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Exploring the intrinsic 
differences among breast 
tumor subtypes defined using 
immunohistochemistry markers 
based on the decision tree
Yang Li1, Xu-Qing Tang1, Zhonghu Bai2,3 & Xiaofeng Dai2,3

Exploring the intrinsic differences among breast cancer subtypes is of crucial importance for precise 
diagnosis and therapeutic decision-making in diseases of high heterogeneity. The subtypes defined with 
several layers of information are related but not consistent, especially using immunohistochemistry 
markers and gene expression profiling. Here, we explored the intrinsic differences among the subtypes 
defined by the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 
2 based on the decision tree. We identified 30 mRNAs and 7 miRNAs differentially expressed along 
the tree’s branches. The final signature panel contained 30 mRNAs, whose performance was validated 
using two public datasets based on 3 well-known classifiers. The network and pathway analysis were 
explored for feature genes, from which key molecules including FOXQ1 and SFRP1 were revealed to be 
densely connected with other molecules and participate in the validated metabolic pathways. Our study 
uncovered the differences among the four IHC-defined breast tumor subtypes at the mRNA and miRNA 
levels, presented a novel signature for breast tumor subtyping, and identified several key molecules 
potentially driving the heterogeneity of such tumors. The results help us further understand breast 
tumor heterogeneity, which could be availed in clinics.

Breast cancer (BC) covers a group of heterogeneous diseases with different biologic, clinical, and molecu-
lar characteristics1–3. It is important to classify breast cancers into clinically relevant subtypes for therapeutic 
decision-making and prognosis prediction4,5. Classically, several different subtypes have been defined using 
immunohistochemistry (IHC) markers together with clinicopathologic indexes. IHC molecules, containing 
estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), have 
been traditionally used to classify breast tumors6,7. Notably, PR status is of high correlation with that of ER, leav-
ing ER and HER2 the determinant factors for endocrine and trastuzumab therapy. ER positive and negative tum-
ors have distinctive clinical features and behaviors7,8. Furthermore, HER2 is the member of the epidermal growth 
factor receptor family, which is well applied for prognosis and used for sub-classifying ER+  or ER– tumors into 
distinct subgroups, i.e., [ER+ |PR+ ]HER2−  (positive ER and PR status, and negative HER2 status), [ER+ |PR+ ]
HER2+  (positive ER, PR and HER2 status), [ER− |PR− ]HER2+  (negative ER and PR status, and positive HER2 
status), [ER− |PR− ]HER2−  (negative ER, PR and HER2 status)8. Other IHC molecules such as the epidermal 
growth factor receptor (EGFR) have been identified to classify breast cancers and, in particular, among triple 
negative tumors9,10.

Some work focused on the intrinsic breast cancer subgroups using large-scale gene expression profiling with 
the aid of gene expression array11,12. Perou et al.13 identified five subgroups using different gene expression data-
sets, i.e., Luminal A, Luminal B, HER2, Basal-like tumor, and Normal tumor. The mRNA expression profile of 
the intrinsic genes was first used by Sørlie et al.12,14 in tumor subgroup identification. Parker et al.15 developed a 
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classifier, named PAM50, using a 50-gene set to identify the four major intrinsic subtypes. Additionally, microR-
NAs, a category of small non-coding RNA molecules regulating cell function both at the transcriptional and post-
transcriptional levels, complement the prognostic marker discovery using, traditionally, gene expression data16,17. 
In this domain, a number of miRNAs, such as miR-7, miR-128a, miR-21017, were found differentially expressed 
among breast cancer subgroups. Dai et al.7 reported a set of differentially expressed genes (diff-genes), composed 
of 1015 mRNAs and 69 miRNAs among the four IHC-defined breast tumor subtypes, which was then reduced to 
a 119 gene panel through a method of feature gene selection18.

Exploration on the molecular differences among breast cancer subtypes is of crucial importance in under-
standing the heterogeneity of breast tumors. Though the “intrinsic” genes can capture the differences among the 
defined subtypes, they could not tell the pair-wise-subtype differences, which is essential when applied for clin-
ical use. With this aim, our study reveals the significant differences between pair-wise subgroups defined by the 
major IHC markers (ER, PR and HER2), integrating mRNA and miRNA expression at the transcriptional level. 
We explore the functional roles of these signature genes and their relationships regarding information flow using 
network and pathway analysis. In addition, at the transcriptional level, breast cancer subgroups could be iden-
tified hierarchically in a pair-wise fashion based on the decision tree, indicating the hierarchical differentiation 
pattern of breast tumors.

Results
Identification of feature genes. In HEBCS, out of the 183 invasive tumors, 182 are labeled by the ER 
status and 115 have the marking information on IHC biomarkers. Four subgroups are defined by ER, PR and 
HER2, i.e., [ER+ |PR+ ]HER2+ , [ER+ |PR+ ]HER2− , [ER− |PR− ]HER2+  and [ER− |PR− ]HER2− . In detail, 
the terminologies of different gene sets are listed in Table 1. The mRNA and miRNA feature genes and RSP genes 
are listed in Supplementary Tables 1 and 2, respectively. The feature gene set contains 30 mRNAs and 8 miRNAs 
while the RSP gene set is comprised of 31 mRNAs and 19 miRNAs. Worth noting that, no miRNA was found dif-
ferentially expressed between [ER+ |PR+ ]HER2+  and [ER+ |PR+ ]HER2− . Both hsa-miR-9 and its low-expres-
sion form hsa-miR-9* are over-expressed in ER−  tumors. Thus, hsa-miR-9* was removed from the final panel to 
reduce redundancy. In HEBCS, the classifier using gene set1 had a prediction accuracy of 0.8736 (nearest-center 
classifier) and 0.9066 (naïve Bayesian classifier) in subtypes stratified by ER status; it was 0.8804 (nearest-center 
classifier) and 0.8804 (naïve Bayesian classifier), respectively, using gene set2 (between subtypes differed by the 
HER2 status among ER+  tumors), and 0.7692 (nearest-center classifier) and 0.8804 (naïve Bayesian classifier), 
respectively, using gene set3 (between two subtypes differed by the HER2 status among ER−  tumors). These 
results are shown in Table 2 and Fig. 1A–C. The performance of miRNA and mRNA signature genes was evalu-
ated using different classifiers (SVM: 0.6667 using miRNA genes; 0.7373 with mRNA; 0.7276 integrating mRNA 
and miRNA genes, Fig. 1E). Tumor patterns identified using the RSP mRNAs and miRNAs were displayed in 
Supplementary Figs 1 and 2, respectively. Furthermore, pathway analysis with miRNA targets, RSP genes and 
feature genes was conducted, respectively (Supplementary Table 3). The overlapping pathways suggest the core 
signaling controlling breast cancer differentiation, such as signaling pathways regulating pluripotency of stem 
cells and VEGF signaling pathway. MiRNA targets fall into the same pathways with feature mRNAs, indicating 
the redundancies at these two levels. As miRNAs do not improve the classification accuracy, we include only the 
30 mRNAs in the final signature gene panel.

Validation of feature genes using public datasets. The performance of the feature genes in breast 
tumor subtyping is validated using GSE22220 and TCGA (Fig. 1D for GSE22220 and Fig. 1F for TCGA). The 
naïve Bayesian classifiers based on the methods of obtaining the prior knowledge regardless of different platforms 
were compared with the SVM classifier possessing the training process. The classification accuracies were sum-
marized in Table 2. In GSE22220, the tumors were labeled by ER status, and the classifiers were applied using the 
mRNA set1. Using the prior knowledge obtained from HEBCS, the nearest-center and naïve Bayesian classifiers 
achieve an accuracy of 0.7963 and 0.8565, respectively, in GSE22220, and an accuracy of 0.6152 and 0.6242, 
respectively, in TCGA. Obviously, naïve Bayesian classifier performs better than the nearest-center classifier in 
identifying tumor subtypes using the feature genes. The SVM classifier comprising of our feature genes is able 
to differentiate subtypes with an accuracy of 0.8469 and 0.7696, respectively, in GSE22220 and TCGA, which 
outperforms the other two methods when the training data is available. The results of different classifiers though 
differ, suggest that the proposed signature gene panel has a good generality. Several classifiers with obtained 

Name of set Description

Gene set1 MRNAs and miRNAs differentially expressed between ER+  and ER−  tumors;

Gene set2 MRNAs and miRNAs differentially expressed between [ER+ |PR+ ]HER2+  and [ER+ |PR+ ]HER2− ;

Gene set3 MRNAs and miRNAs differentially expressed between [ER− |PR− ]HER2+  and [ER− |PR− ]HER2− ;

mRNA set1 to 3 The mRNAs of gene set 1 to 3;

Feature gene Unified mRNAs and miRNAs of gene sets 1 to 3;

Signature gene panel MRNAs of feature gene;

RSP gene(the rest-subtype 
pairwise genes)

MRNAs and miRNAs differentially expressed in a pair-wise fashion among the rest subtype pairs 
other than those along the construcgted decision tree. The rest subtype pairs are [ER+ |PR+ ]HER2+  
vs. [ER− |PR− ]HER2+ , [ER+ |PR+ ]HER2+  vs. [ER− |PR− ]HER2− , [ER− |PR− ]HER2+  vs. [ER+ 
|PR+ ]HER2− , and [ER+ |PR+ ]HER2−  vs. [ER− |PR− ]HER2−  pairs.

Table 1.  Terminology summary.
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signature genes perform differently in tumor subtype prediction, with pros and cons summarized in Table 3 and 
suitable in each specific application.

The feature genes were compared with the RSP genes. Among the 30 mRNA feature genes, 6 overlapped 
with the RSP feature mRNAs; and out of the 7 miRNA feature genes, 5 overlapped with the 19 RSP miRNAs 
(Table 4). These overlapping mRNA and miRNA feature genes might be the key molecules driving breast tumor 
heterogeneity.

Pathway and network analysis using the signature genes. The expressions of the feature genes were 
opposite in a subtype pair-wise fashion, as they are selected based on the differentially expressed degree. These 
feature genes are rarely shared among different pairs (Fig. 2), suggesting succinctness of the feature genes.

Several important genes associated with breast cancer, such as ESR117, FZD919 and CXCL1420, were unveiled. 
The targets of miRNA feature genes were explored using miRecords. Furthermore, KEGG and KOBAS pathway 
analysis reveal that several cancer core pathways were enriched in the signature genes, feature genes, as well as 
their miRNA targets. For example, ESR117, responsive to estrogen related signal and so far the most important 
molecule distinguishing breast tumor subtypes, is present in the feature set; several well-known molecules asso-
ciated with Jak-STAT signaling pathway21 such as CLEC3A, etc, are enriched in the feature genes and miRNA tar-
gets (Supplementary Table 3). FZD9 (from the RSP genes) and several targets of the miRNA feature genes (AKT2, 
KRAS and NFAT1) are enriched in mTOR (p =  0.037) and VEGF(p =  0.007) signalings22. In addition, we checked 
the diseases relevant to the feature genes, RSP genes and mRNA targets using KEGG disease (Supplementary 
Table 4), with 56.7% of the enriched diseases being cancers. Gene interaction network was constructed using 
GeneMANIA according to the physical properties such as co-expression, genetic interaction and pathway. The 
network of the signature genes contains 49 mRNAs with 20 related genes subjoined and 668 links, among which 
co-expression attributes 79.5% and co-localization 8% (Fig. 3). In the network constructed using RSP genes 
(Supplementary Fig. 3), 45 genes in total were connected by 1102 links (co-expression: 81.93%, co-localization: 
12.08%, genetic interactions: 4.2% and shared protein domains: 1.79%) with 20 related mRNAs added. Some key 
genes are densely connected, such as FOXQ1 and SFRP1, which are well-known molecules driving the heteroge-
neity and progress of breast tumors.

Discussion
The mRNA and miRNA feature genes, identified using HEBCS, could efficiently differentiate the four 
IHC-defined tumor subtypes as indicated by the statistics obtained using two other public datasets (Table 2). 
This suggests that decision tree is an effective approach for identifying feature genes differentiating breast cancer 
subtypes. We found 6 mRNAs and 5 miRNAs overlapping between the feature genes and RSP genes (Table 3), 
3 mRNAs (ESR1, NFIX, SFRP1) overlapping among the signature genes, the Sorlie’s signature and PAM50 
genes. Most of the feature genes are shared with Dai’s diff-genes (Table 5), except for C8orf85, CENPW, CENPV, 
CXCL14, and has-miR-1238, which are revealed only from the decision tree. These overlapping genes may drive 
breast cancer differentiation, and the 5 genes exceptionally obtained using the decision tree capture the pair-wise 
differences along the constructed tree assuming that ER is the predominant differentiation factor followed by 
HER2. With the obtained feature genes, three classifiers are applied to subtype the tumors in the specific usage 
(Table 4). By using network and pathway analysis, it reveals that co-expression accounts for the most physical 
properties (79.5% in feature gene network, 81.93% in the RSP gene network), because the gene expression profil-
ing is the key factor to predict the interactions. Some genes, well-known in breast cancer subtyping and involved 
in the cancer-relevant pathways, are the hubs of the network, e.g., FOXQ1, SFRP1 and ESR1. From the biological 
view, the roles of selected genes in the regulation of cancer should be analyzed.

Dataset Gene Dimension

Nearest- 
center 

classifier

Naïve 
Bayesian 
classifier SVM Purpose

HEBCS

mRNA set 1 10 0.8736 0.9066 — Identification

mRNA set 2 10 0.8804 0.8804 — Identification

mRNA set 3 10 0.7692 0.8846 — Identification

mRNA feature 
Genes(signature genes) 30 0.7203 0.7712 0.7373 Validation

miRNA feature genes 8 — — 0.6666 Validation

Feature genes 38 — — 0.7276 Validation

GSE22220 Gene set 1 6 0.7963 0.8565 0.8469 Validation

TCGA mRNA feature genes 24 0.6152 0.6242 0.7696 Validation

Table 2.  Comparison of classification accuracy based on the differentially expressed genes using different 
datasets. Note: The gene set 1 to 3, along the decision tree can distinguish the subtypes hierarchically, using 
nearest center classifier and Naïve Bayesian classifier. The miRNA feature genes are not able to be used for 
subtyping validation here using neither nearest center classifier nor naïve Bayesian classifier as the hierarchical 
decision tree was broken with no miRNA found differentially expressed between [ER+ |PR+ ]HER2+  and  
[ER+ |PR+ ]HER2− . SVM classifier is applied to the miRNA feature genes for subtyping validation using 5-fold 
cross-validation. Only the mRNA set1 was used for subtyping validation in GSE22220 as only ER status is 
available in this dataset.
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Feature miRNAs. No differentially expressed miRNA was found between the [ER+ |PR+ ]HER2+  and  
[ER+ |PR+ ]HER2−  subgroups, indicating that ER+  tumors are less diverse than ER−  tumors. The fact that 
rather few miRNA was found and less accuracy was obtained once miRNA was included, which might be caused 
by the following two reasons. First, miRNAs function in driving phenotypic differences through regulating 
mRNA expression, thus information at these two levels is redundant to some extent. Second, miRNA regulation is 
a complex and indirect process, with many steps potentially introducing noise, e.g., the feature miRNAs may reg-
ulate some non-feature mRNAs, complicating the subtyping process. No overlap was observed between mRNA 
feature genes and the validated targets of miRNAs, elucidating the concision of the feature genes. Hsa-miR-135a 
and hsa-miR-135b play crucial roles in distinguishing breast tumors by ER status, which has been extensively 

Figure 1. Heatmaps measuring the performance of different gene sets. Using (A) mRNA set1 to identify 
ER+  and ER−  tumors in HEBCS; (B) mRNA set2 to distinguish [ER+ |PR+ ]HER2+  and [ER+ |PR+ ]HER2−  
in HEBCS; (C) mRNA set3 to identify [ER− |PR− ]HER2+  and [ER− |PR− ]HER2−  in HEBCS; (D) gene set 1 
to identify ER+  and ER−  tumors in GSE22220; (E) the feature mRNA sets to classify breast tumors in HEBCS; 
(F) the mRNA feature genes to identify breast tumor subtypes in TCGA.
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discussed in ref. 7. Hsa-miR-9 methylation is reported to be associated with the development of metastasis23. In 
this study, has-miR-9 is over-expressed in ER−  tumors, indicating that such an event is crucial in differentiating 
ER+  and ER−  tumors. In MCF-7 docetaxel-resistant breast cancer cells, the miRNA set containing miR-190b 
was down-regulated24. We found hsa-miR-190b be over-expressed in ER+  tumors, and HER2+  tumors among 
ER−  cancers. The fact that hsa-miR-190b is firstly responsive to the hormonal receptor ER and secondarily to 
the growth receptor HER2, is consistent with the hierarchical structure in our constructed decision tree. This, 
on one hand, offers the evidence supporting the differentiation hierarchical structure underlying breast can-
cer heterogeneity and, on the other hand, indicates that the genes under hsa-miR-190b regulation might unveil 
the key network or pathways driving such a differentiation. We next explored hsa-miR-190b targets, with only 
predicted ones being found (Supplementary Table 5). The predicted targets of hsa-miR-190b are enriched in 
some cancer-related pathway (Supplementary Table 5), such as signaling pathways regulating pluripotency of 
stem cells (p-value =  0.058), cell adhesion molecules (CAMs) (p-value =  0.058)25 and AMPK signaling path-
way (p-value =  0.042)26. Additionally, hsa-miR-365, hsa-miR-1238, hsa-miR-184 are all down-regulated in 
[ER− |PR− ]HER2− , and up-regulated in [ER− |PR− ]HER2+ . Hsa-miR-365 is over-expressed in human breast 
cancer which down-regulates IL-6 in HeLa cells27. Here we show that its expression could distinguish ER−  tum-
ors stratified by HER2 status, and have CXCL14 sharing the same expression pattern with hsa-miR-365, which 
together suggests the differential regulation of chemokines in breast cancer subtypes. Most of the miRNA targets 
are known to be involved in cancer-related signalings. For example, AKT228, target of hsa-miR-184, participating 
in Pten signaling pathway, activates a series of downstream targets, which are involved in the regulation of key 
cellular functions including cell growth and survival, glucose metabolism and protein translation. KRAS29, target 
of hsa-miR-18a*, has been reported as a genetic marker for development of triple-negative breast cancer in pre-
menopausal women29. JAK230, target of hsa-miR-135a, is a key player in JAK-STAT signaling pathway21. These 
three target genes are known to contribute to the regulation of stem cells pluripotency and are related to cancers 
of the breast and female genital organs. APC, target of has-miR-135b, plays a crucial role in Wnt signaling, and is 
thus involved in cell-fate specification and progenitor-cell proliferation.

Feature mRNA set1. Genes belonging to this set stratify breast cancer by ER status. ER, also named ESR1, 
mediates the biological effects of estrogens through the estrogen response elements (EREs) of the target genes17, 
and has been traditionally applied for breast tumor subtyping and prognosis3. As expected, it is found within this 
set and over-expressed in ER+  tumors. Similarly, CA12 and AGR3 are also up-regulated in ER+  tumors. It is 
reported that carbonic anhydrase XII (CA12), encoding a zinc metalloenzyme responsible for acidification of the 
microenvironment of cancer cells, is regulated by estrogen via ERα  in breast cancer cells, and that this regulation 
involves a distal estrogen-responsive enhancer region in human breast tumors31. AGR3, also named breast cancer 
membrane protein 11 (BCMP11), was originally identified as a membrane protein from breast cancer cell lines, 
which together with AGR2 are both associated with breast cancer and ovarian cancer32,33.

Also found in this set include A2ML1, LOC400578, VGLL1, FZD9, PI3, KRT6A and SOX8, which are 
under-expressed in the ER+  group and over-expressed in the ER−  group. A2ML1, which encodes the 
secreted protease inhibitor α -2-macroglobulin (A2M)-like-1, activates mutations in signal transducers of the  
RAS/mitogen-activated protein kinase (MAPK) pathway34. FZD919 encodes WNT receptors and is an important 
factor affecting WNT signaling. MAPK and WNT pathways both contribute in cell proliferation control, sug-
gesting that cell proliferation is a key property driving the differences between ER+  and ER−  tumors. Keratin, 
known as basal markers, also has a member, i.e., KRT6A, found in this gene set. It is reported to have potential 
relevance to circulating tumor cells, which might function as an early marker for breast cancer metastasis or 
monitor therapy efficacy35. These suggest that metastasis potential is another important index here to differenti-
ate ER+  and ER−  tumors. Moreover, several other keratins (e.g., KRT14, KRT15) are included to construct the 
gene interaction network. VGLL1 (Vestigial-like 1) is a gene encoding a transcriptional co-activator modulating 
the Hippo pathway, which is known to be associated with a basal-like phenotype in breast cancer36. Participation 
of FZD9 in carcinogenesis has been reported in various cancers, indicating their potential roles in breast cancer, 
such as mTOR signaling pathway.

Classifier Advantage Disadvantage

Nearest-center classifier Convenient to be applied to the 
clinical prediction 

Linear classifier with 
unsatisfactory accuracy.

The naïve Bayesian classifier
Obtain the priori probability 
distribution; Identify the subgroups 
in same or other datasets.

The prior knowledge obtained 
based on relatively abundant 
labeled patterns 

SVM classifier Predict with an acceptable accuracy 
if training data is available.

Challenging to apply the results 
to the different datasets

Table 3.  The comparison of nearest-center classifier, naïve Bayesian classifier and SVM classifier.

mRNA miRNA

PI3 VGLL1 FZD9 hsa-miR-190b hsa-miR-184 hsa-miR-135b

LOC400578 KRT6A SOX8 hsa-miR-135a hsa-miR-1238

Table 4.  Overlapping genes between the feature genes and RSP genes.
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Feature mRNA set2. Genes belonging to this set differentiate ER+  tumors by HER2 status. In particular, 
TCN1, SFRP1, NKX3-1 and NFIX are suppressed in the [ER+ |PR+ ]HER2+  subtype and up-regulated in the 
[ER+ |PR+ ]HER2−  subtype. TCN1 is reported to be a breast cancer-related gene37, which affects replication 
timing with expression significantly differ between normal and malignant cell lines. SFRP1 encodes the secreted 
frizzled-related protein 1 which is a soluble Wnt antagonist, and its inactivation is known to be associated with 
unfavorable prognosis among breast cancer patients38. NKX3-1, a prostate-specific tumor suppressor gene is the 
earliest known marker of prostate epithelium during embryogenesis and is subsequently expressed at all stages of 
prostate differentiation in vivo39. Hypermethylated NFIX is identified in the breast cancer model40, its differential 
expression among ER positive tumors as stratified by HER2 status suggests the role of methylation in regulating 
such a phenotypic difference.

Also found in this set are MAL2, ORMDL3, SYT13, CST6, PGAP3 and CLEC3A, which are lowly expressed 
in the [ER+ |PR+ ]HER2−  subtype but highly expressed in the [ER+ |PR+ ]HER2+  subgroup. MAL2, Mal, T-cell 
differentiation protein 2, has been identified as a molecule predictive of metastases whose increased expression 
has been validated in ovarian, colorectal and pancreatic cancer41. CST642 is a breast tumor suppressor expressed 
in normal breast epithelium, but epigenetically silenced as a consequence of promoter hypermethylation in met-
astatic breast cancer cell lines, which suggests the mechanism of CST6 loss during breast tumorigenesis and/or 
progression to metastasis. PGAP3 was reported to be specifically expressed in HER2+  tumor cells but not in 

Figure 2. Genes shared in the differentially expressed gene sets among breast cancer subgroups. Genes 
including mRNA and miRNA, shared among [ER+ |PR+ ]HER2+ , [ER+ |PR+ ]HER2− , [ER− |PR− ] HER2+  
and [ER− |PR− ]HER2−  subgroups. The over- and under-expression are colored in red and green, respectively, 
based on the log2-transformed fold change.
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stroma or HER2 non-amplified breast tumor samples43. Its differential expression in [ER+ |PR+ ]HER2−  and 
[ER+ |PR+ ]HER2+  with over-expression in HER2+  luminal tumors is concordant with the previous reports. 
Synaptotagmin 13 (SYT13) is identified as a putative liver tumor suppressor gene, complementing a molecular 
defect in GN6TF liver tumor cells and giving rise to tumor suppression through induction of rat WT144. CLEC3A 
is a heparin-binding, cell adhesion modulator, whose cleavage in tumor microenvironments may affect tumor 
cell invasion and metastasis by modulating tumor cell adhesion and the plasminogen/plasminogen-activator 

Figure 3. The gene network constructed using GeneMANIA. The network, constructed by the feature genes 
and 20 related genes, contains 668 links. Different attribution links are labeled by different colors and the mRNA 
feature genes are indicated with stripes in the gene network.

mRNA A2ML1 LOC400578 VGLL1 FZD9 ESR1 AGR3

PI3 KRT6A SOX8 CA12 TCN1 CST6

SFRP1 NKX3-1 NFIX MAL2 SYT13 ORMDL3

PGAP3 CLEC3A RDH10 FOXQ1 KCNMB1 HBA2

MYH11 FBP1

miRNA

hsa-miR-190b hsa-miR-9* hsa-miR-9

hsa-miR-135b hsa-miR-135a hsa-miR-365

hsa-miR-184

Table 5.  The shared genes compared with Dai’s diff-genes.
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system45. By pathway analysis, CLEC3A participates in signaling pathways regulating pluripotency of stem cells. 
Genes involved in JAK-STAT signaling are enriched in the gene set 2, with p value =  0.038. Several basic pathways 
were also involved, such as signaling pathways regulating pluripotency of stem cells and viral carcinogenesis. 
Variants of ORMDL3 were expressed in human breast cancer cell lines, but the functional relevance of ORMDL3 
in breast cancers has not been reported46. In our study, it is differentially expressed in ER+  tumors, which pro-
vides evidence for their relation.

Feature mRNA set3. Genes within this set differentiate tumors within ER−  tumors as stratified by HER2 
status. RDH10, C8orf85, FOXQ1, CENPW and CENPV are suppressed in the [ER− |PR− ]HER2+  subgroup, 
but elevated in the [ER− |PR− ]HER2−  subgroup. RDH10 was reported to play critical oncogenic roles in tumor 
progression for patients of non-small-cell lung cancer, and was involved in tumors with lymph node invasion47. 
FOXQ1 expression is regulated by TGF-β 1 and involved in the EMT process48. Here, its high expression in  
[ER− |PR− ]HER2−  tumors as compared with [ER− |PR− ]HER2+  accords with our conception that metastasis 
is an easily gained property of triple negative cancers and suggests its importance in differentiating tumors of 
these two subtypes. CENPV is required for centromere organization, chromosome alignment and cytokinesis49, 
and CENPW plays crucial roles in the formation of a functional kinetochore involved in cell division during 
mitosis50. Over-expression of these two genes in [ER− |PR− ]HER2−  tumors suggests the crucial role of irregular 
cell cycle signaling in triple negative tumors that distinguish it from [ER− |PR− ]HER2+  tumors.

KCNMB1, CXCL14, HBA2, MYH11 and FBP1 are over-expressed in [ER− |PR− ]HER2+  tumors and 
under-expressed in [ER− |PR− ]HER2−  tumors. CXCL1420, known as breast and kidney-expressed chemokine 
(BRAK), is a negative regulator of growth and metastasis, whose expression has a strong association with the 
overall survival and lymphoid node (LN) metastasis in breast cancer patients. It is up-regulated by reactive oxy-
gen species through the activator protein-1 signaling pathway and promotes cell motility which is verified to be 
associated with cell adhesion signaling. HBA2 is down-regulated in tumors as compared with normal breast tis-
sue. Its lower expression in [ER− |PR− ]HER2−  than [ER− |PR− ]HER2+  tumors suggests that it is an indicator 
of cancer stemness and aggressiveness. Recently, MYH1 and MYH9 have been identified as candidate breast can-
cer genes in a systematic analysis of the breast cancer genome51. The differential expression levels of KCNMB1-4 
subunits in both MFK223 and MCF7 cell lines leads to differential sensitivity towards physiological agonists 
(17β-estradiol) and pharmacological compounds in breast cancer cell lines52. MYH11 plays a role in tumor for-
mation by disturbing stem cell differentiation or affecting cellular energy balance, and has been identified as a 
driver gene in human colorectal cancer51. Its relative low expression in [ER− |PR− ]HER2−  as compared with 
[ER− |PR− ]HER2+  tumors making the triple negative subtype less differentiated than [ER− |PR− ]HER2+  tum-
ors. A retrospective study reported that low FBP1 expression is associated with poor survival53, which concords 
with our observation here that it differentiates [ER− |PR− ]HER2−  and [ER− |PR− ]HER2+  tumors.

Conclusion
We studied the intrinsic molecular differences of breast cancer subtypes labeled by the three major IHC markers 
(ER, PR and HER2) in a pair-wise fashion following a decision tree. By presenting a set of feature genes, we cap-
ture the differences on molecular profiling among breast cancer subtypes pair-wisely, rather than re-define them 
into finely grained subgroups. This is fundamentally different from7,18, where genes differentiating breast tumor 
subtypes are identified in an ensemble fashion. According to the decision tree constructed using ER, PR and 
HER2, the feature genes along each branch (gene sets 1 to 3) as well as those differentiating cross-branch pairs 
(subtype-specific genes) are presented. Gene sets 1 to 3 altogether compose the feature genes. Besides availing 
in precise diagnosis, genes revealed here could also be utilized to achieve efficient therapeutic treatment of triple 
negative tumors via modulating the expression of the pivotal genes controlling breast tumor subtype switches. 
That is, while damoxifen is a commercial drug for luminal A breast cancers, we could apply it for triple negative 
tumor treatment after applying therapies transiting triple negative tumors into the Luminal A subtype. This could 
be achieved via modulating the expression of the genes in the corresponding pair. Therefore, these pair-wisely 
revealed genes have profound clinical implications.

Network and pathway analysis revealed the physical interaction and relationships among the selected feature 
genes and importance of genes in the gene network and metabolic pathways. Though computational analysis 
facilitates our understanding towards the functions of these genes, solid experimental validations and functional 
studies are indispensible to further consolidate our findings before clinical use.

Conclusively, our study bridges the gap between immunohistochemistry markers and gene expression profil-
ing in breast tumor subtyping at the mRNA and miRNA levels, which helps us better understand breast cancer 
heterogeneity in a pair-wise fashion. More importantly, these genes deepen our understandings towards breast 
cancer differentiation, and imply an indirect efficient therapeutic strategy for subtypes without targeted therapy.

Material and Method
Materials. The three gene expression datasets used in ref. 7  for feature gene identification among breast tum-
ors have been employed in this study. HEBCS was used to identify the differentially expressed gene sets among the 
IHC-defined subtypes, and GSE22220 together with TCGA was applied to validate the selected gene biomarkers.

HEBCS is comprised of mRNA (GSE24450) and miRNA (GSE43040) expression data and retrieved from 
the GEO database (Gene Expression Omnibus)54, with the experiments carried out at SCIBLU Genomics 
Centre, Lund University, Sweden. This dataset harbors 24660 mRNAs (Illumina HumanHT-12_V3 Expression 
BeadChips) and 1104 miRNAs (IlluminaHumanMI_V2 BeadChips) for 183 primary breast tumor samples from 
the department of Oncology of the Helsinki University Central Hospital (HUCH) and department of Surgery55. 
Among them, 115 tumors were labeled unambiguously by the status of ER, PR and HER2, which were grouped 
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into four subtypes i.e., [ER+ |PR+ ]HER2− , [ER+ |PR+ ]HER2+ , [ER− |PR− ]HER2+  and [ER− |PR− ]HER2− , 
based on these markers.

GSE22220 is composed of mRNA (GSE22219) and miRNA (GSE22216) expression profiling from GEO54. 
GSE22219 contains 24332 Entrez Gene entities for 216 tumor samples that were processed and hybridized to 
Illumina Human Ref-8_V1 expression Bead Chips. GSE22216 contains 734 probes (Illumina HumanMI_V1 
BeadChips) for 207 samples. Only ER status is available in GSE22220, based on which these samples were 
grouped into ER+  and ER−  tumors.

TCGA dataset (level 3) was retrieved from the TCGA portal at http://tcga.cancer.gov/dataportal, which con-
tains 17814 mRNAs for 451 samples and 1046 miRNAs (IlluminaGA_miRNASeq) for 315 patients. The mRNA 
dataset was produced from the Agilent 244 K Custom Gene Expression G4502A-07-3 platform, and the miRNA 
data was generated using IlluminaGA_miRNASeq7. These primary solid tumor samples were classified into the 
four IHC-characterized subtypes as defined in the HEBCS data.

Methods
Data normalization. Normalization of gene expression data from different platforms was conducted. The 
regulatory direction of the listed genes in each set was denoted byα ∈  {− 1, 0, 1}, with − 1, 0, 1 each representing 
down-, normal- and over- expression, respectively. The average gene expression x is denoted by x, with the stand-
ard deviation being marked by δ . The gene expression data was discredited into the status of genes x, by the fol-
lowing rules:

δ
δ δ
δ









− < −
∈ − +

− > +
.The gene is

down expressed x x
normal x x x

up ressed x x
[ , ]

exp (1)
i

Decision tree construction and feature gene identification. Breast tumors can be grouped by ER 
status into ER− positive and ER-negative tumors. Tumors of these two branches could be each further divided 
into two subtypes by HER2 status, resulting in four subgroups, i.e., [ER+ |PR+ ]HER2+ , [ER+ |PR+ ]HER2− , 
[ER− |PR− ]HER2+  and [ER− |PR− ]HER2− . Note that PR status is in consistent with that of ER in most cases. 
This subtype identification procedure can be described by a decision tree (Fig. 4), which splits this complex par-
titioning process into a union of several simple decisions56.

HEBCS data was used to detect the differentially expressed genes which was pre-processed following instruc-
tions in ref. 7. Differentially expressed genes were identified in a pair-wise fashion (i.e., ER+  vs. ER− , [ER+ |PR+ ] 
HER2+  vs. [ER+ |PR+ ]HER2− , and [ER− |PR− ]HER2+  vs. [ER− |PR− ]HER2− ), assuming that ER drives the 
major difference as indicated by many studies2,57,58. Differentially expressed genes among breast cancer subgroups 
were selected according to the following rules:

I)   Significant difference on gene expression was observed between pair-wise subtypes under comparison.
II)   The average standard deviations in the same subgroup are relatively small.
 III)  The correlation coefficients of the selected genes are small in absolute value. This is to ensure that the list 

contains the most succinct number of genes.

The pair-wise identification process is composed of three steps. First, select the distinguishable genes between 
pair-wise subgroups. That is, genes with base-2 logarithmic fold change larger than 1 as compared with the aver-
age expression of each group were chosen. Second, choose differentially expressed genes in a group pair-wise 
fashion. In this step, the distinguishable genes were filtrated using moderated t-test. That is, the expression level 
of genes between two subgroups with p-value <  0.05 were considered differentially expressed59. Third, measure-
ment of differentially expressed degree was presented. The degree of differential expression was measured by 
introducing the intra-class difference MSintra and inter-class difference MSinter which are formulated as 

Figure 4. Decision tree for pair-wise identification of the feature genes of breast cancer subtypes. Gene set 
1 to 3 (gray) each contains the feature genes identified according to the status of the IHC marker show aside, i.e., 
ER or HER2. The subtypes are presented as the leaves of the tree.

http://tcga.cancer.gov/dataportal
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= ∑ −MS n x x( )er i i iint
2 and = ∑ ∑ −MS x x( )ra i j ij iint

2, where xi is the average expression of genes in the ith 
group, ni is the number of the patterns in the ith group and x is the average of gene expression. From the statistics 
point of view59,60, the bigger MSinter and the smaller MSintra is, the more distinguishable the two groups are. Thus, 
the index can be defined as

= .F MS
MS (2)

er

ra

int

int

The differentially expressed genes are sorted using the F index. In this study, we considered the difference 
between two groups, i =  {1, 2}. If more than 10 genes were differentially expressed, only the top 10 were selected 
as the feature gene set. Following this process, genes distinguishing ER+  and ER−  tumors are called ‘gene set1’, 
and those discriminating ‘[ER+ |PR+ ]HER2+ vs.[ER+ |PR+ ]HER2− ’ and ‘[ER− |PR− ]HER2+ vs.[ER− |PR− ] 
HER2− ’ pairs are identified as ‘gene set2’ and ‘gene set3’, respectively. The union of gene sets 1 to 3 is named 
the ‘feature genes’. Additionally, the differentially expressed genes between the rest-subtype-pairwise genes (RSP 
genes) were also explored, which contains [ER+ |PR+ ]HER2+  vs. [ER− |PR− ]HER2+ , [ER+ |PR+ ]HER2+  
vs. [ER− |PR− ]HER2− ,[ER− |PR− ]HER2+  vs. [ER+ |PR+ ]HER2−  and [ER+ |PR+ ]HER2−  vs. [ER− |PR− ]
HER2−  pairs.

Feature gene validation. A decision tree is constructed to identify the subtypes hierarchically, which can 
retrieve the prior knowledge from the discovery dataset and apply it to a new dataset based on the normalized gene 
expression regardless of the experimental platform. The priori probability distribution of feature genes in each 
subgroup is obtained from the discovery dataset and then applied for subtype identification in a new dataset by the 
naïve Bayesian classifier using normalized gene expression. Nearest center principle, on the other hand, is a tradi-
tional technique for subtype identification and applied here as a comparison. Additionally, as a comparison, SVM 
classifier is applied to identify the subtypes with kernel functions, equipped with training sets within same platform.

The naïve Bayesian classifier. The naïve Bayesian classifier61,62 was applied to calculate the probability that 
one tumor sample belongs to a certain subgroup. Assuming the signature gene expression is conditionally inde-
pendent, the conditional probability |P x c( )j  is expressed as | = ∏ |=P x c p x c( ) ( )j i

n
i j1 , where C is the tumor sub-

types and cj ∈  C. We use HEBCS as the discovery data set to train the naïve Bayesian classifier. Given a new pattern 
with the gene status, the classifier produces a posterior probability distribution over the possible subgroups, i.e.,

| =
|

.P c x
p x c p c

p x
( )

( ) ( )
( ) (3)j
j j

With the goal of assigning tumor samples to the subgroups with the highest accuracy, the objective function is 
written as

= | .C P c xarg max ( )
(4)map

j
j

Nearest center principle. The tumor samples Tx were assigned to the closest group as measured by 
Euclidean distance, and the nearest-center classifier was designed63 as

Figure 5. Work flow of the whole process elucidating the differences of breast tumor subtypes. Biological 
tools used in the analysis are shown in the square brackets.
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Network and pathway analysis using feature genes. To investigate the intrinsic heterogeneity of 
breast cancer, metabolic pathway and network analysis were applied to the obtained feature genes.

MiRecords64 is a resource for predicting miRNA targets, which integrates experimentally validated miRNA 
targets having systematic experimental support and predicted miRNA targets using 11 established prediction 
algorithms (DIANA-microT, MirTarget2 and TargetScan/TargertScanS, etc). It was used to find the targets 
of the feature miRNA genes. The gene network was constructed using GeneMANIA65 (physical attributions: 
co-expression, co-localization, genetic interactions, pathway, physical interactions, predicted and shared pro-
tein domains; automatically selected weighting method was used) to further elucidate the functional roles of the 
feature genes and the characteristics of each subtype. In addition, we used DAVID66 (in functional annotation 
clustering, similarity term overlap: 3, threshold: 0.5; enrichment thresholds: 1.0 and Benjamini is used. In func-
tional annotation chart, threshold count: 2, ease: 0.1; display way: Benjamini) and KOBAS67 (statistical method: 
hypergeometric test/fisher’s exact test; FDR correction method: Benjamini and Hochberg; Small term cutoff: 5) 
to interpret the enrichment of gene ontology, metabolic pathways and relevant diseases of these unified feature 
mRNAs and miRNA targets. The whole process for feature gene identification, validation, and breast tumor het-
erogeneity exploration, is illustrated in Fig. 5.
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