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Acetylcholine (ACh) signaling orchestrates mammalian movement, mental

capacities, and inflammation. Dysregulated ACh signaling associates with

many human mental disorders and neurodegeneration in an individual-, sex-,

and tissue-related manner. Moreover, aged patients under anticholinergic

therapy show increased risk of dementia, but the underlying molecular mecha-

nisms are incompletely understood. Here, we report that certain cholinergic-

targeting noncoding RNAs, named Cholino-noncoding RNAs (ncRNAs), can

modulate ACh signaling, agonistically or antagonistically, via distinct direct

and indirect mechanisms and at different timescales. Cholino-ncRNAs include

both small microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). The

former may attenuate translation and/or induce destruction of target mRNAs

that code for either ACh-signaling proteins or transcription factors control-

ling the expression of cholinergic genes. lncRNAs may block miRNAs via

‘sponging’ events or by competitive binding to the cholinergic target mRNAs.

Also, single nucleotide polymorphisms in either Cholino-ncRNAs or in their

recognition sites in the ACh-signaling associated genes may modify ACh sig-

naling-regulated processes. Taken together, both inherited and acquired

changes in the function of Cholino-ncRNAs impact ACh-related deficiencies,

opening new venues for individual, sex-related, and age-specific oriented

research, diagnosis, and therapeutics.
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Acetylcholine (ACh) controls both peripheral and cen-

tral nerves system (CNS) functions (Fig. 1A-D), and

impairments in the delicate balance between ACh pro-

duction and elimination (here referred to as ‘the

cholinergic tone’) may be detrimental to both func-

tions. Numerous proteins take part in maintaining a

stable cholinergic tone throughout the central and

peripheral nervous systems (CNS, PNS) [1]. Specifi-

cally, the choline acetyltransferase (ChAT) protein

synthesizes ACh, which is then packaged and transmit-

ted to the synaptic cleft or to the bloodstream by the

vesicular ACh transporter (VAChT) protein, produced

from a gene embedded within the first intron of the

ChAT gene. ACh signaling failure is observed in Alz-

heimer’s disease [2–4], amyotrophic lateral sclerosis

(ALS) [5], and other neurodegenerative diseases [6,7],

whereas hyperactivity of ACh can lead to severe car-

diac deficits [8,9]. At its action sites, ACh can trigger
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the activation of multi-subunit nicotinic ACh ionotro-

pic receptor channels (CHRNs) that can be either

homomeric or heteromeric and are composed of at

least one a subunit and one b subunit [10] or metabo-

tropic G protein-coupled muscarinic receptors (GPCR

CHRMs). Apart from the nicotinic a7 ACh receptor

(a7) CHRN receptor isoform, which is a homomer of

five subunits of the nicotinic receptor subunit a7, all

CHRNs and cholinergic receptor muscarinic (CHRMs)

are heteromeric, composed of five different subunits

each. These ACh receptors are encoded by 16 CHRN

and five CHRM subunit genes [11].

Cholinergic receptors are located both in the postsy-

naptic or target cells, where they mediate cell-to-cell

communication, and in the presynaptic (or secreting)

cell, where they serve as indicators of ACh levels in

the cleft or within the bloodstream. Correct ACh levels

are maintained by a balance between the rate of syn-

thesis and rate of degradation by the hydrolyzing

enzymes AChE and BChE. The main nervous system

cholinesterase is AChE, which is translated from sev-

eral AChE mRNA splice variants [15]. The major

AChE-S splice variant is translated into a membrane-

bound tetramer, whereas the monomeric soluble splice

variant (AChE-R) is present at a far lower level and is

induced under stressful conditions [16–18]. AChE-S is

anchored to the cell membrane via the structural pro-

tein PRIMA1 in the brain or the collagen-related

COLQ protein in neuromuscular junctions. BChE is a

soluble tetramer, which is mainly expressed in the liver

(https://www.proteinatlas.org/ENSG00000114200-BCHE/

tissue). After ACh breakdown, choline is retrieved to

the cell through specific CHT [6].

Control processes sustaining balanced ACh levels

involve direct communication linking internal brain

cholinergic projections (Fig. 1A,B), brain–body mes-

sages (Fig. 1C), immune system functioning (Fig. 1D),

and neuromuscular interaction. In the mammalian

brain, cholinergic signals originate from eight distinct

and autonomous nuclei (Fig. 1A). Cholinergic trajecto-

ries initiating in these areas innervate different brain

regions and along with cholinergic interneurons con-

tribute to the CNS cholinergic tone [12]. The main

route of cholinergic brain–body communication

involves the vagus nerve that innervates various

peripheral tissues (including the heart, lung, liver, and

Fig. 1. The cholinergic system. (A) The human brain includes eight cholinergic nuclei. Ch1 in the medial septum, Ch2 and Ch3 in the vertical

and horizontal limbs of the diagonal band of Broca, Ch4 in the nucleus basalis of Meynert, Ch5 in the pedunculopontine nucleus, Ch6 in the

laterodorsal tegmental nucleus, Ch7 in the medial habenula, and Ch8 in the para-bigeminal nucleus [12]. (B) ChAT in the presynaptic cell

synthesizes ACh from choline and acetyl-CoA. VAChT packages ACh in vesicles, which are secreted to the cleft. There, ACh can activate

pre (auto)- and postsynaptic cholinergic receptors (nicotinic or muscarinic). ACh in the cleft is hydrolyzed to acetate and choline by

acetylcholinesterase (AChE) which is attached to the cellular membrane by proline-rich membrane anchor 1 (PRIMA1, in the brain) or

Acetylcholinesterase collagenic tail Q peptide (ColQ, in neuromuscular junctions). Choline transporters (CHT) transporters reuptake choline

from the cleft to the presynaptic cell [1,13]. (C) The vagus nerve reaches internal organs such as the liver, where it intercepts information

and attenuates inflammation via ACh blockade of the NFkB pathway. In the liver, the main cholinesterase enzyme is butyrylcholinesterase

(BChE) [13,14]. (D) In the blood, ACh secreted by immune cells such as lymphocytes is intercepted by the a7 nicotinic receptor of other

immune cells (e.g., macrophages), which reduces their inflammatory signal [TNF, interleukin (IL)-1b, IL-6]. Blood ACh can be hydrolyzed by

AChE on the membrane of red blood cells [13].
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abdomen). The afferent vagal input to the brain sig-

nals temperature, pain, touch, and stretch levels, and

its efferent output are either paraganglionic or muscu-

lar [14]. ACh further plays a critical role in the innate

immune system, where it mediates anti-inflammatory

reactions via its secretion and activation in many

blood cells in the periphery (macrophages, monocytes,

NK cells, granulocytes, B cells, diverse subtypes of T

cells and others [13,19,20] (https://www.proteinatlas.

org/ENSG00000175344-CHRNA7/blood) and of

microglia in the brain [21]).

Apart from its regulation of vital functions, ACh is

an important effector of the sex-specific, circadian, and

age-related variability between individuals [22–25].
This reflects its capacity to modulate cognitive, behav-

ioral, and immune defense features, and affects human

health and well-being in diverse ways. Notably, this

immense phenotypic variability is difficult to explain

by coding genes alone. Rather, a ‘cholinergic regu-

latome’ might be involved. This compound collection

of genes may exert an important regulatory control

over the cholinergic system, affecting its adaptation

flexibility and its interindividual variability. The

cholinergic regulatome maintains the ACh tone by reg-

ulating transcripts coding for the ACh-synthesizing

and ACh-destructing enzymes, as well as transcription

factors (TFs) and nucleases enhancing or silencing

their expression, and upstream RNA controllers

including short and long noncoding-RNAs (ncRNAs).

Together, these agents variably operate to control the

expression of coding genes at the pre- and/or post-

transcription levels, as is briefly listed below.

Transcription factors are proteins that execute the

first stage in the transcription–translation process of

DNA. They may function as master regulators or as

selective context-dependent selectors of expression.

The same TF can regulate different genes in different

tissues or in the same tissue under diverse conditions

[26]. TFs can enhance gene expression or silence it,

and they may be recruited to the nucleus in response

to a cellular event. Cholinergic TFs may hence execute

the translation of an array of specific genes controlling

the production and destruction of ACh-related tran-

scripts and proteins (Fig. 2A,B).

Both the properties and roles of ncRNAs are more

diverse than those of TFs, and they can be divided

into subgroups according to their length and function.

Specifically, microRNAs (miRNAs) are, by far, the

most intensively studied type of ncRNAs [32]. In their

mature form, miRNAs are single-stranded short RNAs

(~ 20–23 bases). They can either be transcribed from a

dedicated gene (intergenic miRNAs) [33] or be pro-

cessed from a spliced-out intron (intronic miRNAs)

[34]. In spite of this general division and despite the

fact that intronic miRNAs are normally coexpressed

with their host genes, their expression can be uncou-

pled via alternative splicing or autonomous transcrip-

tion [35,36]. Further, intronic miRNAs can also

control the expression of their host genes [37,38] or

cooperate with them to control cellular function [39].

miRNAs are processed into their final form by the

Drosha and Dicer protein complexes and serve as

guide RNAs leading to targeted mRNA degradation

(e.g., via poly-A shortening or cleavage) by the RNA-

induced silencing complex complex [27,28] (Fig. 2B).

In comparison, long noncoding RNAs (lncRNAs) are

at least ~ 200 bases long and can originate from indi-

vidual promoters, via splicing or from the minus

strand of genes. lncRNAs may impact gene expression

by silencing a segment of a specific chromosome, like

the chromosome X lncRNA Xist [29]. Alternatively,

they may take part in organizing nuclear paraspeckles,

like NEAT1 [40]. Other lncRNAs are abundantly

localized in the cytoplasm and operate as ‘sponges’ for

short RNAs [30]. Thanks to their large number, cer-

tain lncRNAs play important roles in controlling cellu-

lar gene expression at large [31,41] and ACh signaling

in particular [42,43], while others are being studied in

different contexts.

Defining the ‘Cholino-ncRNA’
landscape

To describe ncRNA regulation, one should first

define the types and manners in which these regula-

tory processes take place. Largely, some ncRNAs can

directly affect the transcript levels of the gene of

interest (e.g., by preventing or inducing transcription

or via binding to the mRNA; this type of regulation

will be referred hereafter as direct regulation). Alter-

natively, ncRNAs’ effect on the gene of interest can

be mediated via other ncRNAs (i.e., one type of

ncRNA leads to under- or overexpression of another

ncRNA that binds to the gene of interest) or via a

coding gene (e.g., a ncRNA can affect transcript

levels of a second gene, which indirectly affects the

expression levels of the gene of interest). The two last

manners are nondirect types of regulation, with the

first (including ncRNAs mediators) being independent

of translation and is, hence, more immediate; for the

sake of terminology, this regulation mode will be

referred hereafter as semidirect regulation, whereas

the second nondirect regulatory pathway (consisting

of protein products of genes other than the gene of

interest) requires translation and is therefore slower.

This type of control will be referred to as indirect
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regulation. Graphical representation of this classifica-

tion is shown in Fig. 2A.

At another level, biological regulation can be classi-

fied by its final effect (i.e., does the regulation lead to

an agonistic or an antagonistic effect). For ACh sig-

naling processes, one may regard the signal intercepted

by the accepting cell as the terminal stage. Hence, any

regulation that reduces that signal (by lowering the

amount of ACh released, by elevating the amount of

ACh hydrolyzed in the intercellular space, or by reduc-

ing the amounts of receptors on the acceptor cell) may

be regarded as antagonistic, whereas any regulation

that inversely amplifies the intercepted signal will be

regarded as agonistic (Fig. 2B). Each of these out-

comes may involve TFs, miRNAs, or lncRNAs, as is

briefly discussed below.

Direct regulation

At the basal state, the pre- and post-transcriptional pro-

cesses orchestrating ACh production and destruction

(e.g., TFs and miRNAs) are kept balanced, maintaining

a quiescent cholinergic tone (Fig. 3A). When the basal

state is modified, prompt, rapid regulators may directly

affect mRNAs whose expression directly impacts ACh

signaling, for example, the ‘cholinergic genes’ include

ChAT, VAChT, AChE-S, AChE-R, BChE, COLQ,

CHT, PRIMA1, and the cholinergic receptors [25].Also,

miRNAs can block translation and/or lead to degrada-

tion of their target transcripts, which carry complemen-

tary sequence motifs [32]. Therefore, miRNAs that

control multiple cholinergic transcripts each may exert a

pronounced agonistic or antagonistic impact via chang-

ing the cholinergic signals (e.g., by targeting AChE and

attenuating ACh hydrolysis, they would operate as

direct agonistic regulators; Fig. 3B). Inversely, miRNAs

targeting ChAT, VAChT, and the cholinergic receptors

may limit ACh synthesis, secretion, or interception,

weakening the ACh signal and operating as direct

antagonistic regulators (for miRNAs operating as direct

regulators (agonistic or antagonistic), see Table S1).

Other genes whose downregulation affects ACh signal-

ing may add or delete activating or inhibitory choliner-

gic receptors to or from the postsynaptic membrane via

endocytosis (e.g., Arrestin [44], Clathrin [45], Rab5, 11,

22, and Arf6 [46], and CA3 [47]). The complexity of

direct RNA regulators of the cholinergic tone thus

depends on and is amplified by the complexity of their

affected protein targets.

Semidirect regulation

In addition to the large numbers of cholinergic tar-

gets regulated by miRNAs targeting cholinergic

Fig. 2. Types and forms of ncRNA regulation over the cholinergic tone. (A) Immediate regulation of cholinergic transcripts by ncRNA (one

wheel) is referred to as ‘direct’, unlike the effect of lncRNAs over ACh signaling, which is mediated via other ncRNAs or TFs (three wheels).

This may occur rapidly (the clock’s minutes hand), in which case it is referred to as ‘semidirect regulation’, or slowly (hours hand), to be

defined ‘indirect regulation’. (B) TFs, miRNAs, and lncRNAs can each cause either agonistic (right hand side) or antagonistic (left hand side)

regulation. Triangle arrows (?) indicate induction, and straight-line arrows (Ⱶ) indicate suppression. Blue lines indicate innate features of the

TF\miRNA\lncRNA, whereas the red, green, and yellow lines indicate complex systems in which a full line leads to the effect shown by the

scattered lines. For example, when miRNAs repress enhancing TFs (green full line), they cease to induce genes involved in ACh breakdown

(e.g., AChE, green scattered line to the right). This weakens the effect on ACh breakdown (leading to elevated ACh levels) [26–31]. Note

that each of the ncRNA types may affect the impact of the other types.
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transcripts (‘CholinomiRs’), these miRNA regulators

often control noncholinergic transcripts as well.

Therefore, transcripts sharing miRNA recognition

motifs with cholinergic mRNAs would compete with

them over the pool of those miRNAs. For example,

the AChE-targeting miR-608 resides within an intron

of the SEMA4G gene, which is widely expressed

throughout the brain, abdomen, and immune blood

cells (https://www.proteinatlas.org/ENSG00000095539-

SEMA4G). Notably, miR-608 also targets the non-

cholinergic, anxiety-related CDC42 and IL-6 tran-

scripts [48] (and its hosting gene itself; http://www.

mirdb.org/cgi-bin/target_detail.cgi?targetID=2034765).
Therefore, other miRNAs that target CDC42 or IL-6

can semidirectly affect AChE expression levels and

the cholinergic tone by suppressing their noncholiner-

gic shared targets, leading to higher levels of those

free cholinergic-targeting miRNAs and resulting in

reduced cholinergic transcripts. Examples include

miR-519e-5p, which is predicted to target both

CDC42 and IL-6, as well as 70 other miR-608 targets

[49]. Therefore, although intergenic miR-519e-5p (ex-

pressed throughout the brain and body tissues;

https://ccb-web.cs.uni-saarland.de/imota/) does not

target any cholinergic transcript, its increases may

downregulate at least part of those 72 targets, ‘free-

ing’ miR-608 chains and potentiating AChE downreg-

ulation (Fig. 3C).

lncRNAs as well may execute semidirect regulation

over the cholinergic tone, for example, when they

operate as sponges to miRNAs. Thus, lncRNA

Gm21284 includes binding sites for the ChAT-target-

ing miR-30e-5p and was shown to localize in the cyto-

plasm of rat brain cells [50] Overexpression of miR-

30e-5p was accompanied by reduced ChAT mRNA

levels, which was rescued by introducing higher levels

of the lncRNA Gm21284. That Gm21284 may operate

as a sponge to the ChAT-targeting miR-30e-5p would

prevent it from downregulating ChAT (Fig. 3D). Like-

wise, the lncRNA GAS5 operates as a sponge to miR-

96-5p [53], which predictably targets ChAT mRNA. A

recent report of a relatively slow but transient overex-

pression of ChAT and ACh [43] associates excess of

GAS5 with lagged upregulation of both ChAT mRNA

and protein levels. Finally, the paraspeckle-regulating

lncRNA NEAT1 targets miR-132, a conserved

miRNA that targets AChE [54,55].

A subclass of lncRNAs includes PSGs, which do

not code for proteins and many of which carry

miRNA recognition elements (PSG+MRE). These PSGs

compete with mRNAs over targeting miRNAs, specifi-

cally in the brain [56]. Knockdown of such PSG+MRE

leads to specific elevation of the miRNAs targeting

them and consequent downregulation of the mRNA

targets of these miRNAs. For example, the PSG PGO-

HUM00000243565 (PSG565) carries miRNA recogni-

tion elements (MREs) for several miRNAs targeting

cholinergic genes (AChE, BChE, VAChT). Knocking

it down led to downregulation of these cholinergic

transcripts that was proportional to the amount of

shared MREs with the knocked-down PSG+MRE [57]

(for a list of cholinergic lncRNAs and PSGs and their

target miRNAs, see Table S2).

Indirect regulation

Indirect (i.e., slow, lagged) regulation of ACh signaling

may take two forms. First, it includes miRNAs control-

ling the expression levels of TFs controlling the produc-

tion of cholinergic transcripts (Fig. 3E). The ChEA

dataset [52] includes 62 TFs that regulate three or more

cholinergic targets, including the cholinergic receptors.

Several TFs, such as JARID2, only regulate agonistic

cholinergic genes [ChAT, VAChT, cholinergic receptor

nicotinic a4 (CHRNA4), CHRM3, and CHRM4].

Others, such as SRY, mainly control antagonistic genes

(AChE, PRIMA1, COlQ) or agonistic genes that are

expressed in the periphery (the non-CNS receptors a3,
b1, c, d, with M4 as the only CNS agonistic one). Yet,

other TFs regulate cholinergic genes, which are

expressed in distinct tissue types. For example, EGR1

regulates ChAT, VAChT, AChE PRIMA1, a2,4,6,7, b4,
d, e, and M1,2,3,4 and is highly expressed throughout

the brain and in blood immune cells (https://www.prote

inatlas.org/ENSG00000120738-EGR1). In comparison,

AR regulates CHT, ChAT, VAChT, BChE, COLQ,

PRIMA1, a2,3,5,7, b3, d, and M3 and is highly

expressed in the liver, the gall bladder, and the genitals

(https://www.proteinatlas.org/ENSG00000169083-AR/

tissue). This indicates that these two TFs may each con-

trol the basal expression level of cholinergic transcripts

in their organs of expression (for a list of cholinergic

TFs and their targets, see Table S3).

Transcription factors control the cholinergic tone in

a tissue-specific manner. Therefore, the impact of miR-

NAs that target those TFs can only affect the choliner-

gic tone in those tissues. For instance, several

miRNAs such as miR-16-5p (highly expressed

throughout the body) and miR-155-5p (expressed in

most of the body tissues including the brain; https://

ccb-web.cs.uni-saarland.de/imota/mit/) target each of

the three ACh-agonistic TFs MYC, c-FOS, and

JARID2 (these TFs are referred to as ‘agonistic’ since

their target genes include at least two ACh synthesis

genes and a couple of cholinergic receptors but no

ACh breakdown genes; http://carolina.imis.athena-
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innovation.gr/diana_tools/web/index.php?r=tarbasev8%2

Findex). Likewise, TRIM28 is a TF that targets the a4
and b2 CHRNs but no other cholinergic transcript.

This TF is highly expressed throughout the brain, sug-

gesting that its downregulation may exert a specific

antagonistic effect on the a4b2-mediated cholinergic

tone.

The above classification is inevitably incomplete,

since certain miRNAs can operate both as direct and

as indirect regulators. By targeting both a cholinergic

mRNA and a TF that targets the very same gene, such

miRNAs may downregulate the cholinergic tone both

in the immediate and in the long term. For example,

miR-124, one of the most conserved and most

abundantly expressed miRNAs in the mammalian

brain [58], targets both the synaptic AChE transcript

AChE-S and the TF SOX9 that controls AChE tran-

scription. Other examples include miR-24, which tar-

gets BChE, the soluble variant of AChE (AChE-R)

and the TF HNF4A that regulates the transcription of

both AChE and BChE [59]. Interestingly, HNF4A is

exclusively expressed in the BChE-expressing gastroin-

testinal, liver, gall bladder, pancreas, and kidney [6]

(https://www.proteinatlas.org/ENSG00000101076-HNF

4A/tissue). Together, these reports suggest simultane-

ous, tissue-specific miR-24-mediated direct and indirect

regulation modes, both of which may exert context-

dependent agonistic effects.

Fig. 3. Variable ncRNA-mediated routes control the cholinergic tone. ‘Basal state’ and ‘imbalanced state’ are noted by blue and green

frames, respectively. (A) The ‘basal state’ indicates maintained balance between the cholinergic transcripts (green Libra’s basket) to their

controlling TFs (red Libra’s basket) and miRNAs (orange Libra’s basket). (B-E) The diameter of the colored circles indicates increased (larger)

or reduced (smaller) expression B Overexpressed CholinomiRs (e.g., miR-608) predict lower levels of their cholinergic targets (e.g., AChE)

[48]. (C) Excess of a noncholinergic miRNA (e.g., miR-519e-5p) sharing targets with a cholinergic miRNA (e.g., miR-608) leads to

downregulation of the shared targets, elevated CholinomiR levels, and downregulated cholinergic targets [48,49]. (D) Excess of sponging

lncRNAs [including competing pseudogenes (PSGs)] decreases the levels of their miRNA targets, ascending the levels of the miRNAs’

cholinergic targets. For example, excess lncRNA Gm21284 downregulates miR-30e-5p, leading to elevated ChAT [50]. E. miRNAs targeting

TFs modulate the targets of these TFs. For instance, miR-125b-5p excess (noted as relevant for men-women brain differences in mental

disease [51]) suppresses the silencing TF REST, consequently leading to upregulation of REST’s targets (e.g., ChAT, VAChT [49,52]).
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Another example involves the internalization of

CHT transporters via a Ca2+-SNARE mechanism [60]

removing CHT transporters from the presynaptic

membrane. This would result in reduced reuptake of

choline and consequent slowdown of ACh signaling

and might lead to downregulation of the participant

genes and an indirect antagonistic effect.

Reciprocity in the ncRNA-cholinergic
control

The vital properties of ACh signaling require mainte-

nance of its responsiveness to modified conditions over

day and night (Fig. 4A), for example, to ensure consis-

tent surveillance over inflammatory states in central

and peripheral tissues. This is ascertained via the vagus

nerve, which mediates the capacity of the autonomic

nervous system to regulate inflammation through the

‘cholinergic anti-inflammatory pathway’, controlling

ACh levels and its capacity to block inflammation via

activating the nicotinic ACh receptor a7 on immune

cells. Briefly, afferent fibers of the vagus nerve inter-

cept inflammatory signals in the periphery [13]. In the

brain, the muscarinic receptors M1 and M2 control

ACh secretion by the efferent vagus in reaction to the

afferent inflammatory signals [13]. ACh secreted from

the vagus activates the a7 ACh receptors on macro-

phages, preventing NFkB from entering the nucleus.

This ceases the inflammatory reaction of macrophages.

When ACh binds to the a7 receptor in macrophages,

the bound receptor physically interacts with Jak2 that,

in turn, phosphorylates STAT3, inducing its transloca-

tion to the nucleus where it operates as a TF, and at

the same time activating SOCS3 that inhibits further

STAT3 [61,62] (and, likewise, prevents IL-6-induced

proinflammatory reaction via blockade of gp130 [63]).

Intriguingly, transient expression of STAT3 has an

anti-inflammatory effect while its sustained expression

leads to a proinflammatory effect via IL-6 secretion

[63–65]. Further, ACh-bound a7 receptors recruit the

intergenic miR-124 that targets STAT3 and prevents

its sustained expression [62,65] (for regulation of miR-

124, see Ref. [66] and https://amp.pharm.mssm.edu/Ha

rmonizome/gene/MIR124-1). These two concomitant

processes result in reduced secretion of inflammatory

signals, which is intercepted by the afferent vagus that

accordingly leads to attenuation of ACh secretion

(Fig. 4B).

In addition to the above events, STAT3 also targets

ChAT, whereas miR-124 targets AChE. Since mono-

cytes express ChAT [13,19], and other immune cells

express AChE (https://www.proteinatlas.org/ENSG000

00087085-ACHE/blood), this combination may elevate

the cholinergic tone in the short term (by lowering

AChE levels) and reduce it in the longer term (by pre-

venting sustained, STAT3-mediated ChAT expression),

by enabling local control over the ACh tone. In

human immune cells, miR-211 targets the a7 subunit

mRNA to restrict the cholinergic attenuation of

inflammation [72]. Intriguingly, miR-211 is sponged by

the lncRNA NEAT1 [41], the transcription of which is

promoted by STAT3 [52]. Moreover, NEAT1 sponges

miR-495-3p that downregulates STAT3, yielding a

feedback loop that can affect NEAT1 levels (Fig. 4B).

In summary, the cholinergic tone in the immune sys-

tem is strongly regulated by ncRNAs directly, semidi-

rectly, and indirectly and in a reciprocal manner (for

regulation of miR-211 and miR-495-3p, see Ref.

[73,74] and https://amp.pharm.mssm.edu/Harmonizome/

gene/MIR495, https://amp.pharm.mssm.edu/Harmonizome/

gene/MIR211).

Another example of reciprocity involves the AChE-

Ca2+-miR-132 triad. miR-132 targets AChE and

reduces its synaptic amounts, elevating ACh levels and

potentiating its capacity to bind cholinergic receptors

[54]. The excess ACh can bind to muscarinic autore-

ceptors such as M1 and M3 [75–77], inducing calcium

release from intracellular stores [78] and possibly inter-

fering with REM sleep [79]. Since the promoter of the

miR-132 gene includes a calcium response element

[54], ACh binding to the M1 and M3 autoreceptors

may increase miR-132 transcription. Thus, miR-132

can cause a positive feedback loop maintaining a high

cholinergic tone and affecting REM sleep. Likewise,

new findings suggest that miR-1010, a Drosophila

intronic miRNA which resides in the SKIP gene, cre-

ates, with its hosting gene, a homeostatic feedback

loop maintaining b2 nicotinic receptor levels. miR-

1010 targets the b2 transcript, thus reducing its tran-

scription levels, whilst b2 receptors themselves initiate

a cellular cascade resulting in the expression of miR-

1010 hosting gene [39]. The complex picture of

miRNA regulation therefore affects various cholinergic

receptors and enzymes, and the transcriptional regula-

tors thereof.

Regulation in time and space

Apart from their capacity to alter the cholinergic tone,

diverse ncRNAs are differentially expressed in men

and women, throughout daytime, along age and

between tissues, which reflects yet higher levels of com-

plexity. This is compatible with the impact of the cir-

cadian clock on cholinergic-related phenomena [80,81],

which may be partially due to cholinergic-targeting

ncRNAs. For instance, miR-132 peaks during the day
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and decreases at night in the superchiasmatic nucleus

[67] and in the somatosensory cortex [68] but presents

an opposite rhythm (i.e., it peaks at night and nadirs

at day) in the hippocampus [69] (Fig. 4A). Further,

the lncRNA NEAT1 displays rhythmic expression in

murine pituitary cells, and many other lncRNAs,

including those shown to operate as sponges, show

rhythmic expression patterns [82,83]. Also, the cholin-

ergic TF STAT3 that targets ChAT, BChE, COLQ,

PRIMA1, CHRNb1, CHRNb4, and the M2 and M4

muscarinic receptors peaks in early morning hours and

shows a circadian expression pattern [84,85].

Notably, different pools of ncRNAs mainly target

transcripts responsible to ACh synthesis or breakdown

and present highly complex regulation patterns, in

immediate and lagged terms. Moreover, the same

ncRNA can simultaneously affect several transcripts.

Since some ncRNAs are exclusively expressed in a cer-

tain tissue(s), a single ncRNA can yield an agonistic

affect over the cholinergic tone in a specific tissue and

at a certain time frame, while others function in a sus-

tained manner. The complex patterns of those regula-

tory agents may account for the consequent

complexity of the cholinergic tone. For instance, mir-

335-5p targets both ChAT and REST (http://carolina.

imis.athena-innovation.gr/dianatools/web/index.php?r=
tarbasev8%2Findex&miRNAs%5B%5D=hsa-miR-335-

5p&genes%5B%5D=&genes%5B%5D=CHAT&genes%

5B%5D=REST&sources%5B%5D=1&sources%5B%5

D=7&sources%5B%5D=9&publication_year=&predict

ion_score=&sort_field=&sort_type=&query=1). Mir-335-

5p is highly expressed in the brain (https://ccb-web.

cs.uni-saarland.de/tissueatlas/patterns). Since REST

silences ChAT and VAChT, miR-335-5p can create an

antagonistic effect in the brain at the short term (by tar-

geting ChAT) and an agonistic effect in the long term

(by targeting REST). In comparison, miR-212 is highly

expressed in the brain, liver, intestines and blood

(https://ccb-web.cs.uni-saarland.de/tissueatlas/patterns),

and targets the TF MYC, the soluble stress-induced

form of AChE (AChE-R) and BChE [59]. MYC is a

cholinergic agonistic TF (which induces transcription of

CHT, VAChT, a1,7, b1,2,4, and M2,3,5) [52]. Alto-

gether, miR-212 may hence exert an agonistic role in

the immediate term in the blood and liver (by targeting

AChE-R and BChE), whereas in the long term, it has

an antagonistic effect in the brain, blood, and liver

(where MYC is widely expressed; https://www.proteina

tlas.org/ENSG00000136997-MYC/tissue).

Further, age-dependent changes in cholinergic-regu-

lating ncRNAs suggest either antagonistic pleiotropic

effect or age-beneficial one. That the cholinergic

ncRNA expression pattern can change with age and in

response to specific stressors may result in long term

(and sometimes permanent) changes in the cholinergic

tone. An example involves the cholinergic TF EGR1,

which targets 15 cholinergic genes (including the two

ACh synthesis and secretion genes and the two genes

Fig. 4. Reciprocity and changes in time and space in cholino-ncRNAs regulation. (A) miR-132 as an example of cholino-ncRNA that changes

between tissues and sexes, during daytime and along age. Upper bar: miR-132 levels in the murine suprachiasmatic nucleus (SCN) and

somatosensory cortex (orange line) and in the hippocampus (green line). Thick and thin lines indicate high and low miR-132 levels,

respectively. Lower bar: plasma miR-132 levels in men and women along age [67–71]. (B) ACh activation of a7 receptors in macrophages

may reciprocally change the cholinergic tone in an auto- or paracrine manner. Red arrows with flat heads: suppression. Scattered flat head

arrows: Impaired suppression. ACh-mediated activation of a7 receptors (via interaction with Jak2) induces STAT3 nuclear penetration

(dotted arrow) and miR-124 elevation. In the nucleus, STAT3 induces SOCS3, NEAT1, and ChAT elevation. Cytoplasmic ChAT elevates ACh

secretion, and NEAT1 sponges miR-211 and miR-495-3p, among others, reducing their blockade of the a7 NAChR and SOCS3

(respectively), whereas SOCS3 and miR-124 suppress STAT3 [13,19,41,52,61-65,72].
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involved in ACh breakdown in the brain). EGR1 is

highly coexpressed in the brain with ChAT, VAChT,

and AChE (https://www.proteinatlas.org/ENSG0000

0120738-EGR1/brain). Correlative changes in the

levels of EGR1 and its AChE target occur in human

Alzheimer’s disease brains, where both transcripts were

shown to be normally expressed in the preclinical

stages of the disease while being reduced in its later

phases [86]. In rats, EGR1 levels change differently in

diverse brain regions, in an age-dependent manner

and in reaction to fear, during learning and along age

[87-89].

Sex-related differences in these regulatory processes

are of particular interest. In male, but not female rats,

chronic adolescent stress is accompanied by elevated

EGR1 levels, whereas stressed adolescent female, but

not male, rats exhibited high CNS inflammation, sug-

gesting sex- and tissue-specific and stress-induced dif-

ferences in EGR1 expression [90]. That stress in

female, but not male, rats was accompanied by ele-

vated levels of IL-6, IL-1b, and NFkB may indicate

that high EGR1 levels keep the cholinergic tone unim-

paired in stressed males. Likewise, both NEAT1 and

GAS5 show age-correlated expression patterns in

female humans [91], and NEAT1 expression elevates

with age in murine hippocampi, in parallel to memory

decline [92]. Furthermore, brain-enriched miRNAs iso-

lated from human plasma show sex- and age-specific

expression patterns. Those include miR-132, with

lower plasma levels in young females vs. males but

with similarly increased levels in men and women older

than 60 [70]. Likewise, miR-132 expression levels

ascend with age in murine hippocampi [71] (Fig. 4A).

Discussion

In the body of mammals, the cholinergic tone orches-

trates significant shares of brain functioning, sustains

balanced inflammatory reactions, and controls the

communication with the periphery, among other func-

tions. Despite the plethora of knowledge regarding the

cholinergic system, much is left to discover about its

ncRNA controllers. Specifically, the features creating

the observed large interindividual variability are only

partly deciphered. The cholinergic tone depends on a

relatively small number of genes (three genes maintain-

ing ACh synthesis, secretion, and reuptake, four con-

trollers of ACh breakdown, and two dozen channels).

Nevertheless, the ACh signals differ between tissues

and change during the day, along lifetime and between

males and females. As listed above, ncRNAs may be

responsible for much of this variation.

In this review, we aimed to illuminate the important

and complex role of ncRNAs in orchestrating the

cholinergic tone, and to highlight the fact that there is

still much to look forward to. For example, a rapidly

growing body of evidence shows that among other

agents, circular RNAs can also operate as sponges

[42]. Additionally, transfer RNA fragments, a recently

identified family of short ncRNAs that may operate as

expression regulators via sequence-specific transcript

degradation, emerge as active regulators of multiple

biological processes [93,94]. Also, while we covered the

different cholinergic-related functions of the various

ncRNA types, we ignored those genetic polymor-

phisms that alter their recognition elements in their

target mRNAs, and which can further alter the regula-

tory effects of these ncRNAs. For example, miR-132

and miR-608 both target AChE. Two single nucleotide

polymorphisms, one in miR-608 itself [95] and one in

the AChE MRE [48], can impair miR-608 downregula-

tion of AChE, leading to higher levels of AChE and

thus affecting, semidirectly, the expression of miR-132.

Additionally, certain miRNAs may be targeted for

destruction by those mRNAs carrying recognition ele-

ments complementary to their ‘seed’ sequences [96].

This inverse direction of regulation may add further

complexity to the surveillance by ncRNAs over cholin-

ergic signaling, while making this topic even more

intriguing than it has been so far.

To conclude, further research is needed to explore

the sex-, age-, and tissue-specific interactions between

cholino-ncRNAs and the ever-changing expression

levels of their target transcripts. And yet, even on the

basis of the existing knowledge summed up here, it

seems that cholino-ncRNAs can become a fruitful tar-

get for biomedical research, for identifying novel

biomarkers and for developing new therapeutics. In

particular, viewing the entire ncRNA landscape rather

than a single cholino-ncRNA, one is impressed by the

intricacy and consequences of their actions as those

are reflected in one specific pathway. Thus, observa-

tions of a seemingly biochemical pathway have led to

the understanding that it actually reflects a complex

pyramid of genes, RNAs, and proteins that keep inter-

acting and cross-interacting between them, culminating

in a surprising balance, which is pivotal for human

health and well-being. Yet more specifically, this com-

plexity indicates that to develop new diagnostic and/or

therapeutic agents for treating a particular disease, one

would gain substantially from exploring the ncRNAs

that target the cholinergic balance in the diseased tis-

sue, and doing that in men and women separately and

in an age-dependent manner.
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Table S1. miRNAs and their predicted (agonistic and

antagonistic) cholinergic targets. miRNAs (blue) in

ascending order. For every miRNA agonistic targets

(receptors—turquoise, synthesis proteins—light green),

the total number of agonistic targets (green), antago-

nistic targets (i.e., breakdown proteins—pink), and

total number of antagonistic targets (red) are shown.

Table S2. lncRNAs and PSGs and their predicted

miRNA targets. lncRNAs and PSGs in ascending

alphabetical order. Every lncRNA\PSG has multiple

targets (each of which in a different row) when all the

rows of a specific lncRNA\PSG are colored in the

same color (blue and green alternatively). Last column
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indicates the number of binding sites of the miRNA to

the lncRNA\PSG. The table includes only lncRNAs\

PSGs that are predicted to target at least three miR-

NAs with cholinergic targets and with each of the pre-

dicted miRNAs having at least five binding sites on

the lncRNA\PSG.

Table S3. TFs and their (agonistic and antagonistic)

cholinergic target genes. TFs (blue) in ascending

alphabetical order. For every TF agonistic targets

(synthesis proteins—light green, receptors—turquoise),

the total number of agonistic targets (green), antago-

nistic targets (i.e. breakdown proteins—pink), and

total number of antagonistic targets (red) are shown.

CHRNB, cholinergic receptor nicotinic b.

2198 FEBS Letters 594 (2020) 2185–2198 ª 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

NcRNAs change age and sex-related cholinergic tone N. Madrer and H. Soreq


	Outline placeholder
	feb213789-aff-0001
	feb213789-fig-0001

	 Defin�ing the `Cholino-ncRNA' land�scape
	 Direct reg�u�la�tion
	 Semidi�rect reg�u�la�tion
	feb213789-fig-0002
	 Indi�rect reg�u�la�tion
	feb213789-fig-0003

	 Reciproc�ity in the ncRNA-cholin�er�gic con�trol
	 Reg�u�la�tion in time and space
	feb213789-fig-0004

	 Dis�cus�sion
	 Acknowl�edge�ments
	 Fund�ing
	feb213789-bib-0001
	feb213789-bib-0002
	feb213789-bib-0003
	feb213789-bib-0004
	feb213789-bib-0005
	feb213789-bib-0006
	feb213789-bib-0007
	feb213789-bib-0008
	feb213789-bib-0009
	feb213789-bib-0010
	feb213789-bib-0011
	feb213789-bib-0012
	feb213789-bib-0013
	feb213789-bib-0014
	feb213789-bib-0015
	feb213789-bib-0016
	feb213789-bib-0017
	feb213789-bib-0018
	feb213789-bib-0019
	feb213789-bib-0020
	feb213789-bib-0021
	feb213789-bib-0022
	feb213789-bib-0023
	feb213789-bib-0024
	feb213789-bib-0025
	feb213789-bib-0026
	feb213789-bib-0027
	feb213789-bib-0028
	feb213789-bib-0029
	feb213789-bib-0030
	feb213789-bib-0031
	feb213789-bib-0032
	feb213789-bib-0033
	feb213789-bib-0034
	feb213789-bib-0035
	feb213789-bib-0036
	feb213789-bib-0037
	feb213789-bib-0038
	feb213789-bib-0039
	feb213789-bib-0040
	feb213789-bib-0041
	feb213789-bib-0042
	feb213789-bib-0043
	feb213789-bib-0044
	feb213789-bib-0045
	feb213789-bib-0046
	feb213789-bib-0047
	feb213789-bib-0048
	feb213789-bib-0049
	feb213789-bib-0050
	feb213789-bib-0051
	feb213789-bib-0052
	feb213789-bib-0053
	feb213789-bib-0054
	feb213789-bib-0055
	feb213789-bib-0056
	feb213789-bib-0057
	feb213789-bib-0058
	feb213789-bib-0059
	feb213789-bib-0060
	feb213789-bib-0061
	feb213789-bib-0062
	feb213789-bib-0063
	feb213789-bib-0064
	feb213789-bib-0065
	feb213789-bib-0066
	feb213789-bib-0067
	feb213789-bib-0068
	feb213789-bib-0069
	feb213789-bib-0070
	feb213789-bib-0071
	feb213789-bib-0072
	feb213789-bib-0073
	feb213789-bib-0074
	feb213789-bib-0075
	feb213789-bib-0076
	feb213789-bib-0077
	feb213789-bib-0078
	feb213789-bib-0079
	feb213789-bib-0080
	feb213789-bib-0081
	feb213789-bib-0082
	feb213789-bib-0083
	feb213789-bib-0084
	feb213789-bib-0085
	feb213789-bib-0086
	feb213789-bib-0087
	feb213789-bib-0088
	feb213789-bib-0089
	feb213789-bib-0090
	feb213789-bib-0091
	feb213789-bib-0092
	feb213789-bib-0093
	feb213789-bib-0094
	feb213789-bib-0095
	feb213789-bib-0096


