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Dendritic cells (DCs) play a pivotal role in the control of innate and adaptive immune responses. They are a heterogeneous cell
population, where plasmacytoid dendritic cells (pDCs) are a unique subset capable of secreting high levels of type I IFNs. It has
been demonstrated that pDCs can coordinate events during the course of viral infection, atopy, autoimmune diseases, and cancer.
Therefore, pDC, as a main source of type I IFN, is an attractive target for therapeutic manipulations of the immune system to
elicit a powerful immune response against tumor antigens in combination with other therapies. The therapeutic vaccination with
antigen-pulsed DCs has shown a limited efficacy to generate an effective long-lasting immune response against tumor cells. A
rational manipulation and design of vaccines which could include DC subsets outside “Langerhans cell paradigm” might allow us
to improve the therapeutic approaches for cancer patients.
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1. INTRODUCTION

There is not a clear answer why tumor immunity is not
effectively mounted in most tumor-bearing hosts. Early
mouse studies, as well as clinical experience, indicate that
the immune system can recognize and reject tumors [1–11].
On the contrary, immune-deficient mice and patients have
an augmented incidence of cancer which suggests a relevant
role for the immune system [12, 13]. Immunotherapeutic
protocols based on these findings have been developed;
however, the results are variable and limited [14–19]. As
observed in melanoma and other tumors, there is an absence
of specific cytotoxic T lymphocytes (CTLs) expansion in
cancer patients. This suggests that tumor-antigens may not
overcome the threshold on the surface of DCs needed
to trigger CTL proliferation (passive factor). In addition,
immunoregulatory factors are involved in downregulating
T cell proliferation and inducing T regulatory cells (active
factors), secreted by tumor cells [14]. Thus, DCs play
a critical role in inducing and regulating the immune
responses [20, 21].

DCs constitute a heterogeneous cell population, which
are classified according to cluster of differentiation (CD)
expression, functionality, and localization, playing a pivotal
role in the control of innate and adaptive immune responses
[22]. Generally, DCs’ life cycle is based on a model com-
monly referred to as the “Langerhans cells paradigm” [23].
Immature DCs are strategically located in peripheral and
interstitial spaces of most tissues, and from their location,
and always in surveillance mode, DCs constitutively take
up antigens from the environment, which will be associated
with the MHC molecules. Coordinately, DCs mature by
cessation of phagocytosis and endocytosis and move toward
the draining lymphoid nodes (LNs) due to upregulation of
chemokine receptor CCR7, thereby, acquiring responsive-
ness to a chemotactic gradient of CCL21(-Leu/-Ser) and
CCL19 expressed by initial and terminal lymphatic vessels
and by mature DCs, respectively [24, 25].

After arriving at the draining lymphoid nodes, DCs
are able to present antigens in the context of MHC and
costimulatory molecules to antigen-specific T cells. This
induces a cellular immune response which drives T cells
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to differentiate to effectors cells [26, 27]. Moreover, DCs
are important in starting adaptive and innate immunity,
by activating naı̈ve and memory B cells, natural killer, and
natural killer T cells [28–31].

Due to the antigen capturing and presenting properties
of DCs, ex vivo delivery of tumor-antigen to DCs has
been used as a strategy to guarantee successful antigen
presentation to T cells [14]. However, the efficacy of this
approach to therapeutic vaccination has been limited in both
preclinical and clinical settings [19, 32]. This suggests that
we need to better understand and refine the parameters
to establish the optimal conditions for vaccination against
cancer.

Recent progress in the identification of distinct DC sub-
sets has been done. Analysis of the DC population in several
lymphoid organs has shown a considerable heterogeneity,
where some subsets of DCs follow the “Langerhans cell
paradigm”, but not all of them [33, 34]. Unfortunately,
the heterogeneity of the human DC network is poorly
understood compared with the mouse DC network. At
present, there are two main pathways of differentiation in
mouse DCs. The myeloid pathway generates two subsets:
Langerhans cells and interstitial DCs, whereas the lymphoid
pathway generates plasmacytoid DCs (pDCs) [22, 28, 35]. In
contrast to the many studies in mouse DCs, there are very few
studies on mature human DCs from tissue. Human blood
DCs are heterogeneous in their expression of markers, but
this may reflect differences in the activation or maturation
states of DCs rather than separate lineages [36]. However,
from in vitro studies, it is possible to deduce pathways of
human dendritic cell development. Similar to mouse DCs,
the myeloid pathway in humans generates Langerhans cells
and interstitial DCs. Blood monocytes, named precursors
DC1 (pDC1), are the most commonly used precursor cells
for generating human DCs in culture. In the presence of
GM-CSF and IL-4, pDC1 can generate DCs called DC1.
Maturation of these cells is achieved by stimulating cytokines
or microbial products [22, 37–39]. The human lymphoid
pathway also generates pDCs, termed pDC2. These cells are
type I IFN producing cells (IPCs) and they were discovered
before their mouse counterparts. The pDC2 responds to
viral and microbial stimuli by producing type I IFNs [35].
Both human and mouse pDCs can be maturated with
bacterial stimuli or viruses. Upon maturation, human pDC2,
named DC2, lacks typical myeloid markers, such as its
precursor, but displays the characteristic of mature DCs
[40, 41].

Although most studies have focused on the role of
pDCs in antiviral immunity, several new lines of evidence
have suggested that pDCs are also involved in tumor
immunity, as well as in promoting peripheral tolerance [42–
47]. Interestingly, pDCs can synthesize large amount of func-
tional indoleamine 2,3-dioxygenase (IDO), which requires
autocrine release of type I IFN, upon Toll-like receptor-9
(TLR9) and CD200R ligands stimulation. IDO secretion by
pDCs promotes T-cell death at T-cell areas of secondary
lymphoid organs. Notably, through the upregulation of
inducible T-cell costimulator ligand (ICOSL), pDCs have
the ability to generate regulatory T cells [48, 49]. Gathering

together, this evidence suggests that pDCs represent a key
effector cell in both innate and adaptive immunity regulation
[35, 50–53]. In this review, we focus on the characterization,
physiology, and potential roles of pDCs in the antitumor
responses.

2. DIFFERENTIATION AND TRAFFICKING
PATTERNS OF pDCs

The growth factor fms-like tyrosine kinase 3 ligand (FLT3-
L) has been described as a key differentiation and trafficking
factor for human and mouse pDCs from hematopoietic
progenitor cells (HPCs). FLT3-L injection in humans causes
an increase of both myeloid DCs (mDCs) and pDCs in the
blood. In mice, FLT3-L injection induces the generation of
mDCs and pDCs in blood, lymphoid tissues, liver, and lung
[54–59]. In vitro, mDC and pDCs can be generated from
FLT3-L-supplemented BM culture system [60, 61]. Recently,
Fancke et al. have also shown that M-CSF is capable of
driving pDCs from bone marrow precursor cells in vitro and
in vivo [62].

pDCs account for less than 1% of total peripheral blood
mononuclear cells (PBMCs) and can be isolated through
removal of lineage-positive cells and CD123+ (IL-3R). The
identification of two markers on human (BDCA-2 and
BDCA-4) and one in the mouse (PDCA-1) has facilitated
the isolation of pDCs from PBMC or lymphoid organs by
positive selection with magnetic beads coupled with specific
monoclonal antibodies [63, 64].

In human and mice, pDCs have been found circulating in
the blood and cord blood of neonates [65–67]. Interestingly,
human pDCs have been found in fetal liver, thymus, and
bone marrow suggesting that pDCs develop from CD34+

human stem cells (HSCs) within these primary lymphoid
tissues [68]. Moreover, pDCs can be located in lymphoid
nodes, spleen, tonsils, and Peyer’s patches.

Similar to B and T cell migration patterns, pDCs
leave the bone marrow and migrate into the T cell rich
areas of the secondary lymphoid tissues, through high-
endothelial venules (HEVs) in the lymph nodes, mucosa-
associated lymphoid tissues, and through marginal zones
of the spleen under steady-state conditions [69–73]. This
unique migration pattern of pDCs among DCs appears to
be connected with their expression of CD62L and CCR7,
which allows the pDCs ligate L-selectin ligands expressed by
HEV and chemokines CCL19 and CCL21 expressed by HEVs
and stromal cells within the T-cell rich areas, respectively
[73, 74].

The expressions of chemokine receptors on circulating
blood mDCs and pDCs are similar. However, the level of
CCR5, CCR7, and CXCR3 expressions is clearly divergent
in these two subsets, being higher on pDCs than on mDCs
[74]. Among these two subsets, pDCs are also the only to
migrate in response to the homeostatic chemokine SDF-
1/CXCL12, the ligand of CXCR4, which is expressed on
dermal endothelial cells, in HEVs of lymphoid nodes, and
in malignant cells [44]. This evidence suggests that pDCs
may reach lymph nodes using CXCR4, and also explains their
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fundamental localization in the secondary lymphoid organs
[70].

Interestingly, human pDCs have been found to infiltrate
primary and malignant melanoma, head and neck carci-
noma, ovarian carcinoma, and breast cancer [42–46, 75],
as well as cutaneous inflammatory lesions, which may be
dependent on their ability to express CLA, which binds to
E-selectin on dermal endothelial cells and may enhance their
recruitment to the inflammatory site [76].

3. ACTIVATION OF PLASMACYTOID DCs

Virtually, all cell types are able to produce type I IFNs in
response to viral exposure. The amount, kinetics, and types
of IFN will depend on the cell type. However, pDCs are
considered the professional type I IFN producing cells [35].
pDCs can produce 100–1000 times more type I IFN than the
other blood cell types upon activation [35], or the equivalent
of 10 pg/cell [77]. Myeloid DCs can also secrete type I IFN in
response to RNA viruses, but less efficiently than pDCs [78].

It is important to note that not all viruses can activate
pDCs to produce IFNs. Also, pDCs do not require to be
infected to secrete type I IFN [79, 80]. Once secreted,
type I IFNs induce MxA, an IFNα-inducible intracellular
protein [75], oligoadenylate synthetase, and double-stranded
RNA-(dsRNA-)-dependent protein kinase (PKR). Together,
these proteins have the biological role in inducing cellular
resistance by blocking viral replication, and, therefore, viral
spread [81].

Moreover, type I IFN modulates several aspects of the
immune response, including pDC survival, mDCs differen-
tiation [82], modulation of Th1 and CD8+ T-cell responses,
cross-presentation and cross-priming independent of CD4+

T helper cells [83], upregulation of MHC and costimulatory
molecules, activation of NK cells, and induction of primary
antibody responses [84].

pDC activation with pathogens or oligodeoxynucleotides
(ODNs) with multiple unmethylated CpG dinucleotides
induces the secretion of several other cytokines and
chemokines, such as TNFα, IL-1, and IL-6. In mouse, but not
in humans, pDCs have the capacity to synthesize bioactive
IL-12, although this capacity still remains controversial [85–
87]. Virally, stimulated pDC produces chemokines, such as
CCL3 (MIP-1a), CCL4 (MIP-1b), CCL5 (RANTES), CXCL8
(IL-8), and CXCL10 (IP-10) which stimulate Th1, and NK
cells homing to site of infection through IP-10 and CCL4,
respectively [88, 89].

4. REGULATION OF TYPE I IFN SYNTHESIS ON pDCs

This unique subset of DCs can secrete type I IFNs faster than
other cells to a wider range of viral and nonviral stimuli.
Moreover, pDCs express a broader profile of IFNA genes
than other antigen-presenting cells (APCs). In humans, the
type I IFN family consists of 13 IFNα subtypes, one IFNβ,
one IFN-ω, one IFN-κ, and one IFN-τ. IFNα1 is the major
subtype expressed by pDCs, but other subtypes are also
secreted, including IFNα2, -α5, -α8, -α10, and -α14 and a

recently described family of IFNλ1-3 (also named IL-29, IL-
28A, and IL-28B, resp.) [90, 91].

What makes pDCs synthesize type I IFN faster than
other cells? Recently, it has been shown that transcription
factors of the family of interferon regulatory factors (IRFs)
play an important role in the regulation of interferon gene
transcription. Nine mammalian IRF family members have
been identified to guide the induction of IFN production, as
well as to regulate and differentiate various cells types [92].
Expression of IRF-3 supports induction of IFNβ and IRF-5
or IRF-7 is sufficient to stimulate IFNα genes expression.
Unlike other cells, pDCs have been shown to express
constitutively higher levels of IRF-5, -7, and -8 mRNA, which
might explain why this particular subset of DCs secrete faster
and large quantities of type I IFNs than other cell types
[93, 94].

5. DIFFERENTIAL EXPRESSION AND FUNCTION
OF TLRs IN pDCs

This unique ability of pDCs to secrete large amounts of type I
IFN depends on cellular receptors able to sense several types
of nucleic acid. TLR is a family of 11 pattern recognition
receptors (PRRs) which mediate the recognition of many
pathogens through the detection of distinct pathogen-
associated molecular patterns (PAMPs) [95, 96].

pDCs and mDCs each has a different TLR expression
profile. In humans, mDCs can express TLR-1, -2, -3, -4,
-5, -7, and -8, while pDCs express mainly TLR7 and -9
[97, 98]. Uniquely, TLR-7, -8, and -9 detect PAMPs in
endosomal/lysosomal compartments followed by acidifica-
tion [99, 100]. Transcriptional regulation of IFNβ and IFNα
genes on pDCs is controlled mainly by IRF-3 and IRF-5/7.
IRF-3 can be activated by TLR-3 and TLR-4, but there is
no evidence of this pathway on pDCs. Instead, IRF-7 has a
constitutively high expression in pDCs and it is recruited by
myeloid differentiation primary response gene 88 (MyD88)
through the adaptor molecule TRAF6 when TLR-7 or -9 is
triggered [101].

Many studies have shown that exposure to synthetic
TLR-7 or -9 agonists (e.g., imidazoquinoline, CpG ODN)
induces pDCs to secrete IFNα and proinflammatory
cytokines (IL-8 and TNFα), maturation, which heighten
their T-cell stimulatory capacity [97, 102–104].

Interestingly, endogenous antigens, such as DNA from
necrotic cells, may be taken up by pDCs and signal through
TLR-9 in autoimmune diseases [105]. TLR-9 agonist has a
therapeutic potential and it has been used to induce innate
and adaptive immune responses. Synthetic TLR-9 agonists
are currently being tested in multiple phase II and phase
III human clinical trial as adjuvants to cancer vaccine and
in combination with conventional chemotherapy and others
protocols [106–108].

6. pDCs CAN LINK INNATE AND ADAPTIVE
IMMUNITY VIA TYPE I IFNs

There are abundant studies in human and mice showing
the importance of type I IFN to regulate inflammation
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Table 1

Tumor System DC source Protocol References

EG7 T-cell
lymphoma

Murine
Expanded in vivo (FLt3L),
and sorted from BM

CpG-activated
OVAp-pulsed pDCs/mDCs

Lou et al. [109]
(2007)

K17-35-OVA
melanoma

Murine
Isolated TIDCs from
K17-35 melanoma

OVA-pulsed TIDCs
Preynat-Seauve
et al. [110] (2006)

C26 colon
Carcinoma

Murine
Isolated TIDCs from C26
tumor

TIDCs activated with CpG
+ anti-IL-10R (i.p.)

Vicari et al. [111]
(2002)

M3 Melanoma Murine —
Topical application
Imiquimod

Palamara et al.
[46] (2004)

Melanoma cell
lines

Human Sorted from PBMC
pDCs activated with
CD40L-transfected J558

Salio et al. [42]
(2003)

Melanoma
stage IIIb/c, IV

Human — CpG-7909 (s.c.) (ProMune)
Pashenkov et al.
[112] (2006)

DCs, dendritic cells; pDCs, plasmacytoid DCs; BM, bone-marrow; OVAp, OVA peptide; TIDCs, tumor-infiltrating DCs (myeloid and plasmacytoid); PBMC,
peripheral blood mononuclear cells.

and link innate and adaptive immunity [113–115]. IFNα
and -β are considered as important components of innate
immunity together with their well-known antiviral activity
[114]. Type I IFN released by human pDCs activates NK
cell cytolytic activity, and also induces IFNγ production in
NK cells through IL-12 secretion [116, 117]. Although with
different molecular mechanisms in human and mice, type
I IFN secreted by pDCs, upon stimulation, can affect T-
cell functions. Thus, activated pDCs can induce T cells to
make IL-10 and IFNγ [113, 118], and also induce a Th1
polarization [119]. It has also been reported that type I
IFN can induce early activation markers (CD69) on T cells,
long-term survival [120], and generation of a long-term
antitumor immune response [121]. Recently, several studies
have provided important evidence for a role of type I IFN in
the differentiation of the Th1 subset [122], in the generation
and activity of CTLs, as well as in supporting in vivo
proliferation and survival of T cells [123, 124]. Altogether,
these studies have led to the recognition of an important role
of this cytokine in linking innate with adaptive immunity
[115, 125].

On the other hand, murine pDCs can also inhibit
certain mDCs functions. Upon infection, mice pDCs are
the primary source of IFNα and IL-12, and type I IFNs
they produce inhibit the synthesis of IL-12 from mDCs, a
critical immunostimulatory cytokine of the T-cell-mediated
immunity [79]. In human, the production of IL-12 by pDCs
is still controversial, but some studies claimed the contrary
[98, 126].

Interestingly, pDCs are critical for the generation of
plasma cells and antibody responses. It appears that the
depletion of pDCs from human blood abrogates the
secretion of IgGs in response to viral infection. Further-
more, activated pDCs can induce activated B cells to
differentiate plasma cells. Through Type I IFN and IL-
6 secreted by pDCs, B cells are induced to develop into
plasmablast and differentiate into antibody-secreting plasma
cells [29].

7. PLASMACYTOID DCs AND THEIR ROLE IN
CANCER IMMUNITY

Before the maturation of pDCs, they have a poor T-
cell stimulation capacity. Early experiments reported that
CD40L in combination with IL-3-stimulated pDCs develop
into a functionally distinct DCs type that promotes
the development of IL-4-secreting Th2 cells [40]. Also,
pDCs can prime Th1 or Th0 allogeneic responses [118,
127, 128]. Furthermore, pDCs mature following expo-
sure to influenza virus and exhibited an equivalent effi-
ciency to expand the repertoire of anti-influenza virus
cytotoxic T lymphocytes and Th1 CD4+ T cells [104,
129].

It is clear now that immature mDCs and pDCs infiltrate
solid tumor and lack the ability to induce T-cell activation
[75]. However, they still present tumor antigens and induce
IL-10-producing CD4+/CD25+ regulatory T cells that inhibit
antitumor immunity [130]. Nevertheless, using an anti-IL-
10 mAb and CpG ODN, it is possible to induce a robust
antitumor CTL response and tumor rejection in vivo [111].
Recently, murine pDCs have been described to have the
ability to elicit in vivo, in naı̈ve mice, an antigen-specific
CD8+ T cell response against endogenous antigens, as well
as exogenous peptides, but not against exogenous antigens,
and were capable of protecting mice from tumor challenge
[131].

It has also been reported that human tumor anti-
gens pulsed pDCs in vitro can prime IFNγ-secreting
melanoma-specific CTLs [42]. Synergy among DC sub-
sets has not been fully explored in the development of
antitumor immunity. An interesting study has shown that
immunizations with a mixture of matured pDCs plus
mDCs resulted in increased levels of antigen-specific CD8+

T cells and an enhanced antitumor response compared
with immunization with either dendritic cell subset alone
[109]. Altogether, these studies suggest that it is possible
to re-establish and/or maximize an antitumor immune
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response when pDCs are taken in the regimen [132–137]
(Table 1).

8. CLINICAL SIGNIFICANCE OF pDCs

There is evidence that pDCs are located in several types
of tumors: head and neck cancer, ovarian cancer, primary
melanoma cancer, and breast cancer [42–46, 75]. Secreted
factors by tumor cells may inhibit pDCs function, such as
TGFβ, vascular endothelial growth factor β (VEGFβ), and
IL-10.

On the contrary, other studies have reported that pDCs
and tumor-infiltrating DC (TIDC) are functional and fully
competent APCs. Isolation of TIDC showed an intermediate
maturation phenotype and the capacity to take up particles,
as well as produce IL-12 and maintain its migratory capacity.
Infiltrating pDCs are capable of producing IFNα, as well
as inducing complete regression or significant reduction of
melanomas after a topically treatment of imiquimod (a small
synthetic immune response modifier recognized by TLR7)
[46, 110, 138, 139]. In addition, intratumoral stimulation
of pDCs with TLR7 and -9 agonists has been successfully
used in the clinic to treat basal cell carcinoma, human
papillomavirus-infected warts, and condylomata accuminata
[140, 141]. TLR signaling on pDCs can be used to induce
type I IFNs and possibly protect DCs from tumor-derived
inhibitory factors (such as VEGFβ or IL-10), as well as
support T-cell survival, therefore, improving vaccination
efficacy [112, 142–147].

Thus, it will be critical to evaluate if stimulation of pDCs
may overcome tumor-mediated inhibitory effects and can
enhance a local antitumor immunity.

9. CONCLUSIONS

DCs are a heterogeneous cell population, where plasmacy-
toid dendritic cells (pDCs) are a unique subset capable of
secreting high levels of type I IFNs. It has been demonstrated
that pDCs can coordinate events during the course of viral
infection, atopy, autoimmune diseases, and cancer. There-
fore, pDCs as a main source of type I IFN is an attractive
target for therapeutic manipulations of the immune system
to elicit a powerful immune response against tumor antigens
in combination with others therapies.

A rational manipulation and design of vaccines which
could include DCs subsets outside “Langerhans cell
paradigm” might allow us to improve the therapeutic
approaches for cancer patients.
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