: 0.21; 95% CI: 0.12, 0.36; p < 0.001), with lower
rates of gastrointestinal and nervous system AEs [51]. Further investigation is needed to
fully characterize the safety of LAC due to the limited data [87]. Individuals who may
benefit from LAC supplementation are likely those with lower LAC levels and elevated
inflammatory markers.

4.2. Alpha-Lipoic Acid (ALA)

ALA is a lipoamide that is synthesized from octanoic acid in the mitochondria and
can be obtained through the diet [89]. Once absorbed from the diet, ALA is reduced to
dihydrolipoic acid (DHLA) and accumulates mainly in skeletal muscle, liver, and heart,
and can cross the BBB [89,90]. ALA plays an important role in mitochondrial energy
metabolism by acting as a necessary cofactor for mitochondrial α-ketoacid dehydrogenase
reactions [89,91,92]. Additionally, ALA functions as an antioxidant by scavenging reactive
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oxidative species; chelating transition metals (e.g., iron, copper); and enhancing activity and
synthesizing endogenous antioxidants or antioxidant enzymes. DHLA is among the most
potent naturally occurring antioxidants and can regenerate other endogenous antioxidants,
neutralize free radicals, and chelate metals that contribute to oxidative stress [89]. ALA
also significantly reduces cytokine-induced inflammation by decreasing production of IL-6,
IL-1β, and TNF-α (p < 0.05) [93,94]. Individuals receiving ALA 300 mg experienced a 15%
significant reduction in IL-6 levels compared with placebo (p < 0.001) [89,95].

ALA has been investigated as augmentation therapy for MDD, given its biological
properties and potential role in the pathophysiological factors involved in mood disorders
(Table 1). Augmenting desvenlafaxine with ALA in mice was associated with signifi-
cantly greater improvement in depressive symptoms compared with either treatment alone,
demonstrating a potentiating effect of these products together [96]. Combination treatment
of ALA and LAC also has been studied in MDD in light of their role in modulating mito-
chondrial function and metabolism, and neuroprotective effects; however, studies have
reported inconsistent results [87]. Together, LAC and ALA have been shown to reduce the
number of damaged neuronal mitochondria and increase intact hippocampal mitochondria,
thereby improving brain function [97,98]. In preclinical studies, LAC and ALA reversed
age-related increase in oxidants, reduced oxidative damage in the brain, and improved
metabolic rate and physiological activity without causing further oxidation [99]. Con-
versely, a randomized controlled trial of LAC plus ALA versus placebo in humans reported
no significant differences in Montgomery–Åsberg Depression Rating Scale (MADRS) score
between groups [52].

4.3. N-acetylcysteine (NAC)

NAC, the acetyl derivative of cysteine, is a glutathione precursor that is known as an
antidote for paracetamol overdose [100,101]. A critical role of NAC is restoring cellular
glutathione concentrations by providing cysteine in glutathione production [39]. The
brain is susceptible to various reactive oxygen species that can cause oxidative cellular
dysfunction; thus, oxidative stress is implicated in the pathogenesis of mood disorders [101].
In addition to glutathione replenishment, NAC has been shown to have anti-inflammatory
activity by reducing inflammatory cytokines in the brain, which is a potential mechanism
for how NAC exerts antidepressant effects [39,102]. NAC plays a role in neurotransmission
by modulating glutamate pathways and regulating dopamine release [39].

Recently, NAC has emerged as a potential supplemental treatment for psychiatric
and neurological disorders, including MDD (Table 1). A significantly greater proportion
of MDD patients receiving NAC responded to treatment and reached remission (p < 0.05)
in a study comparing adjunctive NAC with placebo [55]. In a meta-analysis conducted
by Fernandes et al., NAC improved depressive symptoms and functionality compared
with placebo over a follow-up of 12–24 weeks; however, NAC did not improve quality of
life [54]. In another meta-analysis of adjunctive NAC in MDD, there was no significant
difference in efficacy between NAC and placebo, but individuals treated with adjunctive
NAC showed a positive trend towards efficacy, especially in those with higher MADRS
scores [53]. Notably, patients in the NAC group reported more gastrointestinal (33.9%
vs. 18.4%; p = 0.005) and musculoskeletal complaints compared with placebo (3.9% vs.
0%; p = 0.025). Furthermore, adjunctive NAC has been demonstrated to improve symp-
tom severity, function, and quality of life in MDD and major depressive episodes in
bipolar disorder [55,56]. Doses ranging from 1–3 g have been studied in patients with
MDD [54,55,101,103] Doses of 2400–3000 mg/day have been found to be safe and effective
for obsessive-compulsive and related disorders [103], NAC is generally well tolerated with
no severe AEs reported in studies [101]. The most common AEs associated with NAC
were gastrointestinal, neurological, psychological, musculoskeletal, and dermatological.
Individuals with glutathione deficiency may be potential candidates to supplement their
current antidepressant treatment with NAC.
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4.4. L-tryptophan

L-tryptophan is an essential amino acid used for protein synthesis and serotonin
biosynthesis [104]. Tryptophan undergoes degradation through the kynurenine pathway,
where it is converted to kynurenine and ultimately serotonin. It has been suggested that an
impairment of neuroprotective components of the kynurenine metabolic pathway plays
a role in depression, as evidenced by lower tryptophan availability, higher tryptophan
breakdown, and lower mean plasma kynurenic acid concentration in MDD patients [105].
Alterations in tryptophan levels can impact serotonin synthesis and mood [106]. An in-
crease in HAM-D score was reported following acute tryptophan depletion in patients with
a history of MDD [107]. Another study also reported significantly increased HAM-D scores
(p < 0.0009) in medication-free remitted MDD patients [108]. Low tryptophan levels and
increased levels of its detrimental catabolites, kynurenine and quinolinic acid, in plasma
are associated with the development of depressive disorders [104,109]. Additionally, eleva-
tions in IL-6 in models of depressive symptoms are due to increased HPA activity, thereby
cortisol and activating tryptophan 2,3-dioxygenase (TDO), which produces more trypto-
phan catabolites and less serotonin [110]. In the presence of inflammation, tryptophan
produces kynurenic and quinolinic acid; therefore, it must be used with caution in patients
with inflammation.

High L-tryptophan doses can result in mild nausea, tremor, dry mouth, and dizzi-
ness [111,112]. Tryptophan should be used cautiously with monoamine oxidase inhibitors
and SSRIs, which increase the risk of serotonin syndrome, and occurs when there is exces-
sive synaptic serotonin in the brain [112,113]. Serotonin syndrome typically presents with
tremor, hyperreflexia, autonomic irregularities, and change in mental status (e.g., agitation,
restlessness, delirium, confusion) [113]. Other serotonin-elevating drugs include SSRIs,
SNRIs, tricyclic antidepressants, St. John’s wort, and pain medications.

Despite the compelling evidence from tryptophan depletion studies that suggest that
tryptophan is associated with depressive symptoms, [104,107,109] the actual relationship
between tryptophan and the pathophysiology of MDD has not been established. Further-
more, tryptophan must be used with caution when taken with medications that increase
serotonin, a common mechanism of action of numerous standard-of-care treatments for
MDD. In addition to being mindful of concomitant medications, prescribers and patients
must consider the 2- to 3-times daily dosing that may pose a compliance issue.

5. Minerals
5.1. Zinc

Zinc is an essential trace element that is involved with a number of vital CNS bio-
chemical and physiological processes, thereby facilitating proper brain development and
function [114,115]. Zinc primarily acts as a cofactor for over 300 enzymatic processes and
is involved in gene transcription and replication, DNA repair, cell growth, neurogenesis,
neuronal development, maintaining oxidative balance, and protein synthesis [115,116].
Additionally, zinc is a modulator of immune and inflammatory processes, and affects
inflammatory cytokine levels [115]. Importantly, zinc has been identified as an antago-
nist of the N-methyl-D-aspartate (NMDA) receptor, thereby downregulating glutamate
response. [114,116,117] Maintaining appropriate zinc levels is critical in brain regions
involved in depressive symptoms including the cerebral cortex, hippocampus, and amyg-
dala [114]. Depleted zinc levels enhance HPA activity, which causes a surge in glucocorti-
coids, ultimately inducing hippocampal dysfunction and behavioral abnormalities [118].
Hyperactivation of the HPA axis can cause an imbalance in serotonergic and noradrenergic
circuits, affecting mood [33,118]. Zinc deficiency may contribute to developing depressive
disorders by increasing cortisol levels, decreasing neurogenesis and neuroplasticity, and
disturbing glutamate homeostasis [114].

Zinc deficiency has been shown to be significantly associated with MDD and depres-
sion symptom severity [59,115]. In a study evaluating zinc supplementation to imipramine,
there was an inverse correlation between zinc concentrations and MADRS score. A greater
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proportion of patients achieving remission had significantly higher zinc concentrations
after 12 weeks of supplementation [57]. Higher zinc intake in patients receiving SSRI
resulted in nearly a 50% decrease in depressive symptoms (p = 0.007) compared with those
with lower zinc intake [58]. Studies from a meta-analysis also reported an association of
greater mean symptom severity with greater differences in zinc between patients with
MDD and controls [59]. Furthermore, patients with treatment-resistant depression were
found to have lower zinc concentrations than treatment-non-resistant patients. [57,115,117]
Given these findings, supplemental zinc may be a beneficial adjunct to antidepressants, and
obtaining zinc blood concentrations may potentially be a biological marker for monitoring
MDD severity.

5.2. Magnesium

Magnesium is an essential mineral that functions as a cofactor for >600 enzymes
involved in a variety of physiological processes, including the production of vitamin
D [119,120]. Magnesium levels can impact CNS function, as it plays a role in DNA repli-
cation, transcription, and translation [114]. Magnesium also is recognized for its ability
to antagonize the NMDA glutamate receptor, the mechanism thought to be behind its
antidepressant and neuroprotective effects [114,121]. Magnesium deficiency causes NMDA
hyperactivity and consequently leads to the development of depressive and anxiety-like
symptoms and increased inflammatory markers [122]. Low magnesium intake has been
linked to an increased risk of experiencing depressive symptoms (OR 1.73, 95% CI 1.48,
2.02; relative risk [RR] 1.49, 95% CI 1.35, 1.66) [123]. Antidepressant action of magnesium
has been reported in both animal and human studies [60,124–126]. Consuming magnesium
significantly improved depression and anxiety scores (Table 1) [60]. In addition, 61% of
patients reported a positive experience with magnesium and would continue taking it
for mood.

6. Other Supplementation
6.1. Vitamin D

Vitamin D plays a critical role in a number of physiologic processes, such as muscle
function, regulating cell growth, cancer prevention, metabolic signaling, inflammation, and
autoimmunity [127,128]. Vitamin D is integral in a number of brain processes including
neuroimmunomodulation, neuroplasticity, neuroprotection, and brain development, which
suggests its potential link to depressive disorders [129]. It is thought that vitamin D may af-
fect brain function by acting on vitamin D receptors (VDRs) located in the CNS [130]. VDRs
are found in various regions of the brain involved in depressive symptoms including the
hypothalamus, prefrontal cortex, hippocampus, thalamus, and substantia nigra. VDR gene
polymorphisms have been shown to be associated with cognitive and behavioral impair-
ment, and increased anxiety [128,130]. Potential actions of vitamin D in the brain include
neurotrophin stimulation, antioxidation, and anti-inflammation by inhibiting the release
of cytokines and metalloproteinases [128]. Additionally, vitamin D promotes glutathione
metabolism in neurons, providing protection from oxidative degeneration [127].

Vitamin D deficiency has been shown to be associated with the presence of mood dis-
orders and reduced cognitive functioning. [127,129,131] In a cross-sectional study, patients
with serum 25-hydroxyvitamin D levels <10 ng/mL had a significantly greater likelihood
of developing a mood disorder (OR: 11.7; 95% CI 2.04, 66.9) than those with adequate
vitamin D levels (Table 1) [131]. Additional support is provided by a meta-analysis that
demonstrated that low vitamin D levels are associated with a significantly increased risk
for depressive symptoms (HR 2.2; 95% CI 1.4, 3.5; p < 0.001) [129]. Patients with vitamin D
deficiencies not only have a higher risk of depression, but also have greater duration and
severity of depressive symptoms [132].

Numerous studies have demonstrated the effectiveness of vitamin D supplementation
in improving depressive symptoms [61]. In a meta-analysis of randomized controlled trials
evaluating the effect of vitamin D supplementation (≥800 IU daily) on depressive symp-
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toms, 10 of 15 studies reported significant improvement. When the studies were analyzed
to exclude those with biological flaws, there was a significant effect size (SMD: 0.78).

Vitamin D toxicity rarely occurs but is caused by consuming excessively high doses.
Doses >50,000–100,000 IU/day can cause hypercalcemia and hyperphosphatemia [133,134].
Currently, the tolerable upper intake level of vitamin D is 2000 IU/day; however, doses up
to 4000 IU/day have been shown to carry low risk of hypercalcemia [134,135]. Vitamin D
toxicity typically manifests as nausea, dehydration, and lethargy [135]. Doses of vitamin D
400–18,400 IU/day have been studied in depression [61].

Although the exact mechanism behind vitamin D deficiency in depressive disorders is
not clear, supplementing vitamin D carries low risk, given the overall health benefits of
vitamin D and low toxicity at doses of 1000–2000 IU. Experts recommend using 10,000 IU,
then retesting and adjusting in order to reach adequate vitamin D levels.

6.2. Omega-3 Fatty Acids

Omega-3 fatty acids are recognized for their multitude of health benefits due to
their anti-inflammatory, antiarrhythmic, antithrombotic, and hypolipidemic effects [136].
Omega-3 polyunsaturated fatty acids (PUFAs) can only be obtained through the diet and
are synthesized by consuming short-chained omega-3 fatty acids, which produce eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA) [137]. EPA and DHA are involved
with different processes related to brain function [136]. DHA is responsible for maintaining
the structural integrity of the phospholipid in neuronal cell membranes. Low levels of
DHA cause abnormalities in the brain that impact neuron size, nerve growth factor levels,
auditory and olfactory responses, and learning and memory [138]. EPA has important
physiological functions such as modulating cytokines that affect neurotransmission and
neuromodulation [136]. EPA also is thought to reduce inflammation by decreasing IL-1
and TNF-α levels, and also inhibits the upstream mitogen activated protein kinase (MAPK)
pathway [137].

Omega-3 PUFAs are thought to improve depression through its role in the uptake,
release, metabolism, and receptor function of serotonergic and dopaminergic transmis-
sion [139]. Additionally, the anti-inflammatory actions of omega-3 PUFAs are an important
mechanism that may address depression-related inflammation. Omega-3 PUFAs, including
DHA and EPA, have been found to modulate and reduce neuroinflammation [140,141]. In
a rodent study, omega-3 PUFA deficiency was correlated with increases in the proinflam-
matory cytokines IL-6 and TNF-α, and CRP [142]. In humans, omega-3 PUFAs also were
found to be lower in patients with depressive symptoms compared with non-depressed
individuals [143,144]. In a study conducted by Rapaport et al., MDD patients who had
high levels of inflammation (as measured by hs-CRP, IL-1RA and IL-6), experienced greater
improvement with EPA than placebo or DHA, while those who received DHA experienced
less improvement than placebo [145]. Patients without any high inflammatory biomarkers
experienced a decreased response to EPA than those receiving placebo or DHA. By week 8,
patients with high biomarkers who received EPA had at least an 11-point decrease in HAM-
D scores, compared to those who received placebo who were progressively less responsive
and had increases in inflammatory biomarkers. Despite these positive findings, in a recent
meta-analysis, supplementation with omega-3 PUFAs showed little to no effect on risk of
depression or anxiety symptoms (number needed to harm, 1000), and inconclusive findings
on its effects on depression symptom severity and risk of remission [146]. Patients with
increased inflammation and comorbid inflammatory diseases may benefit from omega-3
PUFAs; however, there is conflicting evidence for its use in depressive disorders.

6.3. Coenzyme Q10 (CoQ10)

CoQ10, also known as ubiquinone, is a potent antioxidant that possesses anti-inflammatory
and neuroprotective properties [147,148]. It protects cells from reactive oxygen and nitrogen
species by regenerating oxidized tocopherol and ascorbate, and also enhances mitochondrial
activity in the brain [148]. CoQ10 also is involved in a number of biological roles such as
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cellular membrane repair, regulation of inflammation, and gene expression. As such,
reduced levels of CoQ10 in the body are associated with increased free radicals and
free radical damage, along with decreased mitochondrial energy production. Patients
with MDD are associated with significantly lower plasma CoQ10 levels than healthy
individuals [147]. Furthermore, patients with treatment-resistant depression were found
to have significantly lower CoQ10 levels than those who were not treatment resistant.
In patients with bipolar disorder, supplementing their psychotropic medications with
CoQ10 resulted in a significant decrease in MADRS score from baseline after 4 weeks,
with significant changes seen as early as 2 weeks [149]. CoQ10 is generally well tolerated
and associated with minimal severe AEs. Clinicians should consider supplementing
antidepressant regimens with CoQ10 in patients with treatment-resistant depression.

7. Conclusions and Future Directions

Conventional antidepressant treatment options do not adequately meet the needs of all
patients with depressive disorders, as they do not directly address underlying pathogenic
factors including nutritional deficiencies, inflammation, oxidative stress, neuroprotection,
and neurogenesis. Additionally, there are limited treatment options for patients with
MDD that are resistant to conventional treatments. Targeting nutritional imbalances and
signaling abnormalities using medical foods and dietary supplements provides several aug-
mentative strategies to treating MDD in patients who do not sufficiently respond to antide-
pressants and mood stabilizers. Current evidence suggests that medical foods, particularly
L-methylfolate and LAC, and other supplements have a role in the adjunctive treatment of
MDD, and may particularly target aspects of inflammation and other factors contributing
to the pathophysiology of depressive symptoms (Table 2). [48,51,53,59,65,129,146,149].

Table 2. Practical considerations for dietary approaches to management of mood disorders.

Supplemental Agent Considerations and Guidance

L-acetylcarnitine
• Through its inhibition of metabotropic Glu receptor mGluR-2, it blocks glutamate

release and has a neuroprotective effect

Alpha-lipoic acid
• Beneficial in those with insulin resistance
• Synergistic effects when it is used with L-acetylcarnitine
• Reduces corticosteroid-induced BDNF alterations

CoQ10 • Provides mitochondrial support for bipolar depression, multiple sclerosis, and depression

Folic acid/L-methylfolate

• Despite normal levels of folate, some patients may not be able to methylate appropriately
• Patients with high homocysteine levels and normal vitamin B12 and MMA levels will

particularly benefit from L-methylfolate augmentation
• Identification of MTHFR variants is confirmatory, not directive, due to the potential

impact of epigenetics and mosaicism

Homocysteine

• Levels are universally applicable and are not limited to diagnosis of depression
• Availability in the outpatient setting allows patients to have more access to testing
• Blood levels alone are not indicative of folate; therefore, vitamin B12 and MMA levels

also are used
• In patients with abnormal homocysteine levels and normal vitamin B12 and MMA

levels, folates with cofactors may be administered and titrated as tolerated. Patients
who are unable to tolerate folate due to side effects should receive folinic acid with
cofactors. In patients who cannot take folinic acid, TMG (betaine) may be used

• Reduction in homocysteine levels increase glutathione

Inositol
• Useful for its calming effects in general anxiety disorder, though it may be used in

depression for those with improved anxiety following its use
• Numerous metabolic effects that may be used to improve or reduce depressive symptoms

Iron (ferritin, total iron
binding capacity)

• Indicative of dopaminergic neurotransmission and methionine system function
• Transferrin levels are measured if there is a history of deficiency
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Table 2. Cont.

Supplemental Agent Considerations and Guidance

L-tryptophan

• As an amino acid, it is given three times daily, 30 min before or 2 h after food and
lasts for a duration of 4–6 h

• Requires coadministration of cofactors
• Primarily used for irritability and for carbohydrate cravings, with limited effective-

ness compared to other interventions
• L-tryptophan in the presence of inflammation will lead to quinolinic and kynurenic

acid production

Magnesium
• Necessary component for conversion of cholecalciferol (vitamin D3) to ergocalciferol

(vitamin D2)
• Magnesium is involved in approximately 800 enzymatic systems for structural functions

NAC

• May be used for a number of psychological disorders and conditions including OCD,
bipolar depression, autism spectrum, cardiac health and blood pressure, tinnitus,
cognitive impairment, and for its neuroprotective effects

• Ideal for patients with glutathione deficiency

Omega-3 fatty acids
• Omega-3 fatty acids may improve cognition in patients with ADHD, as a result of its

effects on the cholinergic system
• Beneficial for emotional self-regulation

SAMe
• Tolerability issues associated with SAMe supplementation due to uncontrolled pro-

duction of monoamines
• May or may not be used with cofactors, depending on clinician preference

Vitamin B12
• Serum levels may be measurable (>500 ng/mL) but MMA levels may be high; levels

should not exceed 100

Zinc • Low serum levels of zinc correlate with cognitive impairment and anxiety

ADHD, attention-deficit/hyperactivity disorder; BDNF, brain-derived neurotrophic factor; CoQ10, coenzyme Q 10; MMA, methyl-
malonic acid; MTHFR, methylenetetrahydrofolate reductase; NAC, N-acetylcysteine; OCD, obsessive-compulsive disorder; SAMe,
S-adenosylmethionine; TMG, trimethylglycine.

Augmenting conventional antidepressants with medical foods may be a viable option
for individuals with MDD who have tried and failed multiple antidepressant regimens
and/or are resistant to conventional antidepressants. In particular, L-methylfolate has
the most robust body of evidence to support its use in this area. However, the studies
that were reviewed have some potential limitations, including small sample sizes, use
of various depression ratings scales, and enrollment of heterogeneous populations, so
additional research is needed to fully explore potential synergies between agents during
the management of MDD. Of particular interest may be the effect of these interventions on
those who are treatment resistant or are experiencing residual depressive symptoms with
antidepressant monotherapy. Augmentation strategies that manage some of the underlying
factors that are not effectively affected by traditional antidepressant treatments may be of
particular interest to this population.
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DHLA dihydrolipoic acid
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LCFA long chain fatty acids
MADRS Montgomery–Åsberg Depression Rating Scale
MAOIs monoamine oxidase inhibitors
MAPK mitogen activated protein kinase
MDD major depressive disorder
mGlu 2 type 2 metabotropic glutamate
mGlu metabotropic glutamate
MMA methylmalonic acid
MTHF L-5-methyl-tetrahydrofolate
MTHFR 5,10-methylenetetrahydrofolate reductase
NAC N-acetylcysteine
NMDA N-methyl-D-aspartate
OR odds ratio
PIP phosphatidylinositol
PUFAs polyunsaturated fatty acids
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SAH S-adenosylhomocysteine
SAMe S-adenosylmethionine
SD standard deviation
SMD standardized mean difference
SNRIs serotonin norepinephrine reuptake inhibitors
SSRIs selective serotonin reuptake inhibitors
STAR*D Sequenced Treatment Alternatives to Relieve Depression
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TDO tryptophan 2,3-dioxygenase
TNF-α tumor necrosis factor-α
VDRs vitamin D receptors
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