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Objective: Pulmonary hypertension related to congenital heart disease (PH-CHD) is

a devastating disease caused by hemodynamic disorders. Previous hemodynamic

research in PH-CHD mainly focused on wall shear stress (WSS). However, energy loss

(EL) is a vital parameter in evaluation of hemodynamic status. We investigated if EL of the

pulmonary artery (PA) is a potential biomechanical marker for comprehensive assessment

of PH-CHD.

Materials and Methods: Ten PH-CHD patients and 10 age-matched controls

were enrolled. Subject-specific 3-D PA models were reconstructed based on

computed tomography. Transient flow, WSS, and EL in the PA were calculated using

non-invasive computational fluid dynamics. The relationship between body surface area

(BSA)-normalized EL (
.
E ) and PA morphology and PA flow were analyzed.

Results: Morphologic analysis indicated that the BSA-normalized main PA (MPA)

diameter (DMPAnorm), MPA/aorta diameter ratio (DMPA/DAO), and MPA/(left PA + right

PA) [DMPA/D(LPA+RPA)] diameter ratio were significantly larger in PH-CHD patients.

Hemodynamic results showed that the velocity of the PA branches was higher in PH-CHD

patients, in whom PA flow rate usually increased. WSS in the MPA was lower and
.
E

was higher in PH-CHD patients.
.
E was positively correlated with DMPAnorm, DMPA/DAO,

and DMPA/D(LPA+RPA) ratios and the flow rate in the PA.
.
E was a sensitive index for the

diagnosis of PH-CHD.

Conclusion:
.
E is a potential biomechanical marker for PH-CHD assessment. This

hemodynamic parameter may lead to new directions for revealing the potential

pathophysiologic mechanism of PH-CHD.

Keywords: pulmonary hypertension, energy loss, congenital heart disease, computational fluid dynamics, wall

shear stress
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INTRODUCTION

Congenital heart disease (CHD) is an anatomic defect associated
with abnormal cardiovascular development in utero. Medical
research shows that CHD prevalence at birth has increased
from 0.6 to 0.9% in recent years, and that Asia has the highest
prevalence of all regions evaluated (1).

In recent years, although advances in cardiac surgical skills

and perioperative management have reduced CHD-related
mortality dramatically, CHD remains the leading cause of death
due to birth defects in the first year of life (2). The mortality

increases if it is accompanied by severe complications.
Pulmonary hypertension (PH) is a common complication of

CHD that can start at any age. Timely and accurate diagnosis
reduces the severity of pulmonary vascular remodeling and the
risk of heart failure, thereby giving patients a chance to receive
the best course of treatment and long-term outcomes.

However, the diagnosis and prognosis of PH have not
improved much in recent years (3). The main reason is a lack
of understanding of its pathophysiology. PH is a response to
abnormal hemodynamics in CHD patients (4–6), which appear
before morphologic remodeling (7). Therefore, knowing the
hemodynamic characteristics of the pulmonary artery (PA) may
benefit comprehension of pathophysiologic mechanisms and
yield more detailed information for the diagnosis and treatment
of PH in CHD (PH-CHD).

Right-heart catheterization and transthoracic
echocardiography (TTE) are used commonly for PH-CHD
evaluation. However, neither the invasive catheterization nor the
non-invasive TTE can be used to provide detailed information
on hemodynamics.

Thanks to the development of computer and medical imaging
technologies, computational fluid dynamics (CFD) has been
employed to obtain local hemodynamics of the measured site
and display them in a visual and stereoscopic way, which enables
the study of the relationship between hemodynamics and CHD
development. In recent years, CFD has been used to illustrate
hemodynamic characteristics in patients with PH (8, 9). Many of
those studies have concentrated mainly on assessment of shear
stress (9, 10). Nevertheless, it has been shown that increased
energy loss (EL) is closely related to the long-term outcome of
patients (11–13).

EL is closely related to vascular morphology and flow
patterns, and it is a crucial parameter in evaluation of
hemodynamic disorders. Lee and colleagues (14) studied EL in
the PA in different pathophysiologic scenarios and concluded
that EL increased in patients with abnormal pulmonary
vascular morphology. A recent study in adult patients with
chronic thromboembolic pulmonary hypertension (CTEPH)
demonstrated that alteration of energy dissipation in the PA has
substantial effects on disease development (15).

In children with PH-CHD, abnormal morphology of the
PA and flow status may influence EL. Few studies have
investigated this biomechanical factor and its potential effect on
this population.

We used CFD to explore subject-specific hemodynamics,
including wall shear stress (WSS) and EL, which are expected

to assist better understanding of PH-CHD pathophysiology and
clinical decision making. For controlling intergroup variation
caused by age, body surface area (BSA) was used to normalize
quantitative indices.

MATERIALS AND METHODS

Ethical Approval of the Study Protocol
The study protocol was approved by the Health Research Ethics
Board of Shanghai Children’s Medical Center within Shanghai
Jiao Tong University School of Medicine (Shanghai, China).
Written informed consent was obtained from the parent/legal
guardian of participants.

Patient Selection
We enrolled 10 PH-CHD patients with a velocity of tricuspid
regurgitation (TR) ≥4.0 m/s and/or a predominantly right-to-
left shunt of the ventricular septum, which was measured by
TTE. Meanwhile, a control group of 10 age-matched CHD
patients without PH were recruited to exclude confounders and
control intergroup variation for better single-factor analysis. The
diagnosis of the control group was established when TTE showed
a velocity of TR ≤ 2.9 m/s and/or left-to-right shunt of the
ventricular septum ≥4.0 m/s. The enrollment criteria followed
the guideline of PH, which was the general consent achieved
at the 6th World Symposium on Pulmonary Hypertension (16,
17). Detailed clinical information on these patients is shown in
Table 1.

All the clinical data of patients were collected: sex, age, weight,
height, BSA, body mass index (BMI), left ventricular ejection
fraction (LVEF), and contrast-enhanced computed tomography
(CT) of the chest.

We excluded individuals with stenosis of the right ventricular
outflow tract, pulmonary disease, or other diseases that could be
an underlying cause of PH.

Model Reconstruction
Sixty-four-row contrast-enhanced volumetric CT (Discovery
CT750 HD; General Electric, Boston, MA, USA) data were used
for reconstruction of 3-D subject-specific PA models in Mimics
20.0 (Materialize, Leuven, Belgium) and surface smoothing in 3-
Matic 11.0 (Materialize, Leuven, Belgium). Figure 1 shows the
lateral and anterior views of the 3-D-reconstructed PA geometries
of these 20 patients.

The maximum diameter of the main PA (DMPA), left PA
(DLPA), and right PA (DRPA) was measured. Subject-specific aorta
models were reconstructed to obtain the maximum diameter of
the aorta (DAO). These vascular parameters were normalized
by BSA to control for age-related deviation. The DMPA/DAO

and DMPA/D(LPA+RPA) ratios were calculated to compare
morphologic differences among different vessel segments.

Governing Equations
We assumed that the PA flow was that of an incompressible
Newtonian fluid. The Navier–Stoke (N-S) equations (1) were
used to describe the 3-D blood flow in the PA, which has a
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TABLE 1 | Patient-specific clinical data.

Patients Diagnosis Shunt size (cm) Shunt velocity (m/s) TR (m/s) PI (m/s)

Non-PH 1 VSD 0.75 4.00 (left to right) Mild Mild

2 CoA / / Mild 2.06

3 VSD 0.66 4.19 (left to right) Mild Mild

4 VSD 0.70 4.80 (left to right) Mild Mild

5 VSD 0.87 4.76 (left to right) Mild Mild

6 VSD/ASD 1.05 (VSD) 4.95 (left to right, VSD) Mild Mild

7 VSD 1.25 4.03 (left to right) Mild Mild

8 VSD/ASD 0.77 (VSD) 5.00 (left to right, VSD) Mild Mild

9 PAPVC/ASD 0.66 (II ASD) / 2.70 Mild

10 PAPVC/ASD 1.52 (II ASD) / 2.80 1.85

PH-CHD 1 Cor (obstructed)/PDA 0.1 (PDA) 2.09 (right to left) 5.00 Mild

2 Supracardiac TAPVC (obstructed)/ASD 1.38 right to left 4.10 Mild

3 VSD 1.1 Bi-directional 4.28 3.67

4 VSD 0.89 Bi-directional 4.68 4.59

5 VSD/ASD/PDA 0.97/0.15 (VSD/PDA) Bi-directional 5.62 Mild

6 CAVC/PDA 0.96/0.21 (VSD/PDA) Bi-directional / Mild

7 VSD/ASD 0.70 (VSD) Bi-directional 4.66 Mild

8 Supracardiac TAPVC (obstructed)/VSD/ASD 0.40 (VSD) Bi-directional 4.79 4.04

9 CAVC/PDA 2.00/0.28 (VSD/PDA) Bi-directional / 3.00

10 VSD 1.93 Bi-directional / 4.01

VSD, ventricular septal defect; CoA, coarctation; ASD, atrial septal defect;PDA, patent ductus arteriosus;CAVC, atrioventricular septal defect;BSA, body surface area; PAPVC, partial

anomalous pulmonary venous drainage; Cor, cor triatriatum; TAPVC, total anomalous pulmonary venous drainage; TR, tricuspid regurgitation; PI, pulmonary insufficiency.

FIGURE 1 | Subject-specific 3-D models of the proximal pulmonary artery (MPA, main pulmonary artery; LPA, left pulmonary artery; RPA, right pulmonary artery).
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FIGURE 2 | Inflow and outflow in the PA (schematic).

constant density (ρ= 1,060 kg/m3) and viscosity (µ= 4.0× 10−3

Pa s).
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where i, j = 1, 2, 3; x1, x2, x3, represents the coordinate axes; ui,
uj are velocity vectors; p is pressure; t is time; and fi indicates the
action of body forces and was omitted in the practical calculation.
The average Reynolds number among all models ranged from
2,700 to 5,500. The maximum Reynolds number ranged from
5,700 to 13,000. Thus, we assumed the flow in the PA was
turbulent, and we used a standard k-ε model to solve complex
pulsatile flow.

Mesh Generation
Mesh generation was undertaken to discretize the computational
domain and solve the governing equations using commercial
software (ANSYS R©-ICEM CFD 2019; Canonsburg, PA, USA).
We used tetrahedral grids to discretize the volume layers of
the fluid domain. Three body-fitted prism layers were used to
improve the accuracy of calculation of the boundary layer of
WSS. Grid independence was carried out to find the optimized
mesh for CFD simulation, and the results were stable with a grid
number reaching 0.9 million. The meshes of PH-CHD patients
and controls were∼1.5 and∼1 million elements, respectively.

Boundary Conditions and Calculation
We used the pulsatile velocity of the MPA obtained by TTE as
the inlet boundary condition. In addition, we assumed relative
pressure as the outlet boundary condition and rigid with no-
slip boundary conditions for the vessel wall. Figure 2 shows the
inflow and outflow in the PA schematically.

We used ANAYS R©-CFX 2019 (Canonsburg, PA, USA) to solve
the blood flow in the PA. The convergence criteria were set to
10−5 for each time step.More detailed information of themethod
has been reported in our previous work (13, 18–20).

Hemodynamic Evaluation
Transient PA streamlines, WSS, and EL were calculated to
evaluate the biomechanical differences of patients with and
without PH-CHD.

To better display the flow pattern during a cardiac period, we
calculated the velocity and flow pattern at six time points (a–f) in
a cardiac cycle.

WSS demonstrates the frictional force between blood flow and
the vessel wall and was determined using Equation (2, 21, 22):

τwall = −µ
∂ux

∂n

∣

∣

∣

∣

n=0

(2)

where ux is the velocity of the fluid near the vessel wall and n is
the height above the vessel wall.

EL is the energy difference between the inlet and outlet of the
calculated domain and was calculated by Equation (3):

EL = Einlet − Eoutlet (3)

=
∑

inlet

(

Pi +
1

2
ρu2i

)

Qi −
∑

outlet

(

P0 +
1

2
ρu20

)

Q0 (4)

where P is the static pressure, Q is the flow rate, and i, j are
the inlet and outlet of PA, respectively. To control for age-

related variation among patients, the BSA normalized EL (
.
E ) was

determined using Equation (4):

.
E =

EL

S
(5)

where S represents the BSA.

Statistical Analysis
Statistical analyses were carried out using SPSS 23.0 (IBM,
Armonk, NY, USA). The Shapiro–Wilk test was used to check the
normality of all parameters. Data with a normal distribution were
analyzed using Student’s t-test. Associations between variables
were analyzed by Pearson’s correlation coefficient (r) with
two-tailed probability (p). A receiver operating characteristic
(ROC) curve was used to measure the sensitivity and specificity
of the calculated parameters. A threshold p < 0.05 was
considered significant.

RESULTS

Demographic and Morphologic Analyses
Table 2 shows the demographic and morphologic measurements
obtained in the two groups. The baseline data of sex, age,
weight, height, BSA, BMI, and LVEF were similar in the
two groups. The morphologic parameters of normalized DLPA

(DLPAnorm), normalized DRPA (DRPAnorm), and normalized DAO

(DAOnorm) were not significantly different between the groups.
However, the normalized DMPA (DMPAnorm), DMPA/DAO, and
DMPA/D(LPA+RPA) ratios were, in general, larger in PH-CHD
patients. These data indicate that the MPA was dilated markedly
and there was relative stenosis in the LPA and RPA in PH-
CHD patients.
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Streamlines
The subject-specific streamlines of the PA were computed
to investigate differences in flow patterns. Statistical analyses
revealed that the flow rate in the PA [in L/(min·m2)] was
significantly higher at the normalized mean (Vmeannorm) and
maximum (Vmaxnorm) velocity in PH-CHD patients than in
controls (19.63 ± 6.223 vs. 11.94 ± 3.651, p = 0.004; 50.05 ±

13.882 vs. 29.98± 8.031, p= 0.001).
Figure 3 shows an example of the plots of PA flow rate in a

cardiac cycle and the streamlines generated at six specific time

TABLE 2 | Subject-specific clinical data for the two groups.

PH-CHD group Control group p-value

Sex (male/ female) 6/4 3/7 0.370

Age (month) 35.1 ± 31.239 40.20 ± 25.961 0.696

Height (cm) 84.40 ± 22.965 97.00 ± 24.585 0.252

Weight (kg) 11.05 ± 5.459 14.77 ± 6.441 0.180

BSA (m2) 0.50 ± 0.209 0.60 ±0.229 0.221

BMI (kg/m2 ) 14.76 ± 1.106 15.39 ± 2.678 0.501

LVEF (%) 69.75 ± 11.306 66.55 ± 2.448 0.403

Normalized DMPA (cm) 4.93 ± 1.568 3.29 ± 0.913 0.010*

Normalized DLPA (cm) 2.63 ± 0.871 1.99 ± 0.454 0.058

Normalized DRPA (cm) 2.88 ± 0.993 2.15 ± 0.500 0.058

Normalized DAO (cm) 3.33 ± 1.089 2.89 ± 0.870 0.336

DMPA/DAO 1.50 ± 0.235 1.17 ± 0.240 0.006*

DMPA/D(LPA+RPA) 0.91 ± 0.115 0.79 ± 0.084 0.019*

BSA, body surface area; BMI, body mass index; LVEF, left ventricular ejection fraction; D,

diameter; MPA, main pulmonary artery; AO, aorta; LPA, left pulmonary artery; RPA, right

pulmonary artery; * p < 0.05.

points in two patients. One was a PH-CHD patient, and the other
was a matched control subject. The velocity at the MPA was
not significantly different between the two groups. However, at
the PA branches, especially the bifurcation of the MPA into the
LPA and RPA, the velocity was visibly higher in the PH-CHD
patient than in the control subject. The velocity decreased faster
in the non-PH patient than in the control subject during slow
ejection and diastole (Figures 3C–F). Meanwhile, turbulent flow
was observed at the same time point. Conversely, blood flow was
relatively steady in the PH-CHD patient.

Wall Shear Stress
Figure 4 shows the results of detailed examination of the subject-
specific WSS obtained in six patients of different ages. Simulated
results demonstrated that the WSS of the MPA was visibly
lower in PH-CHD patients than in control subjects. However,
the spatially averaged WSS and time-averaged WSS were not
significantly different between the two groups (7.35 ± 2.780 vs.
6.37 ± 3.978 Pa, p = 0.525; 2.41 ± 0.945 vs. 1.90 ± 0.983 Pa,
p = 0.249). These average values could not reflect the local
variation of WSS at the MPA, LPA, and RPA.

Energy Loss
EL of the PA was significantly higher in the PH group than in the
control group (60.41± 46.551 vs. 26.34± 18.175mW, p= 0.031).
Figure 5 shows the relationship between EL and the flow rate and
morphology of the PA. There’s a positive correlation of EL and the
flow rate of PA (Vmean: r = 0.843, p = 0.000; Vmax: r = 0.867,
p = 0.000) but a weakened relationship with DMAP (r = 0.483,
p = 0.031) and no relationship with DLPA (0.413, 0.071) and

DRPA (0.374, 0.104).
.
Ewas calculated to control the intergroup

variation caused by age.
.
E was increased predominantly in the PH

FIGURE 3 | Subject-specific streamlines at six time points in one cardiac period. (A) The midpoint of the period from the beginning of the cardiac cycle to the highest

velocity reached in the rapid ejection phase, which is assumed to show rapid variation in the velocity. (B) The time point at the highest velocity of blood flow in one

cardiac cycle. (C) The midpoint of the period when the velocity of blood flow decreased from the highest to the lowest, which is assumed to show rapid variation in

the velocity during the slow ejection phase. (D) The time point at the lowest velocity of blood flow in one cardiac cycle. (E) The midpoint of the period between point d

and the time point at the highest velocity in diastole with rapid variation in the velocity observed in diastole. And (F), The time at the highest velocity of diastole.
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FIGURE 4 | Distribution of wall shear stress at maximum velocity.

group (121.60 ± 64.820 vs. 45.15 ± 25.302 mW/m2, p = 0.007).

Figure 6 shows the
.
E was positively correlated with DMPAnorm

(r = 0.501, p= 0.025), DLPAnorm (0.483, 0.031), DRPAnorm (0.491,
0.028), Vmeannorm (0.861, 0.000), and Vmaxnorm (0.839, 0.000).

ROC curve analysis was performed to evaluate the diagnostic

value of
.
E in PH-CHD patients (Figure 7). It shows that

.
E has a

high AUC, sensitivity, and specificity.

DISCUSSION

PH is one of the most complex and devastating complications
of CHD. Various studies (4–6) have demonstrated that the
biomechanical mechanism underlying this disease has a major
role in PH-CHD development.

Early studies on hemodynamics in PH focused mainly on
the metric of WSS, its action on vascular morphology/function,
and disease progression. However, several other hemodynamics
studies have shown that EL is a key factor in evaluation of
hemodynamic disorders (23–25).

Here, we provided new clues to explore more deeply the
multiple pathologies of PH-CHD using non-invasive CFD. In the
present study, we hypothesized that the hemodynamic parameter
of EL could be used to explain the role of abnormal flow dynamics
on PH-CHD. To control age-related variation, BSA was used to

normalize subject-specific EL (
.
E ).

Based on CFD calculations, the flow-dynamic features were
significantly different between PH-CHD patients and control
subjects. A high flow rate and velocity [in L/(min·m2)] in PA
branches were observed only in PH-CHD patients (Vmeannorm:
19.63 ± 6.223 vs. 11.94 ± 3.651, p = 0.004; Vmaxnorm: 50.05 ±

13.882 vs. 29.98 ± 8.031, p = 0.001) (Figure 3). Expansion of
the MPA is one reason for this finding because it causes relative
narrowing of the LPA and RPA. This conclusion (Table 2) was
supported by a statistical comparison of the two groups with
regard to DMPAnorm as well as DMPA/DAO and DMPA/D(LPA+RPA)

ratios. Vortex flow, which occurred during diastole, was observed
only in control subjects. The streamlines were relatively steady in
PH-CHD patients.

Sanz et al. (10) showed that velocity was a sensitive index
for PH evaluation and was closely correlated to pressure and
resistance in pulmonary circulation. Tang et al. (4) compared flow
patterns between people with and without PH. They found that
obvious turbulent flow occurred in a model of a normal PA, a
finding that is in accordance with the present study. However,
they demonstrated that the flow rate in the PA was higher than
in normal subjects: This is exactly the opposite of what we
discovered. The difference may have been because of the types
of PH explored in these two studies. PH-CHD is a flow-induced
disease. Pulmonary blood flow is increased in these patients due
to congenital cardiovascular malformations. Abnormal blood
flow in pulmonary circulation alters expression of flow-sensitive
vascular regulatory factors and is the essential trigger for the
development and progression of PH (26–28).

WSS denotes the force generated by the friction between
blood flow and the endothelium. It is considered to be a vital
biomechanical parameter for evaluation of blood flow–related
diseases (29, 30). In healthy people, pulmonary endothelial cells
can adapt to a normal range of shear stress. Prolonged abnormal
WSS damages the function of pulmonary vessels by destroying
endothelial structure and interfering with signal conduction. This
process is closely related to PH-CHD development.

WSS has become a “hot topic” in the study of PH-CHD in
recent years. Several studies have shown that WSS is a sensitive
parameter for evaluating the function of endothelial cells (31, 32).
Kheyfets et al. (33) found that WSS was closely related to the
elasticity and resistance of the pulmonary artery. Tang et al. (4)
explored the WSS of the PA in five PH patients and five control
subjects. They showed that the WSS of the MPA was decreased
significantly in patients with PH, which was about 20% that of
the control group. Figure 4 shows that lower WSS was found in
the MPA of PH-CHD patients than in the control subjects. These
results are in accordance with those reported previously (4, 9).

In healthy individuals, blood flow is arranged so that EL is
low and normal cardiovascular circulation is maintained (34,
35). However, complex cardiovascular malformations in patients
with PH-CHD can promote inefficient interactions between
pulmonary blood flow and pulmonary structure, which increase
EL. The cumulative effect of EL places an extra burden on the
heart and may contribute to pulmonary vascular remodeling.
Thus, understanding the influence of interrupted flow patterns
and altered morphology on EL and the role of increased EL in
PH-CHDmay benefit clinical diagnosis and treatment.

Nagao et al. (15) explored energy dissipation in healthy people
and patients with CTEPH before and after balloon pulmonary
angioplasty (BPA) using phase-contrast magnetic resonance
imaging. They found that EL was significantly higher in CTEPH
patients than in healthy people and that BPA decreased EL.
Preoperative EL was an independent and sensitive indicator that
predicted patient outcomes.

We showed that EL and
.
E were significantly higher in patients

with PH-CHD than in non-PH patients (60.41± 46.551 vs. 26.34
± 18.175 mW, p = 0.031; 121.60 ± 64.820 vs. 45.15 ± 25.302
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FIGURE 5 | The correlation between energy loss (EL) and mean pulmonary artery inflow (Vmean) (A), maximum pulmonary artery inflow (Vmax) (B), mean pulmonary

artery diameter (DMPA ) (C), left pulmonary artery diameter (DLPA ) (D), and right pulmonary artery diameter (DRPA ) (E).

FIGURE 6 | Correlation analysis of body surface area (BSA)-normalized energy loss (
.

E ) with BSA-normalized mean pulmonary artery inflow (Vmeannorm ) (A), maximum

pulmonary artery inflow (Vmaxmean ) (B), mean pulmonary artery diameter (DMPAnorm) (C), left pulmonary artery diameter (DLPAnorm) (D) and right pulmonary artery

diameter (DRPAnorm) (E).
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FIGURE 7 | ROC curves analysis of
.

E in the pulmonary artery for diagnosing

PH-CHD.

mW/m2, p = 0.007, respectively). In fact, PH-CHD is a right
ventricular–pulmonary artery (RV-PA) coupling disease (14).
Increased pulmonary arterial pressure and pulmonary arterial
resistance gradually damage the structure and function of the
right ventricle. EL indicates the compensation of ventricular
work. Higher EL indicates that the ventricle must do more work
to maintain the stability of the circulatory system. Hence, in
patients with PH-CHD, excessively high EL increases the burden
on the right ventricle and the risk of right-heart failure. Thus, we
provide a theoretical basis for future CFD research of the RV-PA
coupling of PH-CHD.

On the other hand, studies have examined EL in patients
with CHD extensively. Those studies show that abnormal vessel
morphology has a significant effect on EL and the long-term
prognoses of patients (36, 37). In the present study, there is
a positive relationship between EL and the flow rate of PA
but a poor relationship with the morphology of PA (Figure 5).
Considering that the development of cardiovascular morphology
and function are different in children of different age groups,

we use BAS to normalize EL.
.
E was positively correlated with

the morphology and flow rate in the PA (Figure 6). It implies
that age is a strong confounding factor, and normalized EL
is a better predictive parameter. Changes in PA morphology,
relatively stenosed PA branches, and increased PA flow rate are
the main factors of Ė. ROC curve analysis revealed that the Ė
was sensitive diagnostic characteristics in PH-CHD (Figure 7).
All these results imply that EL is an important factor in PH-CHD
evaluation. However, it is worth noting that the cutoff values are
just for reference due to the limited cases.

LIMIT OF THE STUDY

Our study had limitations. Ten PH-CHD patients and 10 age-
matched controls were enrolled. Due to the relatively small

sample size, only two patients were diagnosed as having
irreversible PH-CHD based on postoperative follow-up data.
Thus, we cannot offer a clear cutoff for operable and inoperable
patients. However, we did identify hemodynamic parameters that
were significantly different between the two groups. These results
lay a foundation for further study on the reversibility of PH-CHD
in a large population of patients. Our simulation assumed that
the vessel wall was rigid, and the influence of vascular elasticity
on hemodynamics was ignored. However, we aimed to reveal
the relationship between hemodynamic indices and PH-CHD by
comparing the hemodynamics of the two groups. Therefore, the
properties of the vessel wall were simplified in this simulation.
Each case was simulated under the same vessel condition, so the
rigid-wall hypothesis had little effect on the results.

CONCLUSION
.
E is a potential biomechanical parameter for PH-CHD

evaluation. The alteration of
.
E is closely related to the

morphology and flow rate of the PA. This study may offer a new
clue for exploring the potential physiopathologic mechanism of
PH-CHD and provide more intuitive information for clinicians
to make appropriate clinical decisions.
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