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Abstract: Since the discovery of the small ubiquitin-like modifier (SUMO) protein in 1995, SUMOy-
lation has been considered a crucial post-translational modification in diverse cellular functions.
In neurons, SUMOylation has various roles ranging from managing synaptic transmitter release
to maintaining mitochondrial integrity and determining neuronal health. It has been discovered
that neuronal dysfunction is a key factor in the development of major depressive disorder (MDD).
PubMed and Google Scholar databases were searched with keywords such as ‘SUMO’, ‘neuronal
plasticity’, and ‘depression’ to obtain relevant scientific literature. Here, we provide an overview of re-
cent studies demonstrating the role of SUMOylation in maintaining neuronal function in participants
suffering from MDD.
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1. Introduction

Synaptic plasticity is a process involved in the change of synaptic strength through
specific patterns of synaptic activity. Changes in synaptic plasticity (also known as Hebbian
plasticity) are known to modify thoughts, feelings, behavior, memory, and brain volume [1].
Long-term potentiation (LTP) and depression (LTD) are the best-studied forms of synaptic
plasticity. LTP is defined as a long-term increase in synaptic strength and functionality
caused by certain patterns of synaptic activity, such as increased postsynaptic α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), whereas LTD is defined
as a long-term decrease in synaptic strength and function [2]. As reviewed by Richer-Levin
and Xu, stress has been shown to prompt LTP and TLD alterations in neurons in the CA1 re-
gion of the hippocampus [3]. Other studies have reported negative alterations in rodent
CA3 neuron dendrites after exposure to chronic stress, further strengthening the theoretical
link between stress, synaptic plasticity, and major depressive disorder (MDD) [4]. Synaptic
plasticity is largely controlled by the activation level, location, and state of AMPARs and
N-methyl D-aspartate (NMDARs). AMPARs and NMDARs are non-selective ionotropic
glutamate receptors responsible for relaying excitatory synaptic transmission through the
nervous system [5]. During early LTP, the synapse needs to adapt to rapid changes and
thus relies on the movement and control of pre-existing proteins, activation of NMDARs,
and trafficking of AMPARs [6–9]. During late-LTP, the control of gene expression and RNA
translation is much more significant [10,11]. There are many reports of synaptic functions
being regulated by postsynaptic glutamate receptor modifications such as phosphoryla-
tion and ubiquitination. CaMKII is known to cause the phosphorylation of Ser831 of the
GluA1 subunit of AMPAR, leading to the increase in channel conductivity, which causes
expression of LTP in the hippocampus [12]. The ubiquitin-proteasome system, which is
responsible for the targeting and degradation of proteins, has been shown to relocate into
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dendritic spines during synaptic activation to alter the levels of synaptic proteins [13].
Larger-scale alterations caused by post-translational modifications (PTMs) have also been
reported. Applying stress in rodent models via various methods, such as predator and
social defeat stress, resulted in a sharp increase in H3 phosphorylation and acetylation
in the hippocampus. Predator stress is induced by introducing natural predator odors
to rodents, and social stress is initiated by placing a male rodent in the cage of a more
dominant male [14,15]. It has been shown that H3 PTMs in the nucleus accumbens can alter
susceptibility and resilience to stress. Mice with increased levels of H3 acetylation were
shown to be more resilient to stress and subsequent depression-like phenotype, whereas
increased levels of H3K9me2 caused the mice to be more susceptible to stress [16,17]. The
observation of LTP-related genes shows rapid methylation and demethylation following
LTP induction [18]. PTMs play significant roles in the maintenance of stress and depression.

MDD, as defined by the American Psychiatric Association, is a common and serious
mental disorder accompanied by the loss of interest and pleasure in enjoyable activities
(anhedonia), changes in appetite, loss of energy, insomnia, psychomotor retardation, and
suicidal thoughts [19]. MDD can be potentially fatal, with an estimated one in six people
having experienced depression once during their lifetime [20–22]. The exact causes of MDD
remain elusive, with possibilities ranging from neural biochemistry to personality [23,24].
The lack of biomarkers, inconclusive genetic studies, and personal effects such as stress all
contribute to the poor understanding of MDD, which also plays a role in antidepressant
studies that have led to disheartening results [25–27]. Serotonin selective reuptake inhibitors
(SSRIs), the most widely prescribed antidepressant drugs, are ineffective in up to 45% of
participants even after weeks to months of drug treatment [22,28–30]. Although the exact
mechanisms of MDD pathology remain unclear, global efforts have been made to clarify
the cellular mechanisms leading to MDD. Post-mortem studies of depressed participants
have shown a reduced number of prefrontal cortex (PFC) synapses, which have been
logically connected to reduced synaptic functions [31]. Furthermore, the volumes of the
PFC and hippocampus have been observed to shrink in individuals with depression, with
the extent of shrinkage positively correlated to the severity of depression the person is
experiencing [32,33].

Small ubiquitin-like modifier (SUMO)ylation is a relatively new form of PTM that is
currently under careful investigation by scientists worldwide. The first mention of the direct
control of the synapse by SUMOylation was in 2009, by Feligioni et al. By increasing and
decreasing presynaptic SUMOylation levels in synaptosomes, they discovered fluctuations
in Ca2+ influx. Increasing levels of SUMOylation resulted in reduced Ca2+ influx and
decreased glutamate release, whereas the opposite was observed by reducing presynaptic
SUMOylation levels [34]. In 2014, SUMOylation was demonstrated to be required for LTP
activation. Using inactive forms of SUMO-conjugating enzymes (Ubc9), LTP was shown
to be significantly reduced, and increasing sentrin/SUMO-specific protease 1 (SNEP1)
levels showed the same effect in CA1 hippocampal slices [35]. Compared to other forms of
PTMs, such as acetylation and methylation, the mechanisms and effects of SUMOylation
are still elusive, but they seem to have a noteworthy effect on synaptic plasticity and overall
neuronal health. Here, we review the regulation of neuronal function by SUMOylation of
proteins associated with various methods of synaptic plasticity control connected to the
pathogenesis of MDD.

2. SUMOylation

SUMO proteins are a family of proteins that are conjugated to lysine residues on target
proteins. SUMO is ligated to a ΨKX(D/E) consensus motif of the target proteins, where
Ψ represents a hydrophobic residue, K is a target lysine, X is any residue, and D/E repre-
sents acidic residues [36]. There are five isoforms of SUMO found in humans, SUMO1–5.
While SUMO4 and 5 still require further investigation, the functions of SUMO 1~3 have
been extensively investigated. SUMO1 is involved in monoSUMOylation (attachment
of SUMO to a single lysine residue) and regulates protein localization and ubiquitina-
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tion. SUMO2 and 3 are nearly indistinguishable and are thus referred to as SUMO2/3.
SUMO2/3 is involved in polySUMOylation, forming SUMO chains on target proteins,
and seems to respond to cellular stresses such as heat shock, DNA damage, and nutrient
deficiency [37,38]. SUMOylation occurs in a cycle (Figure 1) and relies on the activation of
four types of enzymes known as the Ulp/SENP family, E1 SUMO-activating, E2 SUMO-
conjugating, and E3 SUMO-ligase. The SUMO peptide is first matured for conjugation by
cleaving the C-terminus to reveal a glycine-glycine motif. The E1 enzyme, an SAE1/2 het-
erodimer, binds to the exposed motif, transferring SUMO to the E2 enzyme Ubc9. The
E3 enzyme then transfers SUMO from Ubc9 to the target protein, completing SUMOy-
lation [39]. There are three main E3 ligase families: SP-RING ligases, which include the
Siz and PIAS family; RAN binding protein 2 (RanBP2), which is a part of the nuclear
pore complex; and human polycomb protein 2 (hPc2) [40]. SUMOylation is highly dy-
namic; thus, SUMO peptides can be removed from the substrate by Ulp/SENP proteases,
allowing SUMO peptides to be recycled [39]. There are six known members of the SENP
protease family, SENP1–7 (excluding SENP4), each with specific functions and localiza-
tions. SENP1 functions in removing SUMO1 preferentially over SUMO2/3, whereas other
members specialize in removing SUMO2/3 [41,42]. Three other SUMO proteases have
been recently discovered, but their functions have not been extensively investigated [43].
SUMOylation can affect target proteins by blocking protein-protein interaction sites, pro-
viding binding sites for other regulatory factors, controlling protein stability, or causing
conformational changes in target proteins. These changes by SUMOylation have numerous
effects, including regulating transcription, cell cycle progression, DNA repair, protein
trafficking, and mitochondrial dynamics, among many other functions [44–52]. Because of
these effects, SUMOylation has been of interest to neurobiologists worldwide. SUMO1 and
SUMO2/3 have been detected in all parts of the neuron, from the nucleus to the synapse.
In conjunction, SUMO isoforms, Ubc9 SENPs, and PIAS proteins have been detected in
synaptosomes, implying that SUMOylation may have a role in regulating neurotransmitter
release and general synaptic function [53,54].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 17 
 

 

SUMO to a single lysine residue) and regulates protein localization and ubiquitination. 
SUMO2 and 3 are nearly indistinguishable and are thus referred to as SUMO2/3. SUMO2/3 
is involved in polySUMOylation, forming SUMO chains on target proteins, and seems to 
respond to cellular stresses such as heat shock, DNA damage, and nutrient deficiency 
[37,38]. SUMOylation occurs in a cycle (Figure 1) and relies on the activation of four types 
of enzymes known as the Ulp/SENP family, E1 SUMO-activating, E2 SUMO-conjugating, 
and E3 SUMO-ligase. The SUMO peptide is first matured for conjugation by cleaving the C-
terminus to reveal a glycine-glycine motif. The E1 enzyme, an SAE1/2 heterodimer, binds to 
the exposed motif, transferring SUMO to the E2 enzyme Ubc9. The E3 enzyme then transfers 
SUMO from Ubc9 to the target protein, completing SUMOylation [39]. There are three main 
E3 ligase families: SP-RING ligases, which include the Siz and PIAS family; RAN binding 
protein 2 (RanBP2), which is a part of the nuclear pore complex; and human polycomb pro-
tein 2 (hPc2) [40]. SUMOylation is highly dynamic; thus, SUMO peptides can be removed 
from the substrate by Ulp/SENP proteases, allowing SUMO peptides to be recycled [39]. 
There are six known members of the SENP protease family, SENP1–7 (excluding SENP4), 
each with specific functions and localizations. SENP1 functions in removing SUMO1 pref-
erentially over SUMO2/3, whereas other members specialize in removing SUMO2/3 [41,42]. 
Three other SUMO proteases have been recently discovered, but their functions have not 
been extensively investigated [43]. SUMOylation can affect target proteins by blocking pro-
tein-protein interaction sites, providing binding sites for other regulatory factors, controlling 
protein stability, or causing conformational changes in target proteins. These changes by 
SUMOylation have numerous effects, including regulating transcription, cell cycle progres-
sion, DNA repair, protein trafficking, and mitochondrial dynamics, among many other 
functions [44–52]. Because of these effects, SUMOylation has been of interest to neurobiolo-
gists worldwide. SUMO1 and SUMO2/3 have been detected in all parts of the neuron, from 
the nucleus to the synapse. In conjunction, SUMO isoforms, Ubc9 SENPs, and PIAS proteins 
have been detected in synaptosomes, implying that SUMOylation may have a role in regu-
lating neurotransmitter release and general synaptic function [53,54]. 

 

Figure 1. A diagram of the SUMOylation pathway. Small Ubiquitin-like MOdifier (SUMO) is first syn-
thesized as an inactive precursor, which is subsequently cleaved by sentrin/SUMO-specific protease



Int. J. Mol. Sci. 2022, 23, 8023 4 of 16

(SENPs) to reveal the double glycine motif and create mature SUMO proteins. SUMO is then activated
by E1 proteins (SAE1 and SAE2 heterodimer). The activated SUMO protein is transferred to the
Ubc9 E2 enzyme, which works in unison with E3 enzymes to target and ligate the SUMO protein onto
substrates. The SUMO protein can be recycled by SENP-mediated cleavage of SUMO. SUMOylation
either enhances or blocks protein-protein interactions, modifies substrate conformation, blocks sites
for other post-translational modifications (i.e., ubiquitin), and aids in protein localization.

3. SUMOylation in the Synapse

Synaptic plasticity is associated with many cellular mechanisms, such as protein
trafficking, translation, and transcription [55]. LTP and LTD are mediated through NM-
DAR and subsequent AMPAR translocation and activity, mainly through the Ca2+ influx
caused by NMDARs. Increased levels of cellular Ca2+ lead to the activation of multiple
signal transduction pathways, including the neuronal nitric oxide synthase/nitric oxide
(nNOS/NO) signaling and Ras-ERK pathways. In addition to NMDARs and AMPARs, G-
protein coupled receptors and serotonin receptors have also been shown to be instrumental
in plasticity regulation. In this section, we summarize current studies regarding the effects
of SUMOylation on specific proteins and pathways.

3.1. AMPARs

AMPARs are glutamate-gated ion channels responsible for rapid excitatory synaptic
transmission in the central nervous system. AMPARs are comprised of four subunits
that form ion channels with different functions [56]. To induce NMDAR-mediated LTP,
AMPARs must be concentrated in the postsynaptic membrane. It is widely believed that
this trafficking is possible due to a large number of PTM-induced modifications on AMPAR
subunits, including glycosylation, palmitoylation, and phosphorylation [57]. However,
a bacterial SUMOylation assay of neuronal proteins to test for SUMOylation core motifs
has shown that AMPAR subunits are not SUMOylated [58]. When inducing LTP in cul-
tured hippocampal slices, an increase in SUMO2/3 was observed, stipulating a connection
between LTP induction and SUMOylation [35]. When LTP was induced in cultured hip-
pocampal slices, an increase in SUMO2/3 was observed, indicating a connection between
LTP induction and SUMOylation [25]. Furthermore, increasing surface level AMPARs by
chemically inducing LTP caused an increase in SUMO1, Ubc9, and SUMO1 RNAs; how-
ever, overexpression of SENP1 prevented these increases [59]. Additionally, by silencing
SUMO1-3 expression in mice, malfunctions in episodic and fear memory conditioning have
been observed [60]. Synaptic plasticity plays an imperative role in fear memory condition-
ing; thus, SUMOylation is required for the proper trafficking of AMPARs. An AMPAR
trafficking-related factor that has been identified as SUMOylated is an activity-regulated
cytoskeleton-associated protein (Arc) (Figure 2). Arc levels increase rapidly in response
to neuronal activity and have been shown to increase during periods of stress in rodent
models [61]. Arc has been shown to participate in AMPAR trafficking and ensuing LTP
and LTD induction [62,63]. Arc has been reported to be SUMOylated at lysine residues
110 and 268, and SUMOylation of these residues regulates protein-protein interactions and
synaptic scaling [64]. In vivo studies have shown that Arc SUMOylation is involved in LTP
induction and vice versa; LTP induction gives rise to Arc SUMOylation, which is repressed
when LTP is inhibited [65].
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Figure 2. SUMOylation in the neuron. SUMOylation plays an integral function in signal transduction.
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are required for proper
synaptic transmission. Although AMPARs are not directly SUMOylated, SUMOylation is required
for proper AMPAR trafficking by Arc proteins. N-methyl-D-aspartate receptor (NMDAR) stimulation
causes SUMOylation of neuronal nitric oxides synthase (nNOS), which allows signal relay from the
nNOS-NO pathway to the extracellular signal-regulated kinase (ERK) pathway. Prevention of nNOS
SUMOylation blocks ERK1/2 signaling. Ras SUMOylation is required for signal transduction through
the Ras/Raf/MEK/ERK cascade. cAMP response element-binding protein (CREB) SUMOylation
increases brain-derived neurotrophic factor (BDNF) levels. BDNF-TrkB signaling activates CREB
binding through the ERK pathway. BDNF-TrkB regulates PIAS3 translocation from the nucleus to the
dendrites. Downstream of BDNF-TrkB signaling is the P13K-Akt pathway. Akt is SUMOylated at
two lysine residues, leading to an increase in Akt activity.

3.2. nNOS/NO Signaling

Nitric oxide is a secondary messenger found in mammalian cells and is produced by
NOS enzymes. nNOS is an NOS isoform found in neurons and is important for proper
neuronal function. Post-mortem studies of MDD participants have found increased levels of
nNOS expression in the hippocampus, whereas inhibition of nNOS prevented depression-like
behavior in rodent models exposed to chronic mild stress [66,67]. A study by Du et al. has shed
light on nNOS SUMOylation, showing that nNOS is SUMOylated at lysine residues 725 and
739. SUMOylation of these residues promotes nNOS phosphorylation, which increases NO
production (Figure 2). By disrupting nNOS pathways, activity-induced nNOS SUMOylation
also decreases LTP-related Arc expression and blocks ERK 1/2 signaling [68].

3.3. Ras/Raf/MEK/ERK Pathway

The Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular
signal-regulated kinase (ERK) signaling cascade (shortened to the ERK pathway) relays
signals from cell surface receptors to transcription factors to regulate gene expression [69].
The ERK pathway has been the most studied signal transduction pathway, with many
reports of decreased ERK signaling in the PFC and hippocampus of suicidal MDD partici-
pants [70–72]. Decreased MEK-ERK signaling was detected in the hippocampus of suicidal
participants, while MAPK phosphatase (MKP), a MAPK inhibitor, was increased [73]. Duric
et al. (2010) discovered increased levels of MKP in mice undergoing chronic unpredictable
stress, with ERK1/2 signaling decreased in the PFC and hippocampus, while deletion of the
Mkp-1 gene resulted in resistance to stress [72]. Ras activation has also been implicated in



Int. J. Mol. Sci. 2022, 23, 8023 6 of 16

the trafficking of AMPARs during LTP [74]. All isoforms of Ras are SUMOylated at lysine
42, and SUMOylation of K42 is crucial for Ras-promoted signaling, as the K42R mutation
causes reductions in downstream activation of the ERK signaling cascade (Figure 2) [75,76].

Downstream of the ERK signaling cascade, cAMP-responsive element-binding protein
(CREB) has also been shown to decrease in the hippocampus of MDD participants [72].
As a phosphorylation target of the ERK signaling cascade, CREB is a transcription factor
required for the transcription of genes that regulate neuronal plasticity. Chronic stress
models have also been used to test these results; indeed, chronic stress leads to lower CREB
activity in rodent models, indicating that stress can lower CREB levels in the brain, which
could lead to MDD development [77,78]. By increasing levels of PIAS1 or NMDA in rodent
models, a research team has shown enhanced SUMOylation of CREB in the hippocampus.
They demonstrated two predominant lysine residues that are SUMOylated (lysine 271 and
290). Interestingly, preventing SUMOylation increases the phosphorylation of CREB, while
preventing CREB phosphorylation inhibits CREB SUMOylation. These data imply cross-
talk between the two types of PTMs and require further research [79]. In addition to the
above-mentioned effects, CREB SUMOylation also increases the transcription levels of
brain-derived neurotrophic factor (BDNF), which we will discuss in greater detail in the
next section of this review.

3.4. BDNF

BDNF is a growth factor involved in many central functions of the brain, including
synaptic plasticity [80]. BDNF functions by binding to tropomyosin receptor kinase B
(TrkB) in the cellular membrane and triggering a signaling cascade that activates various
pathways, including the ERK cascade and CREB [81]. Thus, BDNF has been studied
with great interest regarding mood disorders, and some antidepressants act upon BDNF-
TrkB [82]. Environmental stress that triggers depression can lower BDNF mRNA levels [83].
While BDNF has been thoroughly studied in other fields, SUMOylation of BDNF has not yet
been elucidated. A recent study showed that BDNF-TrkB signaling can alter the subcellular
localization of SUMOylation enzymes. PIAS3 is functionally regulated and translocated
from the nucleus to the dendrites via the ERK1/2 pathway, which is downstream of
BDNF-TrkB [84].

A downstream event of BDNF-TrkB signaling is the activation of the P13K-Akt path-
way. In MDD participants, reduced levels of P13K-Akt were observed in the PFC, while
antidepressant treatment was shown to increase Akt signaling [85,86]. Akt1 is SUMOylated
at lysine 64 and 276 by PIAS3 following NMDAR activity. SUMOylation of these residues
increases Akt enzymatic activity, and inactivation of PIAS3 impairs LTP expression [87].

3.5. SNARE Complex

In yeast, mammalian, and plant cells, vesicle fusion with the cellular membrane is me-
diated by a complex of proteins in the soluble N-ethylmaleimide-sensitive factor attachment
protein receptor (SNARE) protein family, commonly known as the SNARE complex [88].
SNAREs have been thoroughly studied in the brain, as they mediate neurotransmitter
release through synaptic vesicles. SNARE proteins are categorized into synaptosomal-
associated proteins (SNAP), syntaxins (stx), and target SNAREs (t-SNAREs), depending on
their location within the synapse [89]. Synapsin 1a (Syn1a) is a protein that regulates vesicle
availability at the pre-synapse. There is evidence showing that Syn1a is SUMOylated at
lysine 687 and mutations to K687R result in a decrease in available releasable vesicles and
impaired exocytosis, indicating SUMOylation as a Syn1a function regulator [90]. Stx1a
is another member of the SNARE family, which is involved in the release of neurotrans-
mitters and the recycling of synaptic vesicle membranes and proteins from the plasma
membrane [91]. Upon NMDAR activation, Stx1a is SUMOylated at three lysine residues
(K252, K253, and K256), and mutations of the three lysine residues to arginine cause an
imbalance in synaptic vesicle endocytosis and exocytosis, indicating that Stx1a SUMOyla-
tion is a regulator of neurotransmitter release [92]. Rab3-Interacting molecule 1α (RIM1α)
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regulates vesicle release from synapses. Further research has shown that RIM1α plays a
crucial role in the docking of synaptic vesicles [93]. Studies have shown that RIM1α is
SUMOylated at lysine 502, which aids in the clustering of Cav2.1 calcium channels. K502R
mutations in RIM1α decrease synaptic exocytosis [94].

3.6. Ion Channels

Neuronal excitability is maintained by the properties and functionality of ion chan-
nels found in the plasma membranes of neurons. Voltage-dependent potassium channels
(Kv) are gated neuronal transmembrane channels and are the most abundant type of ion
channel. Kvs are essential for action potential generation and are phosphorylated during
LTP to increase neuronal excitability [95]. There have been several reports of Kv SUMOy-
lation. Kv1.1 was modified by SUMO1/2 and interacted with SENP2 in hippocampal
neurons. Through SENP2 knock-out, hyperSUMOylation was observed on Kv1.1, Kv7.2,
and Kv7.3 in rodent model hippocampal neurons. Kv1.1 hyperSUMOylation did not
appear to have any effect on channel activity. Kv7.2 and 7.3 SUMOylation resulted in
a diminished M-current, which is responsible for neuronal hyperexcitability. Neuronal
hyperexcitability is known to cause epilepsy, neuropathic pain, and degeneration [96,97].
Kv1.5 SUMOylation regulates channel inactivation, while K4.2 is SUMOylated at two lysine
residues, K437 and K579, which increase Kv4.2 surface expression while decreasing current
conductivity [98,99]. Similar effects have been observed by SUMOylation of the Kv2.1,
Kv7.1, and Kv11.1 channels [100–102]. However, studies on sodium channels have been
scarce, with only one study implicating the results of direct voltage-gated sodium channel
(NaV) SUMOylation. SUMOylation of NaV1.2 resulted in increased current conductivity.
Collapsin response mediator protein 2 (CRMP2) has been previously shown to regulate
NaV1.7 channels and has been reported as a SUMOylation target. A K374A mutation in
CRMP2 causes a reduction in NaV1.7 current conductivity by interfering with CRMP2 and
NaV1.7 interactions [103,104].

3.7. Receptors
3.7.1. Serotonin Receptors

Changes in serotonin receptors are a critical step in MDD development. There are
seven classes of serotonin receptors, each with a different function. Of these classes,
5-HT1A primarily regulates reward processing, mobility, appetite, and anxiety [105]. Re-
cently, 5-HT1A was reported to be SUMOylated by SUMO1 in rodent brains. Overexpres-
sion of PIAS in cells has been shown to increase SUMOylation, while SENP2 decreases
SUMOylation of 5-HT1A, although the implications of 5-HT1A SUMOylation are yet to be
discovered [106].

3.7.2. Dopamine Transporters

Dopamine is a neuromodulator involved in stimulus-reward learning processes and
behavioral control. Dopamine functions by altering the properties of neurons, such as
membrane excitability, neurotransmitter release, and protein trafficking [107]. Dopamine
is regulated by dopamine transporters (DAT), which reuptake dopamine back into the
pre-synapse. Overexpression of Ubc9 and SUMO1 enhanced DAT surface expression and
stability, and increased DAT functionality, whereas knockdown of Ubc9 resulted in lower
SUMO1-DAT levels and increased DAT degradation [108].

3.7.3. G-Protein Coupled Receptors (GPCRs)

Only a handful of GPCRs are SUMOylated in eukaryotes. mGluR7 and mGluR8 are
located in the presynaptic region and have different functions. mGluR7 plays a vital role in
controlling excitatory synapse function, whereas mGluR8 controls Ca2+-dependent neuro-
transmitter release [106,109]. mGluR7 is SUMOylated at lysine 889, whereas mGluR8 is
SUMOylated at lysine 882 and 903. SUMOylation was found to regulate the endocy-
tosis of these receptors [110,111]. Interestingly, mGluR7 shows different SUMOylation
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patterns depending on the cell type. In HEK293T cells, mGluR7 is SUMOylated by both
SUMO1 and SUMO2/3, whereas only SUMO1 is found in hippocampal cells [112]. Addi-
tionally, mGluR5 activation reduces the diffusion of Ubc9 out of the dendritic membrane,
increasing Ubc9 levels inside neurons [113]. Similarly, SENP1 levels also increase in den-
drites upon mGluR5 activation [114]. The M1 muscarinic acetylcholine receptors (M1Rs)
are another type of GPCR that is SUMOylated. They mediate signals via acetylcholine and
play vital roles in learning and memory. M1R is SUMOylated at lysine 237 and receptor
activation removes SUMOylation at this residue. SUMOylation at this site increases the
binding capacity, sequentially raising signal transduction levels. K237R mutations decrease
SUMOylation and signal transduction through M1R [115]. Another GPCR that has been
researched is cannabinoid receptor 1 (CB1). They function as modulators of the voltage-
gated calcium and potassium channels. Activation of CB1 has been shown to increase
SUMO1 conjugation and free SUMO1 levels in cortical neurons of rodent models, although
the exact functions of SUMOylation are yet to be discovered [116].

3.7.4. Kainite Receptors (KARs)

KARs are relatively under-studied members of the glutamate receptor family. AMPARs
and NMDARs play important roles in neuronal function and the regulation of plasticity,
such as regulating neurotransmitter release and membrane excitability [117]. A subunit
of KAR, GluK2, is SUMOylated singly at the lysine 886 residue in rodent hippocampal
neurons. KAR activation by glutamate binding caused K886 to be SUMOylated, and the
KAR was internalized, which was confirmed by infusing SUMO1 into the post-synapse
and detecting lower levels of KAR signals [53].

3.8. Cytoplasmic Polyadenylation Element-Binding Protein 3 (CPEB3)

CPEB3 exists in a soluble inactive form or as an insoluble active aggregate and reg-
ulates the synthesis of synaptic proteins. Appropriate localization and activation are
crucial for the function of CPEB3 in LTP [118]. SUMOylation is necessary for the accu-
rate localization of CPEB3 to processing bodies, implicating functions related to transla-
tion. Under basal conditions, CPEB3 is SUMOylated by SUMO2/3, which is then rapidly
deSUMOylated during LTP transduction, and subsequently translocated into polysomes to
aid translation [118,119]. Other reports have shown that SUMO2 conjugation may play a
role in silencing the local translation after a pulse of neuronal activity. SUMOylation by
SUMO2 shifts the binding affinity of mRNA from deSUMOylated CPEB3 aggregates to
inactive SUMOylated CPEB3 monomers [107].

4. Mitochondrial Dysfunction

Commonly known as ‘the powerhouse of the cell’, mitochondria have major functions
in neuronal processes, such as Ca2+ regulation, plasma membrane potential maintenance,
the release of neurotransmitters, and maintenance of high energy levels [120]. It is not
surprising that MDD is linked to mitochondrial function. Chronic mild stress induced in
mice resulted in the inhibition of oxidative phosphorylation and dissipated mitochondrial
membrane potential in various brain regions, including the hippocampus [121]. Glucose
utilization by the PFC and other brain regions is reduced in depressed human subjects, im-
plying that mitochondrial health is a requirement for regulating mood [122]. Mitochondrial
health is balanced by the tight regulation of mitochondrial fission, fusion, and mitophagy.
Fission is responsible for mitochondrial renewal, redistribution, and partitioning of dam-
aged parts of the mitochondria, while fusion is the process of neighboring mitochondria
mixing their contents to restore function after being damaged [120,123]. Mitophagy is
a ‘cleaning’ mechanism that removes dysfunctional mitochondria from the cell through
autophagy [124]. Although no studies have directly linked SUMO-mediated mitochondrial
dysfunction to MDD, depression is a common symptom in participants with Parkinson’s
disease [125].
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4.1. Dynamin-Related Protein 1 (Drp1)

A SUMOylation target that has been extensively studied in relation to neuronal dys-
function in Parkinson’s disease is the cytosolic GTPase Drp1. Drp1 is recruited to the outer
mitochondrial membrane to regulate mitochondrial fission [126,127]. Drp1 is regulated by
several PTMs, including SUMOylation. Drp1 has been found to be SUMOylated at various
lysine residues throughout the protein. Drp1 interacts with Ubc9 and is SUMOylated by
all SUMO isoforms [128]. SUMO-1 overexpression prevents Drp1 degradation, leading to
enhanced mitochondrial fission and subsequent apoptosis (Figure 3) [129]. Intriguingly, a
study in 2013 by Guo et al. showed that SENP3 degradation caused increased conjugation of
SUMO2/3 to Drp1, which inhibited mitochondrial fission [130]. Drp1 activity is regulated
by SENPs. SENP5 overexpression causes a reduction in SUMO-1-induced mitochondrial
fission, while the opposite is true with the knockdown of SENP2 and SENP5 [131,132].
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Figure 3. SUMOylation is involved in mitochondrial function. Drp1 is a fission regulatory protein
that is found in the cytosol and recruited to the mitochondrial outer membrane by Fis1. Conju-
gation of SUMO1 to Drp1 increases fission, while SUMO2/3 conjugation represses fission activity.
Cellular level of Drp1 is regulated by Parkin E3 ligase, whose activity is regulated by SUMO1 con-
jugation. Mitophagy is regulated by Fis1, but SUMOylation of Fis1 can repress mitophagy activity.
Fis1 levels are regulated by DJ-1, which has antioxidant effects and is recruited into the mitochon-
dria during oxidative stress. SUMOylation is necessary for DJ-1 antioxidant activity. DJ-1 has
also been shown to regulate mitochondrial gene expression through indirect control of peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) through polypyrimidine tract-
binding protein-associated splicing factor (PSF). DJ-1 inhibits PSF SUMOylation, which increases
PSF/PGC-1α binding affinity and suppresses PGC-1α transcriptional activity. PGC-1α levels are
regulated by parkin through parkin-interacting substrate (PARIS). PARIS, acting as a suppressor
of PGC-1α expression, is regulated by ubiquitin-mediated proteasome via parkin E3 activity. The
conjugation of SUMO2/3 to PARIS has been demonstrated to relieve PARIS-mediated transcriptional
repression.

4.2. DJ-1

There have been previous reports of increased reactive oxygen species (ROS) produc-
tion in participants with depression [133]. Under oxidative stress conditions, the protein
deglycase DJ-1 is translocated into the mitochondria, where it functions as a mitochondrial
complex I regulator and contributes to protecting the cell from oxidative stress [134,135].
DJ-1 must be suitably SUMOylated at K130 to function. Mutations that interfere with
DJ-1 SUMOylation were found to perturb the antioxidant functions of DJ-1. It was found
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that improper SUMOylation decreases DJ-1 solubility, leaving the protein susceptible to
proteasomal degradation [136]. SENP3 regulates mitophagy by interacting with Fis1, a
protein required for mitophagy. Fis1 was discovered to be SUMOylated at lysine 149, and it
was found that K149 SUMOylation prevents Fis1 from causing mitophagy (Figure 3) [137].
Interestingly, DJ-1 was found to promote proteasomal degradation of Fis1 in response to
oxidative stress [138]. Additionally, Fis1 recruits Drp1 from the cytosol to the mitochondrial
outer membrane [139]. These results suggest an interesting response to oxidative stress,
involving lower levels of mitophagy and increased fission mediated by SUMOylation.

4.3. Peroxisomal Proliferator-Activated Receptor-γ Coactivator 1 α (PGC-1α)

PGC-1α is a transcriptional coactivator of energy metabolism genes and a key regulator
of mitochondrial biogenesis and function [140]. SUMO-1 conjugation at K138 inhibits
PGC-1α transcriptional activity [141]. SENP1-mediated removal of SUMO-1 can recover
the negative effects caused by SUMOylation and PGC-1α transcriptional activity [142].
PGC-1α is under the indirect control of DJ-1, mediated by pyrimidine tract-binding protein-
associated splicing factor (PSF, Figure 3). DJ-1 inhibits SUMOylation of PSF, which in turn
binds to PGC-1α and suppresses its transcriptional activity [143]. This demonstrates a link
between oxidative stress and SUMO-mediated abnormal mitochondrial gene expression.

4.4. Parkin

Parkin is a ubiquitin E3 ligase, which is a crucial regulator of mitochondrial fission and
fusion. Parkin can bind and ubiquitinate Drp1 to promote Drp1 degradation and prevent
mitochondrial fission. This effect can be nullified by SUMOylation of parkin by SUMO-1.
SUMO-1 conjugation results in parkin being translocated into the nucleus, reducing the
amount available for activity in the mitochondria [144].

4.5. Parkin-Interacting Substrate (PARIS)

PARIS is a transcriptional repressor expression of PGC-1α. PARIS levels are regu-
lated by the ubiquitin E3 ligase activity of parkin (Figure 3) [145]. PARIS is SUMOylated
with SUMO1 and SUMO2/3 at K189 and K286, respectively, by PIASy, while the effects
of SUMOylation are unclear and dependent on cell type. SUMOylation of HepG2 cells
did not affect PARIS activity, while SH-SY5Y cells with 2KR PARIS mutations showed
restoration of repression effects. Conversely, in HEK293 cells, 2KR mutants show in-
creased transcriptional repression [146]. In subsequent studies, SUMOylation of PARIS
with SUMO2/3 induced ubiquitination and proteasomal degradation, thereby relieving
PARIS-mediated transcriptional repression [147]. Although there have been few direct con-
nections between MDD and mitochondria-related SUMOylation, the above data show that
SUMOylation plays a significant role in mitochondria-mediated neuronal health, and future
studies into MDD-related mitochondrial dysfunction could reveal prospective methods of
treatment.

5. Conclusions

Since its discovery in 1995, SUMOylation has been identified as a key regulator of
many functions in eukaryotic cells. Although yet unclear, the above results do show that
SUMOylation plays an integral role in the proper regulation of neural function. Recently,
SUMOylation has been researched using non-neuronal models, showing promising results.
An example would be the control of Fis1 localization in HeLa cells by SENP3-mediated
SUMOylation or the localization of mitochondria in HEK-293 embryonic kidney cells by
mitofusin1/2 mediated by SUMO2 modifications [137,148]. Mitophagy in neurons has
recently been reviewed by Doxaki and Palikaras, indicating the importance of mitophagy
in neuronal survival and cellular homeostasis [149]. As there are currently no studies on
the effects of mitophagy-related SUMOylation on neuronal function, this seems to be a
promising field for further study. In addition, chronic pain has been linked to depression in
many clinical studies, with some reports stating that up to 85% of participants experiencing
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chronic pain are also affected by severe depression [150]. Recent studies have reported on
the involvement of SUMOylation in pain regulation. One study showed that preventing
SUMOylation of CRMP2, a NaV1.7 channel interacting protein, was antinociceptive in
chronic and acute pain models using rodents [151]. A different study on neuropathic pain
management reported that enhancing SUMOylation of DGCR8 elevated sensitivity to pain
in rat models of spinal nerve ligation [152]. These results imply that targeting SUMOylation
is a promising new approach for pain relief and antidepressant medication. Experiments
with existing antidepressants have shown the integral role of SUMOylation. Tricyclic antide-
pressants inhibited FKBP51 (a glucocorticoid receptor inhibitor) SUMOylation by blocking
interactions with PIAS4 and subsequently restoring glucocorticoid receptor activity [153].
Although inconclusive, recent advances have shown promising results, suggesting that tar-
geting of SUMOylation-related enzymes or SUMOylated proteins may serve as a potential
therapeutic target in the future.
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