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In Brief
ImShot is the first systematic
software that integrates data
from IMS and shotgun
proteomics (LC–MS) to identify
proteins in situ. The software is
designed to identify proteins that
are particularly responsible for
establishing a diseased state.
The software usage is
independent of any mass
spectrometry platform used to
generate the data and can also
be used for independent
proteomics data analysis.
ImShot is provided as a desktop
application, thereby making its
run free of external influencing
factors.
Highlights
• ImShot is a systematic software integrating IMS and LC–MS.• ImShot is designed for in situ identification of proteins involved in diseases.• It is the first software performing the critical task of deisotoping IMS spectra.• Modular structure of ImShot allows users to analyze LC–MS data independently.• ImShot can be run by one-time download and plug and play.
242
y Elsevier Inc on behalf of American Society for Biochemistry and
ccess article under the CC BY-NC-ND license (http://
-nd/4.0/).
.100242

mailto:shibojyoti.lahiri@med.uni-muenchen.de
mailto:shibojyoti.lahiri@med.uni-muenchen.de
mailto:imhof@lmu.de
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.mcpro.2022.100242
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mcpro.2022.100242&domain=pdf


RESEARCH
ImShot: An Open-Source Software for
Probabilistic Identification of Proteins In Situ
and Visualization of Proteomics Data
Wasim Aftab1,2, Shibojyoti Lahiri1,* , and Axel Imhof1,*
Imaging mass spectrometry (IMS) has developed into a
powerful tool allowing label-free detection of numerous
biomolecules in situ. In contrast to shotgun proteomics,
proteins/peptides can be detected directly from biological
tissues and correlated to its morphology leading to a gain
of crucial clinical information. However, direct identifica-
tion of the detected molecules is currently challenging for
MALDI–IMS, thereby compelling researchers to use
complementary techniques and resource intensive
experimental setups. Despite these strategies, sufficient
information could not be extracted because of lack of an
optimum data combination strategy/software. Here, we
introduce a new open-source software ImShot that aims
at identifying peptides obtained in MALDI–IMS. This is
achieved by combining information from IMS and shotgun
proteomics (LC–MS) measurements of serial sections of
the same tissue. The software takes advantage of a two-
group comparison to determine the search space of IMS
masses after deisotoping the corresponding spectra.
Ambiguity in annotations of IMS peptides is eliminated by
introduction of a novel scoring system that identifies the
most likely parent protein of a detected peptide in the
corresponding IMS dataset. Thanks to its modular struc-
ture, the software can also handle LC–MS data separately
and display interactive enrichment plots and enriched
Gene Ontology terms or cellular pathways. The software
has been built as a desktop application with a conve-
niently designed graphic user interface to provide users
with a seamless experience in data analysis. ImShot can
run on all the three major desktop operating systems and
is freely available under Massachusetts Institute of Tech-
nology license.

Proteomic studies over the years have aimed at under-
standing the functional landscape of cells by optimum map-
ping of protein profiles at steady state and following a variety
of perturbations in space and time. In addition to conventional
LC–MS, imaging mass spectrometry (IMS) provides a new
dimension by enabling the detection of proteins in situ.
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Because of the enormous cellular heterogeneity inside tissues,
a better understanding of the spatial distribution of proteins
has become imperative for a clearer interpretation of human
diseases (1–4). Indeed, a wide variety of studies show that
effects of and/or responses to diseases could be cell type
specific (5–7). Furthermore, diseases like cancer show very
precise region-specific molecular alterations. In addition to
distinct cell types and molecular profiles that characterize
tumor, stroma, and the vasculature, intratumoral heterogene-
ity is often considered to be of prime importance in assessing
the clinical status of malignant tumors (8–11). Therefore,
identifying factors in situ that characterize the diseased state
as compared with the healthy one is instrumental in improved
assessment of diseases and formulation of better treatment
strategies.
Since its inception, IMS studies have successfully mapped

molecular profiles to tissue morphologies in the disease
context (12–15). Discovery of biomarkers and biological
categorization of relevant diseases was also possible through
IMS-based investigations (16–21). However, most of these
studies included complementary validation of IMS data since
direct identification of molecules was not possible. Although
metabolic profiles of tissues can now be identified in a rela-
tively better way than before https://metaspace2020.eu/;
(Accessed on 2021/05/17) (22), large-scale peptide identifi-
cations can still not be performed by IMS leading to subop-
timal understanding of functional proteomic profiles of
different cell types within tissues. Therefore, complementation
of MALDI–IMS with orthogonal shotgun proteomics has been
adopted as a feasible approach in the recent past (23–28).
The combination of these two orthogonal technologies has

led from poor to substantial identification of proteins in a
contextual manner. However, there is still a lack of appropriate
strategies that could effectively combine data from these two
platforms into an efficient screening module of proteins in situ.
In fact, most of the attempts to combine the two modalities
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In Situ Discovery & Proteomic Data Analysis by ImShot
involved considerable manual curation leading to very limited
number of identified discriminative masses (23, 24, 29). More
successful approaches were associated with measurements
of in situ tryptic peptides with very high mass accuracy
(comparable to LC–MS) leading to the analysis method being
particularly resource intensive (25, 26, 30–32). None of the
approaches developed so far has a defined integrated “one-
in-all” workflow/software in the form of a graphic user inter-
face (GUI) leading to the tedious task of combining multiple
platforms with substantial manual input. Only recently, a
command line–based package (32) has been proposed to
identify IMS peptides from very high-resolution IMS data, but
the workflow does not account for deisotoping IMS spectra,
which as we demonstrate in this article could be pivotal in
removing false-positive identifications. In addition, these ap-
proaches were exclusive of the two-group comparison sce-
nario (healthy versus diseased), thereby providing very limited
biological insights as part of a data analysis pipeline.
In this report, we introduce ImShot, a conveniently designed

software that can be deployed as a screen for probabilistic
identifications of proteins in situ in a disease versus healthy
context. ImShot initially processes data from both IMS and
LC–MS to filter for experimental, analytical, and isotopic
contaminants. The individual mass lists thus created from the
two complementary techniques are matched within a user-
specified tolerance. Within the results, ambiguity arising from
one-to-many mass annotations is largely reduced by ranking
the peptide masses according to the novel scoring system
that identifies the most likely protein in situ. In addition, there
are options to validate the likelihood of peptide identification
from IMS computationally. The software does this by using in-
built functional validation tools like Gene Ontology (GO) and
pathway analysis that associates biological processes (BPs)
to the most likely region within a tissue specimen. ImShot has
been developed using a modular structure that allows the user
and/or the developer to customize their individual needs. As a
result, it also allows a user to use this software for analyzing
and visualizing LC–MS data separately. Finally, we have
developed this whole package into an open source, conve-
nient, and user-friendly desktop application using web tech-
nologies on Electron framework https://www.electronjs.org/;
(Accessed on 2021/04/24) that operates on all the major
operating systems (OSs).
EXPERIMENTAL PROCEDURES

Methods

ImShot is currently applicable on IMS datasets produced by
measuring in situ generated peptides. As ImShot is primarily a data
integration software, it can also be applied to IMS datasets of other
types of molecules (e.g., lipids, metabolites, etc) as long as there is an
LC–MS counterpart to it. The example dataset used here to describe
the features and mode of operation of the software are available via
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ProteomeXchange with identifier PRIDE: PXD022870 (7). The datasets
were created to better understand the establishment of the compli-
cated male infertility phenotype. Dysregulation of spermatogenesis
involves a vast range of cell types that characterize various regions of
the testicular tissue. The investigations sought to find proteins and
molecular processes from these several tissue locations that could
have resulted in the infertile phenotype. The experiments involved IMS
and LC–MS/MS measurements on serial sections of healthy (WT) and
transgenic (AROM+, infertile) mouse testes.

MALDI–IMS

WT and AROM+ tissues (fresh frozen) were cryosectioned into
12 μm thick sections and thaw-mounted on glass slides with indium-
tin oxide coatings (Bruker Daltonik GmbH). A solution of 25 ng/μl
trypsin in 20 mM ammonium bicarbonate was used to generate
peptides in situ after thorough washing to remove interferents from
tissues. Sections sprayed with the solution were incubated at 50 ◦C
for 2 h and 30 min in a humid environment followed by matrix (10 mg/
ml α-cyano-4-hydroxycinnamic acid in 70% acetonitrile and 1% tri-
fluoroacetic acid) spray.

Imaging experiments were carried out in a rapifleX MALDI Tis-
suetyper MALDI-TOF/TOF mass spectrometer (Bruker Daltonik
GmbH) equipped with a SmartBeam 3G laser. Positive reflector
mode was used to measure peptide masses within a range of 600
to 3200 Da and with a spatial resolution of 25 μm. The measure-
ments were externally calibrated using a commercial peptide cali-
brant combination (Peptide calibration standard II; Bruker Daltonik
GmbH) that covered the aforementioned measured mass range and
were spotted at several locations on the same target slide as the
tissues. The generated data were segregated into different spatial
clusters corresponding to defined tissue compartments. In this
particular case, we have used SCiLS Lab (33) to generate the
spatial peptide clusters and their corresponding distinguishing
masses, but it is also possible to use any other software/algorithm
to generate the aforesaid clusters and mass lists. However, to
ensure identical experimental conditions and reduce the chances of
ending up with overlapping clusters, it is recommended to have
tissues from both the control and experimental/diseased condition
on the same IMS slide.

Shotgun Proteomics (LC–MS)

A total of approximately 1 mg of mouse testis tissue was used to
extract proteins and generate peptides using the iST Sample Prepa-
ration Kit (PreOmics) according to the manufacturer's protocol. The
peptides were separated on a Thermo Fisher Scientific Ultimate 3000
nanoLC system and ionized in a nanoESI source and identified on-line
with a QExactive HF mass spectrometer (Thermo Fisher Scientific).The
mass spectrometer was operated in positive ionization mode using
the TOP10 method, detecting eluting peptide ions between m/z 375
and 1600 and performing MS/MS analysis on up to 10 most intense
precursor ions. Internally calibrated mass spectra were used to
determine the masses of ambient siloxanes. Precursors were chosen
on the basis of their intensity from all signals with a charge state
ranging from 2+ to 5+, isolated in a m/z 2 window, and fragmented
with a normalized collision energy of 27%. To avoid repeated frag-
mentation of the same peptide ion, dynamic exclusion was set to 20 s.

The raw data were initially processed for protein identification and
quantification in MaxQuant software [Computational Systems
Biochemistry (Cox Lab), Max Planck Institute of Biochemistry] (34).
Currently, ImShot can read the output files (proteingroups.txt and
peptides.txt) from MaxQuant processing only. Output from any other
processing software can be used provided those are converted to a
similar file format as mentioned before.

https://www.electronjs.org/
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Computational Methods
Algorithm Overview–The ImShot software employs an algorithm

that identifies peptides from IMS datasets based on comparison with
corresponding proteomic data and peptide ranking according to the
novel scoring method. It first filters IMS and LC–MS data to remove all
false-positive entries arising because of different types of contami-
nants (for details, refer to the data processing sections of LC–MS and
MALDI–IMS). Mass lists from IMS clusters are then matched with the
proteomics dataset within a user-specified tolerance range. Because
of the incompatibility of mass resolution between MALDI–IMS and
LC–MS systems, the resulting one-to-many mass annotations are
resolved by rating the peptide masses according to our new most
likely peptide (MLP) scoring system. ImShot's built-in functional vali-
dation tools (viz., GO and pathway analysis) can then be used to not
only computationally assess the likelihood of the aforesaid identifi-
cation from IMS but also for analyzing proteomics data separately.
BPs can be associated with the most probable cell types/tissue
compartments, thereby assessing the relevance of the algorithm. The
modular structure of ImShot permits the user and/or the developer to
flexibly adapt the software to their individual needs. This is reflected in
the seamless usage of this software for analyzing and visualizing
LC–MS data separately. To ensure smooth and hassle-free user
experience, ImShot has been developed into a user-friendly desktop
application that operates on all the major OSs.

Backend Computing–All the backend computing is done in R. The
software has three main sections, viz., data processing and statistical
FIG. 1. ImShot modules and data integration pipeline—Panel to the
from both the IMS (peptide clusters) and LC–MS (MaxQuant output: pr
consists of three segments. (i) Data processing and statistical analysis. Th
that is compatible for data integration module. (ii) Data integration modu
associating it to an LC–MS peptide based on mass matching and MLP s
validation tool for the MLP scoring by integrating information from the lite
information flow between the modules to actualize the data integration
most likely peptide.
analysis, data integration, and functional assessment/validation. Each
of these sections are subdivided into modules that individually carry
out the desired tasks for the user (Fig. 1).

Data Processing (LC–MS)–For LC MS/MS data processing, ImShot
reads either proteingroups.txt or peptides.txt (from MaxQuant run
output) based on user input. In addition, to facilitate wider usage, the
users can use other tab-delimited files that have columns with
intensity-based absolute quantification/label-free quantitation/in-
tensity headers for two groups and also a column named “Fasta
headers.” It then filters the identified protein list according to the
following steps (Fig. 1):

i. In the first step, this module removes proteins classified as
contaminants from the dataset. Within ImShot, the algorithm
searches the columns “Reverse,” “Potential contaminant,” and
“Only identified by site” for positive entries and removes all rows
that contain the + sign. Specifically in case of peptides.txt file
generated by using carbamidomethyl as “fixed modifications” in
the MaxQuant run, the user can select “TRUE” from the drop-
down menu in ImShot, which then adjusts for carbamidome-
thylation of cysteines (mass reduction of 57.02 Da). For datasets
that do not have carbamidomethyl as “fixed modifications,” the
user can opt for the “FALSE” option.

ii. Following that, the algorithm takes care of any blank proteins
that are included in the MaxQuant list of identified proteins. The
program removes rows (proteins) from the dataset that contain
only zeros for all replicates in all conditions. In addition, ImShot
left of dotted vertical line (input) shows that ImShot accepts datasets
oteingroups.txt/peptides.txt) experiments as input. The Imshot panel
is is responsible for transforming LC–MS and IMS datasets in a format
le. This segment identifies the parent protein of each IMS peptide by
coring. (iii) Functional assessment/validation module. This serves as a
rature through GO and pathway enrichment analysis. The arrows show
pipeline. GO, Gene Ontology; IMS, imaging mass spectrometry; MLP,
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has options for removing exclusively enriched proteins, that is,
proteins that are quantified exclusively in either of the groups.
ImShot can further filter (optional) the dataset by removing
proteins that were not quantified in at least k out of N replicates
in each group. Multiple layers of filtering thus help significantly
lower the impact of missing values on subsequent statistical
analyses.

iii. The filtered dataset is log transformed to ensure it is normally
distributed and so is suitable for subsequent statistical testing.

iv. The log transformation in the previous step produces many
undefined values (NaNs) also popularly known as missing
values. Missing values is a common scenario in proteomics that
comprises of both, values missing at random and missing not at
random. Missing at random can happen, for example, when
either no peptide was found, or the peptide was misidentified.
Missing not at randoms usually are more abundance depen-
dent. Since such missing values interfere with the statistical
tests, one needs to handle them appropriately. Although
ImShot's aforementioned filtering modules greatly reduce the
proportion of missing values, some proteins would still have
them in at least one of the replicates leading to the NaNs. To
deal with this scenario, the software uses a commonly used
imputation algorithm assuming that proteins with low expres-
sion levels result in missing values. Such values are quite
reliably estimated in ImShot by creating a tiny normal distribu-
tion by shrinking and downshifting the original data distribution
toward low expression (supplemental Fig. S1) (35), from which
the missing values are drawn at random. In addition to this
imputation algorithm (tiny), ImShot also offers nine other
frequently used imputation algorithms for maximum user flexi-
bility (supplemental Table S1).

v. In the following step, data are normalized to deal with system-
atic shift in protein intensities that could arise from technical and
other variations. The users can select between the following two
modes of normalization depending on the type of data and
biological system that they are using:

• Column-wise median normalization: In this mode, for each
column (sample) in the data matrix (samples from both
groups included), ImShot first computes the median differ-
ence (i.e., the difference between measured intensities in a
sample [column] and the mean of all rows/proteins) and then
subtracts it from each row (protein) (36), the assumption
being that most of the proteins do not change.
In some specific situations, investigators may want to use
the top n or some spike-in proteins to normalize the data.
ImShot can also deal with that by allowing the users to select
a set of proteins (from the rows of data matrix) as the spike-
ins. However, this normalization feature that allows users to
use n spike-in proteins (n < total number of proteins) is
currently supported only by ImShot R package, and
depending on user demands, it will be incorporated in the
GUI of future version(s) of ImShot.

• Normalize by subtracting median: In this mode, ImShot nor-
malizes the protein intensities in each sample by subtracting
the median of the corresponding sample. Here, the samples
are scaled so that they have the same median (zero).

Statistical Analysis Of Proteomics Datasets Using Moderated
t Test–The processed data as mentioned in the preceding section are
used for statistical analysis (two-group comparison test). To determine
the significantly enriched proteins, ImShot uses Limma (linear models
for microarray data) moderated t test statistics as suggested in the
study by Kammers et al. (37). Limma was originally developed to find
differentially enriched genes in microarray-based experiments, and for
many years, it has been considered state of the art to analyze data
4 Mol Cell Proteomics (2022) 21(6) 100242
from gene expression experiments such as RNA-Seq. It employs
empirical Bayes approach that uses the entire dataset to shrink the
estimated sample variances for each gene toward a pooled estimate
(38, 39). This statistical approach results in much more stable and
powerful inference compared with ordinary t statistics mainly when the
number of replicates is small (39, 40). Very often, proteomics datasets
come with small replicates/sample sizes where such Bayesian treat-
ment is appropriate and has therefore gained some popularity within
the proteomics community over time (41–45). ImShot employs the
Limma R package (46) in the backend to computationally compare
two groups (i.e., healthy versus diseased) in proteomics datasets. For
every protein, the t statistics tord is computed using the mathematical
formula presented in (Equation 1). Where, lfc (log fold change) implies
difference between means of the two groups in log2 scale and σ,
σunscaled imply residual standard deviation and unscaled standard
deviation, respectively.

tord = lfc
(σunscaled*σ) (1)

tmod = lfc
(σunscaled*σposterior) (2)

Δσ = σ − σposterior
σ

*100 (3)

The Limma moderated t statistics tmod is computed using the
mathematical formula presented in (Equation 2). Where, σposterior im-
plies posterior values of σ, which is learned by applying empirical
Bayes method on full data. Therefore, if σ > σposterior, then |tord| < |tmod|.

Since a typical mass spectrometry experiment can identify and
quantify hundreds to thousands of proteins, multiple comparison
corrections are critical in controlling false positives. False positives are
assessed in ImShot using q values (47, 48), which are defined as the
lowest false discovery rate, at which a particular protein can be
classified as differentially expressed (37). q Values are used in the
same way as p values are used to control type I error. After multiple
comparison corrections, if a protein is assigned a q value of 0.05, then
one can anticipate that 5% of proteins with lower p values will be false
positives. Although multiple comparison corrections are intended to
reduce the false positives, adjusting for it might increase the number
of false negatives or instances where an impact exists but is not
detected as statistically significant (49). On such occasions when false
negatives are prohibitively expensive, one may wish to avoid cor-
recting for multiple comparisons. To account for this and hence allow
higher user discretion, multiple comparison corrections are optional in
ImShot.

Data Processing (MALDI–IMS)

The first step for processing IMS data involves the ever-challenging
problem of deisotoping an IMS peptide spectrum. Owing to the lack of
physicochemical separation of the peptides generated on tissues, a
serious problem of overlapping isotopic envelopes arise in almost all
the spectral files. Peaks at isotopic positions of one peptide are often
masked by peaks belonging to entirely different peptide(s) in the tissue
(Fig. 2A, top panel; spectrum in *.mis files section). Deisotoping of
imaging mass spectra has therefore been an unresolved challenge in
the field so far. A software module in ImShot (dedicated for deiso-
toping) generates monoisotopic IMS mass lists (Fig. 1) using the
following procedure.

The algorithm begins with the assumption that distinct peptides (at
isotopic positions) from a tissue display distinct distribution patterns
(Fig. 2A, top panel; spectrum in *.mis files section). Therefore, in order



FIG. 2. Generating monoisotopic IMS mass lists by filtering overlapping spectra. A, upper panel, (spectrum in *.mis files) shows a
supposed isotopic envelope extracted from a MALDI–IMS spectrum. The supposed isotopic peaks show very distinct spatial distribution
patterns (HE tissue images alongside the peaks). The middle panel (hierarchical clustering [SCiLS Lab]) shows the segregation of the complex
spectra into those of distinct peptides (m/z = 1326 and 1385.75 in this case). The spatial distributions of masses at isotopic positions are
identical in this case (ion images below the isotopic envelopes). Deisotoping algorithm is applied on these spectra to generate the monoisotopic
IMS mass lists (bottom panel). B, nonapical peak assignments in some cases by proprietary software, for example, SCiLS lab. It highlights the
importance of the peak correction module in ImShot. IMS, imaging mass spectrometry.

In Situ Discovery & Proteomic Data Analysis by ImShot
to parse the tissue into maps of distinct peptides, we have applied the
unbiased hierarchical clustering algorithm of SCiLS Lab (SCiLS, www.
scils.de) (33) on the entire IMS dataset (Fig. 2A, middle panel; Hier-
archical clustering section). Since spatial distributions of isotopic
peaks of the same peptide are supposed to be identical, we applied
the deisotoping algorithm on the mass lists that distinguished one
cluster from the other (Fig. 2A, lower panel; Deisotoping section). We
did not encounter any isotopic envelope violating the aforementioned
condition in the example IMS dataset (7).

Deisotoping was performed using standard tolerances, which for
MALDI-TOF peptides were ±0.15 and 50% for m/z and intensity,
respectively (50), for example, for anym/z =m, we removed all them/z
(mi) values falling within the interval: m + 0.85 ≥ mi ≥ m + 1.15. These
values can be adjusted in case of high-resolution IMS measurements
to account for monoisotopic peaks that might be present in the same
spatial cluster and within the isotopic mass tolerances.

Following the deisotoping step, we occasionally observed non-
apical value assignment of a small fraction (~20–25%) of all the
monoisotopic m/z peaks in a cluster (Fig. 2B). For example, in case of
an apex of a peptide peak at m/z = 731.5, SCiLS Lab (33) assigns the
value at m/z = 731.9. This happens mainly because it deals with m/z
intervals rather than m/z peaks. Since our aim is to “identify” peptides
from IMS by comparing it with LC–MS data, we applied a peak
correction algorithm to the “incorrectly” assigned m/z values (Fig. 2B).
To correct a peak corresponding to an m/z value (say m), ImShot
scans a window of m/z +1 that contains m. If the intensity of m is not
the highest within that window, then it updates m with the m/z value
corresponding to the highest value there. As the ions are mostly singly
charged in MALDI, this strategy ensures that the correct apex value is
selected. However, in case of high-resolution IMS datasets, there is a
rare possibility that peaks with a nonapical value occurred within the
aforementioned window. Based on user input and occurrence anal-
ysis, this particular situation would be dealt with in the next version of
ImShot.

The processed mass list from the aforementioned step is then used
for data integration with LC–MS data and identification of parent
proteins using user-defined mass matching and MLP scoring.

Development of ImShot R Package

The ImShot R package has been developed to offer greater flexi-
bility to the users. It has five main functions to implement IMS and
LC–MS data integration pipeline and also to handle LC–MS data
separately. The main function(s) are further supported by many
Mol Cell Proteomics (2022) 21(6) 100242 5
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subfunctions rendering the source code of ImShot entirely modular.
Following are the five main functions of the ImShot R package:

i. two_grp_limma—This function filters an LC–MS dataset (pro-
teingroups.txt/peptides.txt from MQ output), imputes missing
values, normalizes, performs two group comparisons using
Limma statistics, and writes the results in the user config
directory according to the aforementioned steps.

ii. Deisotope_masslist—This function desisotopes IMS masslists
and corrects m/z peaks for mass deviation. Results are written
in a timestamped folder inside user config directory depending
on the users' OS as described in the section Testing ImShot
desktop app in the supplemental data.

iii. ims_lcms_integration—As the name suggests, this function
implements data integration by combining outputs from
two_grp_limma and deisotope_masslist functions with the help
of MLP scoring followed by writing the results in the user config
directory as described in the section Testing ImShot desktop
app in the supplemental data.

iv. go_enrichment_analysis—This function performs GO enrich-
ment analysis using ClusterProfiler R package (51). However,
one node label frequently overlaps with another in the network
plot created by the ClusterProfiler package, making the plot
difficult to interpret. Furthermore, the ClusterProfiler package
does not allow users to modify the (x,y) coordinates of nodes to
improve clarity. To overcome the challenge, this ImShot func-
tion facilitates plotting results directly on a Cytoscape (https://
cytoscape.org/development_team.html) (52) session, where
users can choose from a wide range of available toolboxes to
customize their network graphs. It is important to note that
Cytoscape must be running before executing this script. Finally,
this function writes the results after enrichment analysis in the
user config directory as described previously.

v. pathway_enrichment_analysis—This function performs
pathway enrichment analysis using ReactomePA R package
(53). Like the go_enrichment_analysis function, this function too
facilitates plotting results directly on a Cytoscape session to
bypass the issues described earlier. Cytoscape must be running
before executing this script, and it also writes the results after
enrichment analysis in the user config directory in the afore-
mentioned manner.

The help functionality of R can be used very effectively by the user
to know about the operational details of the functions. For example, to
FIG. 3. Software architecture. Left panel (blue), shows the architectu
end and back end. Front end is developed using HTML, CSS, and JavaSc
with each other by passing data in the form of JSON objects. Front end
multiprocess architecture (middle panel, red). The renderer process is ma
the state of the application by communicating with operating system v
Renderer and main processes communicate with each other through
executing user requests. Created with BioRender.com. CSS, cascadin
language; JSON, JavaScript Object Notation.
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know more about two_grp_limma(), the users can type ?ImShot::
two_grp_limma in RStudio console. Advanced users can also freely
modify the functions to implement desired functionalities or to expand
the package's functionalities by augmenting it with new functions.

Development of ImShot Desktop Application and GUI

The ImShot desktop application has been developed using several
programming languages. The front end is written using hypertext
markup language (HTML), cascading style sheets (CSSs), JavaScript
(JS), and the backend is mostly R (Fig. 3, left panel). JS also partici-
pates in the backend computation by creating appropriate data
structures for plotting the data. We used the child_process module of
node.js to call functions written in R programming language that
perform data wrangling in the backend (Fig. 3, left and middle panels).
We used the child_process.spawnSync function, which spawns child
process in a synchronous manner that blocks the event loop until the
spawned process either exits or is terminated. The data are then
passed from R environment to JS in the form of a JS Object Notation
(JSON) object https://www.json.org/json-en.html; (Accessed on 2021/
07/02) (Fig. 3, left panel) that optimizes communication and editing at
every level. ImShot JSONifies (encodes in JSON format) the data to be
sent to R, and in R environment, it gets un-JSONified (decoded from
JSON format) so that R code can use them. Finally, the software
JSONifies the R output and sends it to JS, where it gets un-JSONified
for displaying in the front end (Fig. 3, left panel). Thus, JS facilitates the
communication between front ends and back ends by acting as an
interface between them.

ImShot then employs the open-source software framework Electron
that enables building desktop applications by integrating web tech-
nologies, such as JS, HTML, and CSS. It does so by combining Chro-
mium rendering engine and the Node.js runtime. Figure 3,middle panel,
depicts the multiprocess architecture of Electron. The main process's
task is to start the application and respond to its lifecycle events such as
creation and destruction of renderer process. It is also responsible for
communicatingwithOS via system application programming interfaces
(APIs) (Fig. 3, right panel). TheRenderer process usesChromiumengine
to render a web page as an independent process. It handles fetching
and rendering HTML, loading any referenced CSS and JS, styling the
page accordingly, and executing the JS. The Node.js runtime uses
Google’s open source V8 engine to interpret JS and provide APIs for
accessing the file system, loading code from external modules, and
communicating with other programming languages.
re of ImShot desktop application, which comprises of two parts: front
ript, and the backend is programmed in R. The two ends communicate
s and back ends are packaged using Electron framework that has a
inly responsible for rendering the GUI, and the main process manages
ia native application programming interfaces (APIs) (right panel). The
interprocess communication (IPC), which is critical for successfully
g style sheet; GUI, graphic user interface; HTML, hypertext markup
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RESULTS

Moderated t Test Yields More Significant and Biologically
Relevant Proteins

Application of Limma-based moderated t test on the data-
set from our recent study on aromatase-induced male infer-
tility (7) shows that this form of analysis yields more
statistically significant proteins (Fig. 4, green points on the
volcano plot; Table 1) as compared with the ordinary t test. For
all these proteins, we observe that the percentage shrinkage
(Δσ ) in sample variance (computed using (Equation 3)) is
always positive (Table 1) and |tmod| is always greater than |tord|.
As higher t value is associated with smaller p value, we
observe that Bayesian modeling yields more statistically sig-
nificant proteins when compared with ordinary t test by
shrinking the sample variance toward a pooled estimate.
However, to learn if these additional statistically significant

proteins are at all relevant biologically, we performed GO
enrichment analysis using the GO analysis module of ImShot.
In GO-cellular component enrichment network, we notice that
most of the proteins that are significantly upregulated upon
aromatase overexpression are involved in regulation of the
extracellular matrix (ECM) (Fig. 4, lower red panel). Interest-
ingly, it has been shown that components of the ECM are
upregulated in men suffering from infertility (54, 55). In case of
WT, we observe the prominence of acrosomal membrane and
protein complexes required for high-energy cellular processes
(as expected in case of normal spermatogenesis) (Fig. 4, lower
green panel). Together, these results justify the application of
Bayesian modeling over ordinary t test: we not only get more
proteins that are statistically significantly different between
two conditions but also can get more information that
describes the condition biologically.

“Identification” of Proteins In Situ Through Data Integration
and Peptide Ranking

Results from the deisotoping module are used as the IMS
input for data integration. Our example dataset revealed a
substantial reduction in the number of peaks after deisotoping
(Table 2). Since the isotopic peaks of the same peptide have
identical spatial distribution, deisotoping could get rid of false-
positive peaks. Monoisotopic mass lists from the IMS exper-
iments are compared with LC–MS data to identify the corre-
sponding parent proteins in the data integration modules
(Fig. 5, left and right panels). First, the monoisotopic mass list
for every spatial cluster is searched within either diseased or
healthy set of enriched LC–MS peptides depending on the
prevalence of the respective cluster (Fig. 5, left panel). Masses
that distinguish a diseased peptide cluster from a healthy one
or vice versa are thereby selected for the intended differential
analysis. Since the accuracy of measurement differs accord-
ing to the measurement platform (ion source, mass analyzer,
etc), the search is performed within a certain tolerance (τ). This
part of the module has been kept flexible (user-specified input)
(supplemental Fig. S2, snap from the GUI) keeping in mind the
wide variety of measurement platforms that the users might
use.
Owing to the relatively low accuracy of IMS as compared

with conventional shotgun proteomic measurements, the
tolerance search potentially yields one-to-many mapping
between IMS and LC–MS peptides, that is, one IMS peptide
mass is annotated to multiple LC–MS peptides originating
from different parent proteins (Fig. 5, right panel). Results of
the tolerance search on our example data show that ~63% of
m/z values (spanning over the IMS clusters mentioned in
Table 2) bear the one:many correspondences with the iden-
tified peptides in LC–MS. To resolve this ambiguity, we
devised a novel scoring method that ranks the identity of
peptides (as being part of the parent protein) based on the
following equation:

MLP= μ * log2fc
pmod

(4)

where μ is the mean intensity (after log transformation) of a pep-
tide across the replicates in either diseased or healthy group, pmod

is the Limma moderated p value of the same peptide, and log2fc
implies the fold change between the diseased and healthy groups,
which is defined as follows,

log2fc= μdiseased − μhealthy (5)

Likelihood of a peptide to belong to its corresponding
identified parent protein was correlated to increasing MLP
score for that peptide based on the following reasonings:

i. Peptides of relatively higher abundance are preferably
detected in MALDI–IMS, mainly because of the lack of
any separation technique and competitive cocrystalli-
zation of matrix/biomolecules (μ). Hence, peptides
(belonging to certain proteins) having a higher μ value
among the multiple possibilities are most likely the ones
that are detected in IMS.

ii. The search space for a peptide belonging to a cluster
detected in IMS measurements is narrowed down to
either healthy or diseased LC–MS data depending on
their occurrence in the corresponding tissues ( log2fc).
This increases the likelihood of a peptide belonging to a
particular protein with very high confidence.

iii. Inclusion of the moderated p value in the scoring system
is used to increase the likelihood of a peptide belonging
to a given parent protein even further (pmod). Using p
values arising from Limma statistical tests increases the
search space further. Lower the pmod, higher the score
and higher the probability of an IMS peptide to belong to
its corresponding identified protein.

Therefore, peptides from spatial IMS clusters with top MLP
scores are regarded as belonging to the corresponding parent
protein identified in LC–MS (Fig. 5, right panel). This workflow
is designed to focus on the most differentially expressed
Mol Cell Proteomics (2022) 21(6) 100242 7



FIG. 4. Limma-moderated t test provides more powerful inference. Top panel shows a volcano plot after two-group comparison test using
Limma statistics where dots with red colors correspond to statistically significant proteins having (lfc> 2 || lfc<−2) and p < 0.05 that are
overlapping between standard t test and Limma. The green dots in the plot show the proteins that become statistically significant only when
Limma is applied. The Venn diagram in the middle panel demonstrates that Limma statistics yields 12 more proteins than ordinary t test. These
were used in GO-CC enrichment analysis whose results are depicted in the bottom panel in the form of a gene–GO term network. Two distinct
GO clusters are observed: the red rounded dashed rectangle displays the cluster of terms enriched in AROM+ proteins, whereas the green
rounded dashed rectangle highlights the cluster of terms enriched in WT proteins. Tiny fixed sized gray nodes in the network represent genes,
and larger light-colored nodes (variable sizes, see size legend) represent GO terms. An edge between a gene node and GO term node indicate
that the term was not enriched by chance. CC, cellular component; GO, Gene Ontology.

In Situ Discovery & Proteomic Data Analysis by ImShot

8 Mol Cell Proteomics (2022) 21(6) 100242



TABLE 1
Statistically significant proteins determined exclusively using Limma statistics

Gene lfc tord pord tmod pmod σ σposterior Δσ

Fsip2 −2.58786 −2.54893 0.063377 −3.17401 0.017473 1.243452 0.998568732 19.69
Afm 2.304437 2.729307 0.05248 3.371293 0.013497 1.034089 0.837170525 19.04
Vtn 2.282418 2.318201 0.081297 2.88337 0.025814 1.20584 0.969483584 19.6
Hist1h1e 2.10801 2.072954 0.106872 2.581464 0.039149 1.245457 1.000120384 19.7
Lum 2.611408 2.718441 0.053072 3.377887 0.013382 1.176523 0.946837126 19.52
Serpinf1 2.453236 2.521249 0.06527 3.134472 0.018413 1.191706 0.958562629 19.56
Ccdc136 −2.11621 −2.22431 0.090179 −2.7628 0.030447 1.165223 0.938113925 19.49
Col12a1 3.304637 2.097001 0.104005 2.639595 0.036104 1.93006 1.533317489 20.56
Lypd4 −2.61134 −2.53249 0.064494 −3.1553 0.017911 1.262879 1.01360433 19.74
Fmo2 2.138849 1.976454 0.119285 2.466548 0.045988 1.325376 1.062028449 19.87
Tex33 −2.00396 −2.1484 0.098158 −2.66628 0.034791 1.142407 0.920511851 19.42
Atp1a4 −2.0369 −2.51776 0.065513 −3.1028 0.019206 0.990835 0.804009894 18.86

lfc, log fold change; σ, sample standard deviations for each gene/protein; σposterior, posterior values for σ; Δσ, percentage shrinkage; pord, p
values corresponding to the t-statistics (tord); pmod, p values corresponding to the moderated t statistics (tmod).
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peptides under an altered physiological state. The input IMS
data ensure selection of peptides distinguishing the healthy
from the diseased state. Further emphasis on the higher fold
change and lower p values in the peptide ranking step
reinforces the focus on proteins discriminating a diseased
state from a healthy one.

Validation of “Identified” Proteins in ImShot

Additional validation of the proteins with top MLP scores is
required to impart further confidence in the applicability of this
scoring method, in general. In addition to validating experi-
mentally the distribution pattern of a subset of peptides
identified in IMS measurements (7), we attempted to further
validate the scoring here by using a combinatorial approach
involving modules from ImShot itself, available public data,
and correlation analysis of multiple peptides assigned to the
same proteins within a cluster.
TABLE 2
Number of peaks (peptide masses) in IMS clusters before and after

data cleaning (deisotoping + peak correction)

Cluster Before After

WT_Tubular_cluster_1 110 51
WT_Tubular_cluster_2 4 3
WT_Tubular_cluster_3 235 108
WT_Tubular_cluster_4 244 114
WT_Tubular_cluster_5 116 55
WT_Tubular_cluster_6 37 27
WT_Tubular_cluster_7 183 135
WT_Tubular_cluster_8 2 2
WT_Tubular_cluster_9 11 6
WT_Tubular_cluster_10 9 7
WT_Tubular_cluster_11 113 54
WT_Tubular_cluster_12 14 7
WT_Tubular_cluster_13 154 78
WT_Tubular_cluster_14 2 1
AROM_Interstitial_cluster 40 37
Total masses 1274 685
Computational Validation Through ImShot Modules

The GO and pathway analysis modules of the functional
assessment/validation section (Fig. 1, right panel) are used
here to assess the functional relevance of the identified pep-
tides according to their spatial localization. We first opted to
validate the parent proteins of peptides (with highest MLP
score) from a cluster observed exclusively in the interstitial
spaces of AROM+ testis (Fig. 6A).
GO Analysis–This module allows users to associate a

common theme to the genes/proteins of interest that can help
answer the biological question. GO provides annotation for
genes or gene products at different domains: cellular
component, molecular function, and BPs that are organized in
the form of directed acyclic graph data structure. It is possible
that proteins could be annotated to multiple GO nodes.
Moreover, because of the nature of directed acyclic graph
data structure, a gene annotated to a particular node also
inherits annotation from the ancestors of that node. Therefore,
in order to find out if a GO term is enriched in specified list of
genes not by chance, ImShot calculates p values as proposed
in the study by Boyle et al. (56):

p= 1−∑k−1
i=0

(Mi ) * (N−Mn−i )
(N
n
)

(6)

Where, N is the number of genes/proteins in background list, M is
the number of genes within that list that have direct/indirect
annotation to the GO node of interest, n represents the length of
the list corresponding to the genes of interest, and k is the number
of genes within that list, which are annotated to the node. ImShot
uses an R package called ClusterProfiler in the backend to
perform the GO over-representation test. For the background
gene set, ImShot allows the user to either use the global back-
ground provided in ClusterProfiler or a gene/protein list of their
own, which contains customized background list for user-specific
needs. The results are displayed in the form of a network graph
Mol Cell Proteomics (2022) 21(6) 100242 9



FIG. 5. Data integration challenges and solutions. Left panel, (tolerance search) illustrates the concept used in the tolerance search module
of ImShot. IMS mass lists from one cluster of any group (healthy/diseased) is searched inside LC–MS mass list (volcano plot) of the corre-
sponding group within a user-defined tolerance (X ppm). Because of the difference in accuracy of measurement between the two orthogonal MS
platforms, search results are ambiguous, that is, multiple LC–MS peptides can be annotated to an IMS peptide as illustrated in the right panel.
The data integration module of ImShot resolves this ambiguity by ranking LC–MS peptides by MLP scores where the peptide with highest MLP
score is considered to be the most likely one (right panel). Created with BioRender.com. IMS, imaging mass spectrometry; MLP, most likely
peptide.
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that shows association between gene and GO terms, and an edge
is drawn between a gene and a GO term if gene is found enriched
in that term (Fig. 6C).
We observe that peptides from proteins like mimecan,

different chains of collagen, and prolargin, which have previ-
ously been shown to be involved in ECM assembly and
regulation (7, 55, 57), have acquired the highest MLP scores
(Fig. 6A). In addition, we find that the interstitial cluster is
enriched in BPs related to connective tissue formation
involving ECM components (Fig. 6C) and hemostasis. This is
in line with the observation that interstitial spaces and the
ECM components involved therein are severely affected in the
AROM+ phenotype (54, 55). At the same time, these proteins
are also observed to be highly enriched in AROM+ LC–MS
data (Fig. 6B). Applying expert knowledge and database
mining on the peptides identified with highest, second highest,
and third highest MLP scores for the aforementioned cluster
(Fig. 6A), we observed a decrease in biological relevance with
lower MLP scores. Therefore, the MLP scoring–based ranking
method is providing us with probable protein identification in
situ with reasonable accuracy and minimum false positives.

Pathway Analysis

Pathway analysis module allows users to associate a
common theme to the genes/proteins of interest by anno-
tating them to the biological pathways. Often knowledge of
affected biological pathways can help answer the biological
question. Here, we used the R package ReactomePA (53) to
discover biological pathways in which the genes/proteins of
interest participate. Like the GO analysis module, the Reac-
tomePA package uses hypergeometric distribution model to
calculate p values to determine whether any pathways in
Reactome database occur in a specified list of genes at a
frequency greater than that would be expected by chance. In
addition, ImShot also supports pathway enrichment analysis
10 Mol Cell Proteomics (2022) 21(6) 100242
using the Kyoto Encyclopedia of Genes and Genomes data-
base, thereby increasing the applicability of the software for
the community. The results are displayed in a similar way as
the GO results (Fig. 6D).
Consistent with the GO analysis and other findings, we see

that ECM organization through collagen synthesis and
assembly (Fig. 6D) and immune responses characterize the
interstitial cluster in AROM+ testis. This further supports the
validity of our ranking method for identifying peptides in situ.

Validation Based on Public Data

We have primarily used publicly available data for validating
the in situ location of the proteins identified by ImShot. Two
peptide clusters from the two different biological conditions
(WT and AROM+) were selected that represented two distinct
testicular tissue structures (seminiferous tubules and inter-
stitium) (Fig. 7A) for more robust validation. The list of identi-
fied proteins (UniProt Ids) from each cluster (top MLP scores)
was searched for their expression data in the mouse gene
expression database (http://www.informatics.jax.org/
expression.shtml) using the following workflow:

i. First, we navigated to the “search with gene list” page
(http://www.informatics.jax.org/gxd/batchSearch) and
pasted the UniProt Ids in the ID/Symbols field and
filtered the “Search by” field to “UniProt ID” followed by
the search function.

ii. Following the search results, we analyzed the “Tissue x
Gene Matrix” tab after filtering the results for Anatomical
System = Reproductive system and Theiler Stage =
TS28 (postnatal).

iii. The resulting matrix was further filtered sequentially for
male reproductive system, testis, interstitium of the
testis, and seminiferous tubule.

The proteins that could not be matched to any mouse
expression data as specified previously were searched for

http://www.informatics.jax.org/expression.shtml
http://www.informatics.jax.org/expression.shtml
http://www.informatics.jax.org/gxd/batchSearch
http://BioRender.com


FIG. 6. Validating MLP scoring computationally. A, HE-stained image of AROM+ mouse testis. The deep blue pattern within the tissue
represents an interstitial cluster detected exclusively in AROM+. The peptides from this cluster were searched in corresponding LC–MS data,
and the results after MLP scoring are shown in different colors according to the ranks. B, some proteins having peptides with top MLP scores are
highlighted (in pink) in the volcano plot, showing that they were also highly enriched in the LC–MS data corresponding to AROM+ mice. C, gene–
GO term network after over-representation test using proteins from the table annotated with highest MLP scores (first group). Tiny fixed sized
gray nodes in the network represent genes, and larger light-colored nodes (variable sizes, see size legend) represent GO terms. An edge between
a gene node and GO term node indicates that the term was not enriched by chance. D, gene–pathway network after over-representation test
using proteins from the table annotated with highest MLP scores (first group). Nodes in the network represent Reactome pathways. Two
pathways are joined with an edge if they share enriched (not by chance) genes. Thickness of an edge is proportional to the number of common
genes. Nodes are colored according to p value of over-representation test, and the color gets darker as the p value decreases. GO, Gene
Ontology; MLP, most likely peptide.
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their corresponding human orthologs in the Human Protein
Atlas (58) https://www.proteinatlas.org/humanproteome/
tissue; (Accessed on 2021/04/24) by searching with the cor-
responding gene names in the search tab of the website. The
results were further filtered by looking specifically into the
“Tissue” section followed by selecting for “Male tissues” and
“Testis.” In parallel to the aformentioned data mining work-
flows, localization data in testis for the identified proteins were
also looked for in general scientific literature using the
PubMed search engine (https://pubmed.ncbi.nlm.nih.gov/)
(supplemental files S1 and S2).
All the 41 proteins identified in the representative peptide

cluster from seminiferous tubules (supplemental file S1)
showed tubular localization when analyzed for evidence in
mouse testis (Fig. 7A). In case of the interstitial cluster that
number was 7 of 15 proteins (Fig. 7A). Since the AROM+ is a
specific disease model, it is plausible that there are certain
proteins that are upregulated in the interstitium, which was
otherwise not observed under physiological conditions. We
therefore looked for association of the MLP-identified inter-
stitial proteins with ECM, components and factors of which
are highly upregulated in the interstitium of the AROM+
(supplemental file S2). Using this exhaustive validation
approach, we see that ImShot could successfully identify
most of the proteins (false positive rate of 3.5%) in the two
representative testis clusters.

Correlation Analysis

In the representative peptide clusters, we further looked for
multiple peptides that were assigned to the same protein and
Mol Cell Proteomics (2022) 21(6) 100242 11
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FIG. 7. Validation of ImShot identified proteins. A, corroborating the tissue localization of MLP identified proteins (panels 1 & 2;
supplemental files S1 and S2) in the seminiferous tubules or interstitial space. Data mining approaches revealed tubular localization (in mouse
testis, (68)) of all the 41 proteins identified in the tubular cluster (panel 3; supplemental file S1). In case of the interstitial cluster of AROM+, seven
proteins were observed to be located in mouse testis interstitium and/or associated with the extracellular matrix (panel 3). Further mining in the
Human Protein Atlas (panel 4, (58) https://www.proteinatlas.org/humanproteome/tissue; (Accessed on 2021/04/24)) confirmed the interstitial
localization of five more proteins (human orthologs) in the interstitium of the testis. Of the remaining three proteins, two were possible false
positives, and any localization data were not available for one (supplemental file S2). B, spatial correlation analysis of multiple peptides assigned
to the same protein by ImShot (for tissue distribution pattern, see supplemental Fig. S11). Top, two peptides annotated to collagen alpha-1 (XII)
chain (Col12a1) in the interstitium of AROM+. Middle, two peptides annotated to Calmegin (Clgn) in the seminiferous tubule of WT. Bottom, two
peptides annotated to A-kinase anchor protein 4 (Akap4)in the seminiferous tubule of WT. All the correlation analyses were carried out within the
respective IMS clusters by the correlation function of SCiLS Lab (33). Refer to supplemental Fig. S11 for the distribution patterns of Col12a1,
Clgn, and Akap4. IMS, imaging mass spectrometry; MLP, most likely peptide.
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performed a spatial correlation analysis on the IMS dataset
(Fig. 7B). We observe that the peptides have a moderate to
very high spatial correlation in both the clusters (Fig. 7B),
thereby providing an additional and strong validation of the
findings of ImShot.

ImShot: the Desktop Application and GUI

ImShot GUI has two parts: sidebar and main panels
(Fig. 8A). The sidebar contains the different modules of the
software as dropdown menus. For the two-group comparison
(Limma), it renders high-resolution interactive volcano plot
along with numeric input boxes for modifying fold change and
false discovery rate that allow users for desired data thresh-
olding (Fig. 8B). In addition, the user has the option of not
adjusting p values when false negatives are very costly (See
“Statistical Analysis of Proteomics Datasets Using Moderated
t Test” section in Computational Methods section; Fig. 8B).
Users can also save the plot in the PNG file format. ImShot
also shows that the Limma-moderated t test results in the
12 Mol Cell Proteomics (2022) 21(6) 100242
form of a searchable table, which can be exported as excel or
csv format (Fig. 8C).
For the GO and pathway enrichment analyses, it creates high-

resolution plots of GO–gene and pathway–pathway interaction
networks using the top 10 most significant GO and pathway
terms, respectively (Fig. 8,D andF). The plots can be exported as
PNG image files. These plots in the GUI are zoomable, and the
nodes are highly flexible allowing the users to select nodes of
their choice for rearranging them freely (see video tutorials and
supplementary file) to create a network map according to their
convenience and need. ImShot also shows the over-
representation test results in the form of a searchable table (for
top 10 most significant GO terms/pathways) below the network
plot, which can be exported as excel or csv format (Fig. 8, E and
G). Toprovideadditionalflexibilitywhenplotting the resultsofGO
and pathway analyses, we included a function in the ImShot R
package that takes the resulting data structure (after GO/
pathway analysis) and plots the graphs directly on a Cytoscape
(52) session using the user-specified font family and size.

https://www.proteinatlas.org/humanproteome/tissue


FIG. 8. ImShot GUI. A, ImShot GUI sidebar (yellow dashed rectangle) and main panel (red dashed rectangle). The sidebar panel can toggle
upon clicking on the icon enclosed in white dashed rectangle. B, interactive volcano plot. Reddish dots indicate statistically significant proteins
after Limma-moderated t test ((lfc> 2 || lfc< − 2)) and p < 0.05 and q value-based FDR control. The plot updates automatically when the lfc/FDR
is tuned using the input boxes provided. In addition, the plot can be updated according to whether a p value adjustment is desired. Placing the
cursor on a data point of the volcano plot provides information about the protein identity, its fold change, and p value (reddish rectangle).
C, searchable table after Limma-moderated statistics. D, protein–GO term interaction network after over-representation test. Tiny dark colored
fixed sized nodes represent proteins, and light colored variable sized nodes represent GO terms, and their sizes are proportional to the numbers
of proteins involved in them. A protein is connected to a GO term via an edge if and only if the term is enriched (p value is adjusted) in that
protein. E, searchable table after GO analysis. F, pathway–pathway interaction network after over-representation test. Two pathways are
connected via an edge if and only if both are enriched (p value is adjusted) in at least one common protein. Size of a node is proportional to the
number of proteins involved in it, and the color is proportional to the adjusted p value; lower p value maps to darker color. G, searchable table
after pathway over-representation test. Contents from all the tables can be copied into the clipboard or exported as CSV/EXCEL by clicking
corresponding buttons on top of the tables (shown in dashed red rectangle). FDR, false discovery rate; GO, Gene Ontology; GUI, graphic user
interface; lfc, log fold change.
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In addition, ImShot maintains an operation log
(supplemental Fig. S3) that allow users to record all the steps
along with names of the files and version of R used. This
paves the way for the user to reproduce the data analysis later
without any ambiguity.
DISCUSSION

ImShot is the first software of its kind to provide an end-to-
end analysis by integrating two orthogonal MS technologies.
The software can be used in any two-group comparison test,
that is, animal models, patient samples, and so on, allowing
Mol Cell Proteomics (2022) 21(6) 100242 13
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user flexibility in terms of experimental context. The software
deals with both the IMS and LC–MS data and integrates them
through a GUI that does not require any computational
expertise to operate. Although there have been studies aimed
at identifying peptides from IMS datasets, the approaches
have been diverse, and not all of them involved a combination
with LC–MS. Most of these approaches involved a consider-
able manual intervention resulting in a very limited output. The
others relied either on customized experimental approaches
or specific IMS platforms. Moreover, almost all the studies
lacked a defined and conveniently executable strategy that
could be used for integrating the two complementary datasets
in general, especially in the diseased context (24–32, 59)
(supplemental Table S2). Implementation of ImShot is inde-
pendent of IMS platforms used to generate the data. The
simple requirement of a mass list that characterizes a spatial
peptide cluster and a ranking algorithm that accounts for the
incompatibility in mass resolution between IMS and LC–MS
measurements gives the much desired generality in its use.
In addition, searching IMS masses in the corresponding
LC–MS dataset is associated with a user-defined tolerance,
which gives the user flexibility to use ImShot on a wide variety
of data generated by different IMS platforms. As a result,
ImShot can be used not only as an efficient high-throughput
screening tool but can also be integrated in experimental
strategies targeted at robust in situ peptide identifications (29,
31, 59).
While dealing with IMS data, ImShot performs a very crucial

task of deisotoping the peptide spectra based on spatial data
segregation. In absence of deisotoping, the resulting IMS
spectra would be biased toward an overestimation of the
number of peptide peaks and will also include ambiguous an-
notations of peptide masses when comparing with LC–MS
data. To the best of our knowledge, this is the only software
that deisotopes IMSpeptide spectra to get rid of false positives.
The novel method of ranking of IMS peptides in case of multiple
annotations (based on our proposed MLP scoring) associates
most likely biological pathways with themost probable areas of
the tissue. Furthermore, because ImShot only considers pep-
tides that are commonly found in the two different ionization
procedures (MALDI and ESI in this example), the results are
most likely unaffected by the apparent disparity in peptide
intensities introduced by the separate ionizations (60–62).
ImShot also employs a combination of three discriminatory
qualities of a peptide (mean intensity, log fold change, and p
value) for ranking and final identification, reducing the impor-
tance of exclusive technical aspects. Computational, experi-
mental, literature, and database-based validation (Figs. 6 and 7)
of the rankingmethod has imparted sufficient confidence in our
scoring approach, which can now be applied to any type of
tissues for two-group comparison test.
ImShot provides users with a wide choice of data pro-

cessing options when it comes to LC–MS data. This not only
allows the LC–MS data to be compared with the related IMS
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data but also provides the option of performing a
comprehensive LC–MS data analysis separately. The algo-
rithm design minimizes the contribution of missing values in
the final data and at the same time provides a multitude of
possibilities for imputing those values. Many GUI-based
software for LC–MS data analysis have either been desktop
applications running only on Windows platform (35, 63, 64) or
web applications (65–67). Though web applications have
many benefits, their stability depends on the state of the
server running the application, number of users accessing it,
network bandwidth, and so on. The web applications are often
written using shiny R package (65, 66) that are not easy to
debug https://shiny.rstudio.com/articles/debugging.html;
(Accessed on 2021/07/05). The general application of break-
points for debugging is largely unsuccessful for shiny appli-
cations as it has very restricted usage. Alternatively, one can
call the browser function that interrupts code execution and
facilitates investigation of the programming environment.
However, it involves manual removal of the browser function
for uninterrupted execution of the software, thereby burdening
the developer with an additional housekeeping step. On the
other hand, the desktop applications so far have been lacking
the aesthetics in generating graphical output leading users to
write additional scripts or use graphics editing software to
make publication quality figures. In ImShot, we have tried to
incorporate the best of the two worlds in producing high-
quality graphics like a web application and at the same time
running natively on user's computer.
ImShot works like a native web application that can read

and write data besides accessing the computer’s file system.
Moreover, Electron framework saves time by providing a
large pool of APIs, which the developers can utilize in their
desktop applications conveniently. ImShot is an open-source
software under Massachusetts Institute of Technology
license that allows anyone to view and modify its source
codes to adapt or extend it to use in more customized
environments. The modular design of the front ends and back
ends of ImShot allows time-efficient implementation of new
features. Other major advantages of this mode include code
optimization, modularity, faster deployment, and flexibility in
switching programming languages in the back end or
changing frameworks in the front end. Modular architecture
of ImShot’s codebase enables each function to perform a
specific task, thereby allowing the modules to be used
independently. Since ImShot performs lots of statistical
computations in the back end, the use of R makes a perfect
choice, and usage of HTML, CSS, and JS in the front end
makes the software extremely flexible and feature rich. In
addition, it also records the R code runtime, which allows a
software developer to monitor and optimize (if needed) the
back end. ImShot desktop application provides question
mark icons with hover effects next to every interface element
(input, dropdown box, file upload wizard, etc) to guide users
through the meaning of the input.

https://shiny.rstudio.com/articles/debugging.html
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In addition, we have released ImShot on GitHub, where
users can request feature(s) for the software and/or report
issues. This is part of our plans to augment many
more functionalities in the future releases of ImShot and
make it most useful and convenient for the research
community.
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