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INTRODUCTION

Carbon monoxide (CO), a biological gas, is known to have 
highly toxic and detrimental effects on the heart [1,2]. CO ex-
posure can induce arrhythmia [3,4] and myocardial cell death, 
leading to cardiac fibrosis [5]. However, CO is now established 
as an important, biologically active signaling molecule gener-
ated through the heme oxygenase (HO)-catalyzed degradation of 
heme [6,7]. Atrial and ventricular cardiomyocytes constitutively 
express HO-2, and various stress factors, including myocardial 
infarction [8], can increase the levels of inducible HO-1 [9]. En-
dogenously synthesized CO is being increasingly recognized as a 
potential therapeutic with important signaling functions in vari-

ous diseases [10]. HO-derived CO protects the heart from trans-
plant-associated ischemia-reperfusion injury [11]. The remarkable 
cardioprotective effects of HO-1 are best evidenced by its ability 
to regulate inflammatory processes, cellular signaling, and mi-
tochondrial function, ultimately mitigating myocardial tissue 
injury and the progression of vascular proliferative disease [7].

Cardiac fibroblasts are the largest cell population in the perma-
nent cellular constituents of the heart, which include cardiomyo-
cytes, endothelial cells, and vascular smooth muscle cells [12]. 
Human cardiac fibroblasts (HCFs) have numerous functions, in-
cluding the synthesis and deposition of extracellular matrix, and 
they play a relevant role in myocardial structuring and cell signal-
ing in healthy and diseased myocardium [13]. HCFs have cell-cell 
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synthase (NOS) blockers (L-NG-monomethyl arginine citrate and L-NG-nitroarginine 
methyl ester). 8-bromo-cyclic GMP increased IBK. KT5823 (inhibits PKG) or ODQ (in-
hibits soluble guanylate cyclase) blocked the CO-stimulating effect on IBK. Moreover, 
8-bromo-cyclic AMP also increased IBK, and pre-treatment with KT5720 (inhibits PKA) 
or SQ22536 (inhibits adenylate cyclase) blocked the CO effect. Pre-treatment with N-
ethylmaleimide (a thiol-alkylating reagent) also blocked the CO effect on IBK, and DL-
dithiothreitol (a reducing agent) reversed the CO effect. These data suggest that CO 
activates IBK through NO via the NOS and through the PKG, PKA, and S-nitrosylation 
pathways.
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communication with cardiomyocytes and other cells [14], and the 
cardiomyocyte–cardiac fibroblast interactions are important in 
normal heart function and in the development of diseases such as 
cardiac arrhythmia and fibrosis [15].

It has been reported that cardiac fibroblasts can interact elec-
trically with cardiomyocytes through gap junctions [16] and 
direct electrical coupling of these two types of cells has also been 
observed [16-18]. There is now increasing evidence that cardiac 
fibroblasts may play a direct role in modulating the electrophysi-
ological substrate in healthy and diseased hearts [19]. In addition, 
cardiac injury results in significant electrophysiological changes 
that enhance fibroblast-myocyte interactions and could contrib-
ute to a greater incidence of arrhythmias observed in fibrotic 
hearts [20].

Although cardiac fibroblasts are non-excitable, they ex-
press multiple ion channels and the activity of ion channels in 
HCFs [21,22] contributes to the functional activities of heart cells 
through the transfer of electrical signals between these two cell 
types [23]. However, the distribution and properties of their ion 
channels are quite distinct from those of cardiomyocytes [24].

The large-conductance Ca2+-activated K+ (BK) channel is the 
main K+ channel in HCFs [22,25]. The BK channel contributes 
to the resting membrane potential of cardiac fibroblasts [26] and 
the electrical coupling of cardiomyocytes-fibroblasts [23]. BK 
channels are also mainly expressed in vascular smooth muscle 
cells [27] and in the inner mitochondrial membranes of the car-
diomyocytes [28]. Activation of these channels in these locations 
results in cardioprotection against cardiac ischemia that induces 
arrhythmogenesis [29].

CO is rapidly emerging as an important cellular messenger, 
regulating a wide range of physiological processes. The investiga-
tion of ion channels as effectors of CO signaling is in its infancy, 
with regard to both the physiologic and the toxic activities of this 
gas. Various ion channels have recently been discovered to be ef-
fectors of CO signaling, and they play key roles in the mediation 
of beneficial effects of CO [30,31]. CO also modulates various ion 
channels via diverse signaling pathways [2,32,33].

Among them, CO activates BK channels in human endothelial 
cells directly as well as via a cGMP-dependent pathway [34] and 
in vascular smooth muscle cells directly but not mediated by a 
cGMP dependent pathway [35].

However, the effect of CO on the BK channel of HCFs and the 
underlying mechanism remains unclear. Therefore, we explored 
the effect of CO, using CORMs, on BK current through the chan-
nels and their intracellular signaling pathways.

METHODS

Cell culture and reagents

Adult human cardiac ventricular fibroblasts were obtained 

from the ScienCell Research Laboratory (Cat #6310; San Diego, 
CA, USA). The cells were cultured in Dulbecco’s modified Eagle’s 
medium (Welgene, Gyeongsan, Korea) with 10% fetal bovine 
serum (Welgene) and a penicillin-streptomycin solution (100×; 
Welgene) in an incubator with a humidified atmosphere of 5% 
CO2 and 95% air at 37°C. Experiments were performed with cells 
from passage 4–7 (passage is the number of times the cells are 
processed with trypsin and transferred to another flask).

CO was applied to cells using the commercially available CO-
donors, carbon monoxide releasing molecules; CORM-2 (tricar-
bonyldichlororuthenium [II] dimer, [Ru(CO3)Cl2]2), CORM-3 
(tricarbonylchloro‐glycinate‐ruthenium [II], [Ru(CO)3Cl‐glyci-
nate]), paxilline (a BK channel blocker), and all other chemicals 
were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Electrophysiological recordings

Membrane ionic currents were recorded using the whole-cell 
patch-clamp technique, as described previously, using the Axo-
patch 200B Patch Clamp Amplifier (Axon Instruments, Union 
City, CA, USA).

The recording patch pipettes were prepared from filament-con-
taining borosilicate tubes (TW150F-4; World Precision Instru-
ments, Sarasota, FL, USA) using a 2-stage microelectrode puller 
(PC-10; Narishige, Tokyo, Japan) and were fire-polished using a 
microforge (MF-830; Narishige).

The pipettes for whole-cell currents exhibited a resistance of 
2–3 M when filled with the internal pipette solution. The re-
corded membrane currents were filtered at 2 kHz and digitized 
at 10 kHz. pCLAMP 9.0 software (Axon Instruments) was used 
for data acquisition and analysis of the whole-cell currents. All 
electrophysiological experiments were performed at room tem-
perature.

For BK current recording, the cells were perfused with Tyrode 
solution containing 142 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 
mM MgCl2, 5 mM glucose, and 5 mM HEPES (pH-adjusted to 
7.35 with NaOH). The pipette solution contained 145 mM KCl, 
1.652 mM CaCl2 (pCa 6.0), 1.013 mM MgCl2, 10 mM HEPES, 2 
mM EGTA, and 2 mM K-ATP (pH 7.3 with KOH). All chemicals 
were purchased from Sigma-Aldrich. To record only IBK in the 
cells, we added 4-aminopyridine (1 mM) into the bath solution to 
exclude the influence of delayed rectifier K+ channels, which are 
another source of the prominent K+ currents in HCFs.

Statistical analysis

The results are presented as means ± standard errors of the 
mean (SEM). Statistical analysis was performed using SPSS ver-
sion 22.0 software (IBM Corp., Armonk, NY, USA). The paired 
Student’s t-test was used to evaluate differences between the 
means of the 2 groups, whereas one-way analysis of variance was 
used for multiple groups. The p-values < 0.05 were considered 
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statistically significant.

RESULTS

Effects of CO on large-conductance Ca
2+

-activated K
+

 

currents of HCFs

To determine the effect of CO on the BK channels in HCFs, 

we used whole-cell mode patch clamp recordings with a voltage 
protocol that consisted of depolarizing steps (from −80 mV to +50 
mV) in 10-mV increments for 400-ms with a holding potential of 
−80 mV. The recorded macroscopic K+ currents of HCFs exhibit 
behaviors typical of BK currents (IBK): activated at 10 mV, in-
creased in voltage-dependent manner, and strongly oscillated in 
response to strong depolarization, well maintained throughout 
the test pulse without marked inactivation during depolarizing 
voltage increments (Fig. 1A). The average cell capacitance was 

Fig. 1. Effects of carbon monoxide (CO) on large-conductance Ca
2+

-activated K
+

 currents of HCFs. (A) Original recordings of K+ outward currents 
were obtained by repeated voltage step depolarization from −80 to +50 mV for 400 ms (holding potential, –80 mV) before (control) and after the 
application of CO-releasing molecules (CORMs; CORM-2 or CORM-3, 10 M, each) in whole-cell mode patch-clamp recordings. Paxilline (10 M) was 
added to confirm IBK. (B) Summarized current–voltage (I–V) curves for the effects of CO donors and paxilline show a strong outward rectification that 
characterizes IBK. Values are mean ± SEM. **p < 0.01, ***p < 0.001 compared to control (n = 10, each). (C) Bar graphs showing the summary of the 
current density changes at +50 mV regarding the effects of CORM-2, CORM-3, and paxilline (n = 10, each). (D) Concentration-dependent activation 
curves of IBK by CORM-2 and CORM-3 are shown. The solid line shows the fit based on a standard dose-response relationship, which yielded an esti-
mated half maximal effective concentration (EC50) of 9.8 M for CORM-2 and 10.9 M for CORM-3.
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23.44 ± 0.46 pF (n = 289). CO donors significantly increased the 
amplitude of the K+ currents (10 M CORM-2, +48.2 ± 16.0% 
of control; CORM-3, +50.1 ± 7.6% of control, at +50 mV, n = 10, 
each, p < 0.01).

We then added 10 M paxilline, a specific BK channel blocker, 
to confirm IBK and that the currents were blocked (CORM-2, 
–87.0 ± 1.6% of control; CORM-3, –84.4 ± 3.3 % of control, at 
+50 mV, n = 10, p < 0.001). In addition, their current–voltage (I–
V) curves showed strong outward rectification, a characteristic of 
IBK (Fig. 1B). The bar graphs show the summary of the current 
density changes of these currents at +50 mV stimulation voltage 
(CORM-2, from 37.4 ± 4.2 to 55.4 ± 6.7 pA/pF; CORM-3, from 
37.8 ± 4.5 to 56.7 ± 3.4 pA/pF; at +50 mV, n = 10, p < 0.01, Fig. 1C). 
Paxilline (10 M) significantly inhibited CO-induced IBK activa-
tion (CORM-2, 4.9 ± 0.7; CORM-3, 5.9 ± 0.3 pA/pF, at +50 mV, n 
= 10, p < 0.001). Concentration–response curves of the CO donors 
showed steady-state currents normalized to the control data were 
fitted with the Hill equation (Fig. 1D), with the half maximal ef-
fective concentration (EC50) value of 9.8 M for CORM-2 activa-
tion of IBK (EC50 of CORM-3; 10.9 M).

Effects of NOS blockers on CO-induced IBK activation

CO can regulate ion channels via the modulation of numerous 
signaling pathways. To investigate the signaling mechanism un-
derlying the regulation of BK channels by CO, we first explored 
the involvement of nitric oxide (NO) because CO is known to 
activate nitric oxide synthase (NOS) and soluble guanylate cyclase 
(sGC) [36], and crosstalk between CO and NO have also been re-
ported [37]. Fig. 2 indicates that the ability of CORM-2 (10 M) to 
activate IBK was significantly suppressed by pre-treatment with 
an NOS inhibitor, L-NG-monomethyl arginine citrate (L-NMMA, 
100 M, –2.4 ± 11.7% of control, Fig. 2A and B). L-NMMA by 
itself did not affect the amplitude of IBK (–4.1 ± 10.4% of control, 
n = 10). Similarly, L-NMMA pre-treatment inhibited CORM-
3-induced IBK activation (10 M, +3.1 ± 11.9% of control, n = 10).

IBK was confirmed, which was significantly attenuated by 10 
M paxilline (CORM-2; –87.9 ± 4.1% of control, CORM-3; –87.3 
± 8.8% of control, n = 12, p < 0.001). Pre-treatment of cells with 
another NOS blocker, L-NG-nitroarginine methyl ester (L-NAME, 
100 M), also attenuated the CO-induced IBK activation. After 
20 min of L-NAME pre-treatment, CORM-2 (–0.8 ± 8.3% of con-
trol, n = 12, Fig. 2C and D) or CORM-3 (–0.2 ± 9.1% of control, n 
= 12) could not increase IBK, and successive addition of paxilline 

Fig. 2. Effect of nitric oxide synthase (NOS) blockers on CO-releasing molecule (CORM)-induced IBK activation. (A) Summarized current–volt-
age (I–V) curves for the effects of CORM-2 or CORM-3 after L-NG-monomethyl arginine citrate (L-NMMA, an NOS blocker, 100 M) pre-treatments. IBK 
was confirmed by 10 M paxilline. (B) Bar graphs show the summary of the current density changes regarding the effects of CORM-2 or CORM-3 (10 
M, each) after L-NMMA (100 M) pre-treatments at +50 mV. ***p < 0.001 paxilline vs. control (n = 10, each). (C) Summarized I–V curves for the effects 
of CORM-2 or CORM-3 after L-NG-nitroarginine methyl ester (L-NAME, an NOS blocker, 100 M) pre-treatments. (D) Bar graphs showing the summary 
of the current density changes regarding the effects of CORM-2 or CORM-3 after L-NAME pre-treatments at +50 mV (n = 12, each).
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after CO donors blocked the currents (CORM-2, –79.2 ± 4.5% of 
control; CORM-3, –86.1 ± 3.6% of control, p < 0.001). These data 
suggest that CO could activate IBK through NO formation via 
NOS.

Effect of cGMP signaling pathway on CO-induced IBK 
activation in HCFs

Binding of NO to the heme group of sGC leads to increased 
conversion of GTP to cGMP, which in turn activates PKG. The 

cGMP signaling pathway are the main mechanisms for mediat-
ing the effects of NO on IBK in HCFs [25]. Therefore, we assessed 
the effects of cGMP on IBK of HCFs. Addition of 8-bromo-cGMP 
(a membrane-permeable cGMP analogue, 300 M) increased the 
IBK to +55.1 ± 9.2% of the control at +50 mV (p < 0.01, n = 8, Fig. 
3A and B).

When we pre-treated the cells with a PKG inhibitor, KT5823 
(1 M), the CO donors failed to increase IBK (CORM-2, +4.1 ± 
9.7% of the control at +50 mV, n = 8; CORM-3, +3.3 ± 12.3% of 
control, n = 8, Fig. 3C and D). Similarly, pre-treatment of the cells 

Fig. 3. Effect of cGMP signaling pathways on carbon monoxide (CO)-induced IBK activation in human cardiac fibroblasts (HCFs). (A) Represen-
tative currents and current–voltage (I–V) curves show the summarized current density changes for the effect of 300 M 8-Br-cGMP on IBK, n = 8, **p 
< 0.01 vs. the control. (B) Bar graphs show the summary of the current density changes regarding the effect of 8-Br-cGMP (300 M) at +50 mV. Values 
are mean ± SEM. (C) I–V curves and (D) bar graphs also showing the summarized current density changes for the effect of pre-treatment with KT5823 (1 
M, a PKG blocker) for 20 min for IBK activation induced by CO-releasing molecule (CORM)-2 (10 M, n = 12) or CORM-3 (10 M, n = 8). (E) I–V curves 
and (F) bar graphs also showing the summarized current density changes for the effect of 10 M CORM-2 (n = 12) or 10 M CORM-3 (n = 8) on IBK af-
ter pre-treatment with 1 M ODQ, a specific soluble guanylate cyclase (sGC) blocker.
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with 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-one (ODQ; 10 
M, a membrane-permeable sGC inhibitor) inhibited the CO-
induced activation of IBK (CORM-2, +3.1 ± 6.0% of the control 
at +50 mV, n = 8; CORM-3, –1.2 ± 12.1% of control, n = 8, Fig. 3E 
and F). KT5823 (1 M) or ODQ (10 M) alone did not increase 
the IBK of HCFs.

Effect of cAMP signaling pathways on CO-induced IBK 
activation of HCFs

To determine whether the cAMP signaling pathways are also 

involved in CO-induced IBK activation, 8-bromo-cyclic AMP 
(8-Br-cAMP, a cyclic AMP analog, 300 M) was added into the 
bath solution, which increased IBK to +52.7 ± 14.3% of the control 
at +50 mV (p < 0.01, n = 8, Fig. 4A and B). Pre-treatment of the 
cells with KT5720 (1 M, a PKA blocker) for 20 min blocked CO-
induced IBK activation (CORM-2, +0.2 ± 11.9% of the control, at 
+50 mV, n = 8; CORM-3, –0.2 ± 12.2% of the control, n = 8, Fig. 
4C and D). Pre-treatment with SQ22536 (1 M, an adenylate cy-
clase blocker) also inhibited CO-induced IBK activation (CORM-
2, control, +0.4 ± 7.0% of the control, n = 8; CORM-3, +1.7 ± 7.4% 
of the control, n = 8, Fig. 4E and F). KT5720 (1 M) or SQ22536 (1 

Fig. 4. Effect of the cAMP signaling pathway on the carbon monoxide (CO)-induced IBK activation of human cardiac fibroblasts (HCFs). (A) 
Representative currents and current–voltage (I–V) curves showing the summary of the current density changes regarding the effect of 8-Br-cAMP (300 
M) on IBK (n = 8, *p < 0.05, **p < 0.01 vs. the control). (B) Bar graphs at +50 mV show the summarized current density changes by 8-Br-cAMP (300 
M, n = 8) on the IBK. (C) I–V curves and (D) bar graphs show the summarized current density changes for the effect of 10 M CO-releasing molecule 
(CORM)-2 (n = 8) or 10 M CORM-3 (n = 8) on IBK after pre-treatment with KT5720 (1 M) for 20 min. (E) I–V curves and (F) bar graphs show the sum-
marized current density changes for the effect of 10 M CORM-2 (n = 8) or 10 M CORM-3 (n = 8) on IBK after pre-treatment with SQ22536 (1 M) for 
20 min.
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M) alone did not increase the IBK of HCFs.

Influence of S-nitrosylation on CO-induced IBK 
activation

To establish S-nitrosylation as a mechanism for CO-mediated 
activation of IBK, we pre-treated cells with a thiol-alkylating re-
agent, N-ethylmaleimide (0.5 mM, NEM), for 20 min and then 
applied the CO donors. In the presence of NEM, CO donors 
could not increase IBK compared to the value in the presence of 
NEM alone (CORM-2, –3.0 ± 7.6% of the control, n = 6; CORM-
3, –1.2 ± 5.9% of the control, n = 6, Fig. 5A and B).

When DL-dithiothreitol (DTT, a reducing agent; 5 mM) was 
applied after IBK had been increased by CORM-2, it reversed the 
effect of CORM-2 on IBK (CORM-2, +47.0 ± 9.8% of the control, 
n = 6, **p < 0.01 vs. control; DTT, +11.0 ± 7.8% of the control, n = 6, 
#p < 0.05 vs. CORM-2, Fig. 5C and D). In case of CORM-3, DTT 
also reversed the CORM-3-induced increase of IBK (CORM-3, 
+57.9 ± 3.9% of the control, n = 6, **p < 0.01 vs. control; DTT, +4.5 
± 9.9% of the control, n = 6, #p < 0.05 vs. CORM-3). These find-
ings further suggest that S-nitrosylation is one of the mechanisms 
behind CO-induced IBK activation in HCFs, and a thiol residue 
could be the ultimate target of CO.

DISCUSSION

CO activation of the BK currents of HCF

In our results, CO produced a concentration-dependent activa-
tion of IBK (Fig. 1). This result is consistent with the results for 
BK channels in human endothelial cells [34], in vascular smooth 
muscle cells [35], and in the mitochondrial BK channels of car-
diomyocytes [38].

Previously, we have shown that the presence of the BK chan-
nel in the plasma membrane of HCFs by RT-PCR and Western 
blotting [21] and here confirmed its presence functionally by 
applying an electrophysiological method with paxilline, a spe-
cific BK channel blocker that exclusively uses a closed-channel 
block mechanism [39]. BK channels of the plasma membrane 
share multiple biophysical similarities with the BK channels in 
the inner mitochondrial membrane [38]. The protective effects 
of mitochondrial BK channel activation against ischemia were 
demonstrated by using BK channel openers [40] and BK channel 
knockout mice [41]. Therefore, considering the electrical coupling 
of cardiomyocytes-fibroblasts [23], BK channels of the plasma 
membrane of HCF could also be a potential target for cardiovas-
cular diseases [42], and CO as a BK channel activator could be 
employed as a cardioprotectant.

Fig. 5. Effect of S-nitrosylation on carbon monoxide (CO)-induced IBK activation. (A) Current–voltage (I–V) curves from –60 to +50 mV and (B) bar 
graphs at +50 mV showing the summarized current density changes by CO-releasing molecule (CORM)-2 (10 M, n = 6) or CORM-3 (10 M, n = 6) on 
IBK after pre-treatment with N-ethylmaleimide (NEM, a thiol-alkylating reagent, 0.5 mM). (C) I–V curves and (D) bar graphs showing the summarized 
current density changes for the effect of CORM-2 (n = 6) or CORM-3 (n = 6) on IBK after pre-treatment with DL-dithiothreitol (DTT, a reducing agent; 5 
mM). *p < 0.05,  **p < 0.01 vs. the control, #p < 0.05 vs. CORMs.
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For studies on CO signaling, cells and channels have been 
exposed to CO by the application of CO-releasing molecules 
(CORMs) that are a group of compounds capable of carrying and 
liberating controlled quantities of CO into cellular systems [6]. 
CORMs are fully water soluble, allow for intravenous administra-
tion, and rapidly liberate CO and hence have been used as CO 
donors to overcome the limitations of using CO gas [43]. In addi-
tion, CORMs are valuable experimental tools and potential thera-
peutic agents [6]. They have the potential for vasodilatory, anti-
ischemic, and anti-inflammatory effects [44,45] and they could 
protect adult cardiomyocytes against hypoxia-reoxygenation [46]. 
Therefore, the use of CORMs to investigate the signaling proper-
ties of CO has provided many new applications and treatments as 
pharmacologic approaches to cardiovascular diseases [6].

However, some of their actions can occur independently of 
CO release [47] or they show different activities. CO has positive 
inotropic activity in the perfused rat heart by CORM-3 but not 
by CORM-2 [48]. Judicial use of appropriate control compounds, 
as well as a comparison of their effects with those of CO diluted 
directly into a solution, should be performed wherever experi-
mentally possible. When we tested two frequently used two types 
of CORMs of different structures to confirm the CO effect on 
BK channels, CORM-2 and CORM-3 showed similar activating 
effects on IBK of HCFs; the EC50 value was 9.8 M for CORM-2 
and 10.9 M for CORM-3.

CO activation of BK currents of HCF through NO

To investigate the mechanism of the regulation of BK channels 
by CO, we first explored the involvement of NO because CO and 
NO are two endogenously produced gases that can act as second 
messenger molecules and it is becoming increasingly clear that 
these two gases do not always work independently, but rather can 
modulate each other's activity [37]. CO induces NO release [49] 
and NO increases the expression of HO-1 in endothelial cells [50] 
or vascular smooth muscle cells [51].

Our results also demonstrated that the activation of IBK by CO 
in HCFs was abolished by treatment with L-NMMA or L-NAME, 
NOS blockers (Fig. 2). These results are consistent with the find-
ing that CO activates L-type calcium channels in HEK cells and 
in human intestinal smooth muscle cells [36], and it stimulates 
BK channels in human endothelial cells [34] through NOS activa-
tion. The NO donor also stimulates IBK of HCFs [25].

Signaling pathways involved in the effects of CO on 
BK currents of HCFs

CO is an endogenous modulator of the NO-cyclic GMP signal-
ing system [52] and activates L-type calcium channels through 
NO- and cGMP dependent pathways [36]. Both CO [49] and 
NO [25] activate ion channels via the activation of sGC, which 
generates cGMP.

Our results demonstrated that 8-bromo-cGMP increased IBK 
(Fig. 3) and the CO-induced IBK stimulation effect in HCFs was 
blocked by the presence of a sGC blocker (ODQ) or a PKG blocker 
(KT5823). These results suggest that the stimulatory effects of CO 
are dependent on the sGC/cGMP/PKG signaling pathway. These 
results are consistent with that of a previous study on the effect of 
CO in human endothelial cells [34] and NO in HCFs [25].

CO is a weak stimulator of sGC compared with NO because 
CO binds to the sGC heme group with a lower affinity and can 
only weakly increase cyclic activity. The binding only results in 
a four- to six-fold activation of the enzyme. Unlike CO, NO in-
creases the sGC activity 100–400-fold [37]. In previous reports, 
CO amplifies NO-induced cGMP levels seen with either CO 
or NO alone [53] and potentiates the elevation of NO-mediated 
cGMP [52]. Therefore, it seems that CO can function as a partial 
agonist to facilitate NO-mediated activation of sGC.

NO can exert many of its effects through cGMP-independent 
mechanisms: the c-AMP dependent pathways and S-nitrosyl-
ation. NO modulates BK channels through cAMP-dependent 
pathways in HCFs [25] and in rat cardiac fibroblasts [54]. NO also 
blocks Kv1.5 channels by S-nitrosylation [55]. Our results also 
demonstrated that the stimulating effects of CO of HCFs were 
mediated by cGMP-independent mechanisms; cAMP-dependent 
pathways and S-nitrosylation.

In our study, pre-treatment with a PKA blocker (KT5720) or an 
adenylate cyclase blocker (SQ22536) inhibited the effect of CO on 
the IBK in HCFs and cell membrane permeable cAMP, 8-bromo-
cAMP treatment increased IBK (Fig. 4), which means that the 
cAMP-dependent pathway is also involved in the stimulating 
effect of CO on IBK in HCFs. These results are similar to the 
finding that NO increases IBK through PKG- and PKA-related 
pathways in HCFs [25] and cAMP-dependent vasodilators cross-
activate the cGMP-dependent protein kinase pathway to stimu-
late BK channels in coronary artery smooth muscle cells [56].

We also found that CO could activate IBK in HCFs through S-
nitrosylation, since a thiol-alkylating reagent, NEM, prevented 
CO stimulation effects on IBK and a reducing agent, DTT re-
versed the effect of CORMs on IBK (Fig. 5). This is the first report 
that an S-nitrosylation mechanism is involved in CO effects on 
IBK in a cardiac system and that a thiol residue could be the ulti-
mate target of CO.

S-nitrosylation has emerged as an important and ubiquitous 
post-translational modification system, participating in cellular 
signaling (reviewed in Gonzalez et al.) [57]. Several reports ex-
ist on the effect of NO mediated through S-nitrosylation being 
implicated in all major functions of NO in the cardiovascular sys-
tem [57-59]. Since S-nitrosylation signaling is involved in multiple 
physiological processes, it is expected that altered S-nitrosylation 
of specific ion channels may be relevant in some pathologic states, 
arrhythmia and heart failure.

Cardiac ion channels involved in excitation-contraction cou-
pling are potentially regulated by S-nitrosylation [57]. In cardiac 
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myocytes, S-nitrosylation is coupled to NOS activity for Nav1.5 
channel activation [60]. NO inhibits L-type calcium channels 
by S-nitrosylation [61] and the 1-subunit of L-type calcium 
channels is constitutively S-nitrosylated in the mouse heart [62]. 
S-nitrosylation increases the slowly activating component of de-
layed rectifier K+ currents in a manner dependent on NOS [63,64] 
and Kv4.3 channels, which generates a transient outward K+ cur-
rent [65].

Although BK channels are not expressed in the plasma mem-
brane of cardiomyocytes, recent works showed that BK channels 
might localize at the sinoatrial node in the heart and contribute 
to the regulation of sinoatrial node cell automaticity. Application 
of paxilline significantly reduced the action potential firing of 
sinoatrial node cells and lengthened the diastolic depolarization 
phase of the action potential [66].

Considering fibroblast-myocyte electrotonic coupling [67], BK 
channels of HCFs and the CO effects on this the channel may 
lead to the discovery of novel therapeutic targets and the develop-
ment of agents for improving outcomes of heart diseases.

In summary, the present study showed for the first time that 
CO stimulates BK channels of HCFs, which involves the activa-
tion of NO by NOS and the sGC/cGMP/PKG, adenylate cyclase/
cAMP/PKA, and S-nitrosylation pathways.
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