
REVIEW
published: 08 August 2019

doi: 10.3389/fonc.2019.00745

Frontiers in Oncology | www.frontiersin.org 1 August 2019 | Volume 9 | Article 745

Edited by:

Cyril Corbet,

Catholic University of

Louvain, Belgium

Reviewed by:

Aamir Ahmad,

Mitchell Cancer Institute,

United States

Masahiro Hitomi,

Cleveland Clinic, Lerner Research

Institute, United States

*Correspondence:

Swee T. Tan

swee.tan@gmri.org.nz

Specialty section:

This article was submitted to

Pharmacology of Anti-Cancer Drugs,

a section of the journal

Frontiers in Oncology

Received: 08 May 2019

Accepted: 24 July 2019

Published: 08 August 2019

Citation:

Roth IM, Wickremesekera AC,

Wickremesekera SK, Davis PF and

Tan ST (2019) Therapeutic Targeting

of Cancer Stem Cells via Modulation

of the Renin-Angiotensin System.

Front. Oncol. 9:745.

doi: 10.3389/fonc.2019.00745

Therapeutic Targeting of Cancer
Stem Cells via Modulation of the
Renin-Angiotensin System

Imogen M. Roth 1, Agadha C. Wickremesekera 1,2, Susrutha K. Wickremesekera 1,3,

Paul F. Davis 1 and Swee T. Tan 1,4*

1Gillies McIndoe Research Institute, Wellington, New Zealand, 2Department of Neurosurgery, Wellington Regional Hospital,

Wellington, New Zealand, 3Upper Gastrointestinal, Hepatobiliary and Pancreatic Section, Department of General Surgery,

Wellington Regional Hospital, Wellington, New Zealand, 4Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt

Hospital, Wellington, New Zealand

Cancer stem cells (CSCs) are proposed to be the cells that initiate tumorigenesis and

maintain tumor development due to their self-renewal andmultipotency properties. CSCs

have been identified inmany cancer types and are thought to be responsible for treatment

resistance, metastasis, and recurrence. As such, targeting CSCs specifically should result

in durable cancer treatment. One potential option for targeting CSCs is by manipulation

of the renin-angiotensin system (RAS) and pathways that converge on the RAS with

numerous inexpensive medications currently in common clinical use. In addition to its

crucial role in cardiovascular and body fluid homeostasis, the RAS is vital for stem cell

maintenance and differentiation and plays a role in tumorigenesis and cancer prevention,

suggesting that these roles may converge and result in modulation of CSC function by

the RAS. In support of this, components of the RAS have been shown to be expressed in

many cancer types and have been more recently localized to the CSCs in some tumors.

Given these roles of the RAS in tumor development, clinical trials using RAS inhibitors

either singly or in combination with other therapies are underway in different cancer types.

This review outlines the roles of the RAS, with respect to CSCs, and suggests that the

presence of components of the RAS in CSCs could offer an avenue for therapeutic

targeting using RAS modulators. Due to the nature of the RAS and its crosstalk with

numerous other signaling pathways, a systems approach using traditional RAS inhibitors

in combination with inhibitors of bypass loops of the RAS and other signaling pathways

that converge on the RAS may offer a novel therapeutic approach to cancer treatment.

Keywords: cancer stem cells, renin-angiotensin system, stem cell differentiation, tumorigenesis, bypass loops

CANCER STEM CELLS

As in normal tissue, tumors consist of diverse cell populations. The cellular heterogeneity
observed in tumors has led to the suggestion that cancer may be sustained by cancer
stem cells (CSCs), which, like normal embryonic stem cells (ESCs), are able to self-
renew and undergo differentiation into multiple cell types. This is supported by several
observations in cancer biology, including that only some tumor cells can recapitulate
a tumor when xenografted into immunodeficient mice, and that tumors grown from
tumorigenic cells consist of a mixed population of both tumorigenic and non-tumorigenic
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cancer cells (1). CSCs are thought to arise from either resident
adult stem cells which have acquired oncogenic mutations or
from progenitor cells which have an unlimited ability to replicate.
CSCs share the properties of differentiation, self-renewal and
homeostatic control with normal stem cells (1), express stem cell
markers (2), and have subverted self-renewal pathways of normal
stem cells (3).

The CSC concept proposes that cancer develops from a small
subset of cells which can generate all the heterogeneous cell types
seen within the tumor, including generating more CSCs as well as
differentiated cancer cells. It has been shown in numerous tumor
types that expression of certain markers can define populations
of cancer cells which are able to generate a tumor, as well as their
ability to respond to or resist cancer therapies, suggesting CSCs
are present within these tumors (4). Studies transplanting mouse
tumors into compatible wild-type mice have also shown that the
cancer cells differ in their tumorigenic capacity, as only a small
population of cancer cells are able to form tumors (4).

Given that adult human stem cells themselves are a diverse
pool of cells expressing different markers, it is unsurprising that
CSCs are also mixed populations of cells and are phenotypically
and functionally diverse, and that the same tumor can contain
multiple pools of CSCs (5). CSC diversity has also resulted in the
emergence of a hierarchy, with a slow-cycling pool of cells giving
rise to both a rapidly cycling population and non-proliferative
cells, suggesting that targeting the cells with the potential to
produce multiple types of tumor cells would be a beneficial
approach to cancer treatment (6, 7). Heterogeneity within
CSCs extends beyond tumorigenic potential and encompasses
genetic and epigenetic changes as well as local environmental
determinants and temporal and spatial differences (8). These
differences have implications for effective therapies, as some
cancer cells have been shown to resist chemotherapy and
radiotherapy, and it has been suggested that they could be
specifically targeted for differentiation as a therapeutic approach
(8). Importantly, there is a level of plasticity within this system, as
differentiated non-tumorigenic cancer cells can revert to CSCs (9,
10). This could be advanced by changes in the local environment
driven by cues including hypoxia and inflammatory mediators to
induce epithelial-mesenchymal transition and de-differentiation
to increase the “stemness” of the tumor (5). This heterogeneity
conferred by plasticity can result in treatment resistance (11).

CSCs have been shown to be capable of surviving radiotherapy
and chemotherapy, which have no effect on the ability of the
CSCs to regrow tumors (12). This resistance to radiotherapy is
thought to occur by several mechanisms, including activation of
DNA repair mechanisms, through activation of Wnt/β-catenin
signaling, reactive oxygen species generation, and activation
of other pro-survival signaling pathways (12). Resistance to
chemotherapeutic agents is thought to occur via the use of drug
efflux pumps and the expression of metabolic mediators (12).
In addition, the quiescent, slow-cycling nature of CSCs is also
likely to confer resistance to conventional treatments such as
chemotherapy and radiotherapy which target rapidly dividing
cells. The ability of CSCs to resist conventional cancer treatments
has been well documented in breast cancer. Irradiation of
mouse mammary primary epithelial cells enriches for progenitor

cells (13), and breast cancer cells from patients following
neoadjuvant chemotherapy are enriched for self-renewing cells
(14). Furthermore, the number of CSCs and their ability to form
mammospheres in culture is increased following chemotherapy
of breast cancer patients (15) and Trastuzumab treatment of a
breast cancer cell line (16).

Given their ability to generate a diverse cell population within
a tumor and their ability to resist conventional cancer treatments,
CSCs are proposed to be the cause of loco-regional recurrence
and distant metastasis, and consequently treatment failure. This
has implications for cancer therapy and suggests that the CSCs
should be targeted for effective and durable cancer treatment.
Consequently, several treatments targeting CSCs are currently
in use in the clinic, with the main strategies being inhibiting
key signaling pathways or directly targeting CSCs (17). These
therapies include targeting CSC markers, such as CD44 and
CD133, which have shown promise in a pre-clinical setting
and therapies targeting these markers are in current clinical
trials for acute myeloid leukemia and recurrent solid tumors,
including liver, brain, pancreatic, breast, and colorectal cancers
(18). In addition, a vaccination-based strategy against CSCs
is in clinical trials for glioblastoma and other brain tumors
(18), demonstrating the diverse approaches taken to target these
cells. Given that CSCs express a unique set of markers, another
approach toward identifying and eliminating these cells is to
characterize other common features of CSCs and exploit these
features for therapeutic targeting using drugs in common use,
such as via modulation of signaling pathways such as the renin-
angiotensin system (RAS).

THE RENIN-ANGIOTENSIN SYSTEM

Physiological Control of Blood Pressure
and Fluid Balance
The RAS is an endocrine system crucial for the maintenance
of homeostasis, as it regulates blood pressure and fluid balance
via a signaling network (Figure 1). Physiologically, the RAS is
activated in response to either reduced blood volume or blood
pressure, and acts to restore homeostasis through the release of
renin from the kidneys. Pro-renin is converted to active renin
by binding to the pro-renin receptor (PRR). Renin then cleaves
angiotensinogen, which is normally synthesized and released by
the liver, giving rise to angiotensin I (ATI). ATI is then converted
to angiotensin II (ATII) by angiotensin converting enzyme
(ACE). Aminopeptidase A converts ATII to angiotensin III, and
together they act on ATII receptors 1 and 2 (ATIIR1 and ATIIR2).
These receptors have divergent actions, with ATIIR1 driving
vasoconstriction and inhibiting renin to restore blood pressure,
and ATIIR2 acting to promote vasodilation. Angiotensin 1-
7 (Ang1-7) is the cleavage product of ATII and affects
cardiovascular functions by binding to the G-protein coupled
receptor MAS. However, there is considerable redundancy in
the pathway with bypass loops involving proteases such as
cathepsins B, D, and G, and the convergence of other signaling
pathways on the RAS itself, including inflammatory pathways
andWnt/β-catenin signaling (Figure 1). Given the importance of
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the RAS for maintaining blood pressure, numerous modulators
that inhibit the RAS at different points in the pathway have
been developed (Figure 2). These groups of RAS inhibitors are
commonly used in the clinic for the treatment of hypertension
and include β-blockers, ACE inhibitors (ACEI), and ATIIR1
blockers (ARBs) as well as newer agents targeting other points
in the pathway (e.g., renin inhibitors, chymase inhibitors,
ATIIR2 inhibitors), inhibitors targeting bypass loops in the RAS
pathway (e.g., cathepsin inhibitors), and inhibitors used in other
canonical signaling pathways that converge on the RAS (e.g.,
Wnt/β-catenin inhibitors, metformin, and non-steroidal anti-
inflammatory drugs) (Figure 2).

Stem Cell Differentiation
Alongside its crucial role in fluid volume regulation, the RAS
is also important for stem cell maintenance and differentiation
in several cell types. ATII expression drives the differentiation
of mesenchymal stem cells into adipocytes (19), while other
components of the RAS drive differentiation into insulin
producing cells (20). ACE is required for hemangioblast
expansion, and modulation of ATIIR1 or ATIIR2 signaling
can direct the fate of the blasts toward either an endothelial
or hematopoietic lineage (21). The RAS also plays a role
in hematopoiesis (22, 23), vasculogenesis (24), erythropoiesis
(25, 26), and myeloid differentiation (27).

Importantly, the RAS not only acts to promote stem cell
differentiation in diverse cell populations, but also appears to
act in a feedback loop with Wnt/β-catenin signaling, where
pro-renin receptor (PRR) can induce Wnt/β-catenin (28), and
components of the RAS themselves are targets of Wnt/β-
catenin (29). Wnt/β-catenin signaling is crucial for embryonic
development and induces differentiation of pluripotent stem
cells into progenitor cells (30). Given that Wnt signaling is also
involved in cancer development (31), and downstream Wnt
targets include the CSC markers CD44 and c-Myc (32), it may
be that CSCs require activation of Wnt signaling (33). This
suggests that RAS modulators could be employed in these cells
to indirectly inhibit Wnt signaling and its effects.

Having identified these roles in normal stem cell maintenance
and differentiation and feedback loops with a canonical
developmental signaling pathway, it may be that the expression
of the RAS also plays a role in the regulation or function of CSCs.

Retrospective Studies and Clinical Trials
Indicate Potential Benefit of RAS
Modulators in Reducing Cancer Risk
The widespread use of RAS modulators as anti-hypertensives
and their potential effect on cancer risk have been extensively
documented. A seminal study has shown that the use of ACEI
and ARBs is associated with a reduced risk of developing some
cancer types, particularly cancers affecting women (34). Many
other retrospective population studies have reported differing
effects on cancer risk depending on the cancer type, cohort
characteristics, and the RAS inhibitor used. As a result, several
meta-analyses have been undertaken (35), again with differing
results, which could be due to the nature of the original

FIGURE 1 | Overview of the renin-angiotensin system with its bypass loops

and convergent signaling pathways. The renin-angiotensin system (black)

regulates blood pressure, stem cell differentiation, and tumor development.

Bypass loops of the RAS involving enzymes such as chymase and cathepsins

B, D, and G (green) provide redundancy, while convergent inflammatory and

developmental signaling pathways (blue) have multiple roles and effects.

Angiotensinogen (AGN) is physiologically synthesized and released by the liver

and is cleaved by renin to form angiotensin I (ATI). Renin is formed following

binding of pro-renin to the pro-renin receptor. ATI is converted to angiotensin II

(ATII) by angiotensin converting enzyme (ACE). ATII interacts with the G-protein

coupled receptors ATII receptor 1 (ATIIR1) and ATII receptor 2 (ATIIR2) to

restore homeostasis, via vasoconstriction and vasodilation, respectively. ATII

can also give rise to angiotensin III via the action of aminopeptidase A, and

Angiotensin 1–7 which binds and activates the G-protein coupled receptor

MAS. Cathepsins B and D are also renin-activating enzymes that convert

pro-renin to renin. Cathepsin D converts AGN to ATI, and cathepsin G

converts ATI to ATII or AGN directly to ATII. Chymase converts ATI to ATII.

Pro-renin also induces Wnt/β-catenin signaling in a feedback loop. ATIIR1 can

also result in inflammatory signaling via the NOX-ROS-NFκB-COX2 signaling

axis. ROS, reactive oxygen species.

studies included and inherent publication bias. Aside from the
reported effects on cancer risk, many retrospective population
studies have also assessed the effect of RAS inhibitors on cancer
death. Again, these results have been mixed, though meta-
analyses have indicated that β-blocker use is not associated
with survival in breast cancer patients (36), and a meta-
analysis looking at ACEI use in all cancers showed no effect
on cancer survival (37). A more recent meta-analysis looking
at the use of different RAS inhibitors in all cancers showed
that RAS inhibitor use extended overall, progression-free and
disease-free survival (38). This is mainly due to ARBs and not
ACEI use, with some site-specific effects. These studies need
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FIGURE 2 | The renin-angiotensin system and its bypass loops and converging signaling pathways can be targeted at different points. The renin-angiotensin system

(black) regulates blood pressure, stem cell differentiation, and tumor development. Bypass loops in the system involving cathepsins and chymase (green) provide

redundancy, while convergent inflammatory and development signaling pathways (blue) have multiple roles and effects. Multiple points of the pathway can be targeted

by specific inhibitors (red). ACE, angiotensin converting enzyme; ARBs, ATIIR1 blockers; ROS, reactive oxygen species; NSAIDS, non-steroidal anti-inflammatory

drugs.

to be interpreted critically and with caution as they do not
prove causality and the effect on cancer risk and mortality
could be due to other factors. It may also be that a defined
patient group will derive benefit from these treatments and
that a more holistic approach of targeting the RAS in cancer
is required to achieve a sustained treatment for patients. Due
to the nature of the RAS, with its inherent bypass loops
conferring redundancies, and the presence of many other
pathways that converge on the RAS, it is likely that a multi-
faceted approach to target the RAS will be required for effective
cancer treatment.

Despite these disparate observations in retrospective
population studies, the data around the involvement of the
RAS in tumor models is clear, leading to many clinical trials
using RAS inhibitors and the development of new targeted
agents (39–41). Several of these studies have trialed ARBs

in cancer patients, with Losartan being shown to enhance
the efficacy of chemotherapy and improve overall survival
in ovarian cancer patients (42). Another ARB, Candesartan,
has been shown to decrease prostate specific antigen levels
in hormone-refractory prostate cancer patients (43), and is
tolerated in advanced pancreatic cancer (44, 45). The ACEI
Captopril is tolerated in patients with advanced cancer (46),
and has been shown to reduce biochemical recurrence in
prostate cancer patients (47), while Perindopril reduced the risk
of recurrence of hepatocellular carcinoma as a combination
therapy with other non-traditional treatments (48, 49).
Several trials have targeted the Ang1-7/MAS axis in breast
cancer before or after chemotherapy (50), and in metastatic
sarcoma, where it is well tolerated (51), and a number of
advanced solid tumors where it provides benefit for some
patients (52).
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TABLE 1 | Components of the RAS are expressed in tumors.

RAS component Expression in tissue Tumor types and references

Pro-renin receptor Increased expression Endometrial cancer (58)

Angiotensinogen Increased expression Lung cancer (59)

ACE Increased expression Prostate cancer (60), gastric cancer (61), endometrial cancer (58)

Polymorphism correlated with metastases Gastric cancer (62)

ATIIR1 Deficiency reduces tumor growth and angiogenesis Melanoma (63), sarcoma (64), lung cancer (65), fibrosarcoma (66)

Increased expression Pancreatic cancer (67), ovarian cancer (68), prostate cancer (60), astrocytoma (69), breast

cancer (70), renal clear cell carcinoma (71)

Expression associated with disease progression Ovarian cancer (68)

Expression associated with poor survival Intestinal type gastric cancer (72), astrocytoma (69)

ATIIR2 Deficiency increases tumor growth Pancreatic cancer (73)

Increased expression Gastric cancer (61), endometrial cancer (58)

Reduced expression Lung cancer (59)

Expression associated with poor survival Astrocytoma (69), renal clear cell carcinoma (71)

Cathepsin B Expression associated with poor survival Gastric cancer (74)

Cathepsin D Increased expression Hepatocarcinoma (75), melanoma (76), colorectal cancer (77), prostate cancer (78)

Expression increases metastasis Liver metastases (79, 80)

Expression associated with poor survival Breast cancer (81–84)

TABLE 2 | β-blockers inhibit tumorigenesis in cell and animal models.

Drug name Effect in tumor models or cell lines Tumor types and references

Propranolol Inhibition of growth and proliferation Pancreatic ductal adenocarcinoma (89), breast cancer (90, 91), neuroblastoma (92),

angiosarcoma (55, 93), melanoma (94–97), pancreatic cancer cells (98), gastric cancer

cells (99, 100), neuroblastoma cells (92), hemangioendothelioma cells (93), angiosarcoma

cells (55, 93), colorectal cancer cells (101), melanoma cells (94, 96), breast cancer cells

(102), liver cancer cells (103), prostate cancer cells (104)

Inhibition of migration Colon carcinoma cells (105), breast cancer cells (106)

Inhibition of invasion Ovarian cancer cells (107), pancreatic cancer cells (108)

Inhibition of metastasis Prostate cancer (109), melanoma (95)

Prolonged survival of tumor-bearing animals Neuroblastoma (92)

Carvedilol Inhibition of growth and proliferation Neuroblastoma and neuroblastoma cells (92)

Nebivolol Inhibition of growth and proliferation Neuroblastoma and neuroblastoma cells (92)

β-blockers work by blocking β-adrenergic receptors to
prevent neurotransmitter binding. This prevents renin secretion
and its actions and subsequently results in lowered blood
pressure (Figure 2). The non-selective β-blocker Propranolol
has been shown in several case reports to be efficacious
in treating angiosarcoma (53), and in combination with
chemotherapy treatment induced responses in seven patients
with advanced angiosarcoma (54). Another study showed
that addition of Propranolol or another non-selective β-
blocker Carvedilol to treatment regimens for metastatic
angiosarcoma improved progression-free and overall survival
(55). Propranolol has also been used in a proof of concept
study in multiple myeloma patients receiving hematopoietic
cell transplantations (56), and in a prospective cohort study in
melanoma patients where its use was associated with reduced
recurrence (57).

While these trials have demonstrated promise for targeting
the RAS in cancer treatment, the mechanisms by which this is
achieved are yet to be elucidated. Current clinical trials and the

development of new RAS targets should help to further define
which patient groups may benefit from these treatments.

In vitro and in vivo Cancer Models
Rationalize the RAS as a Therapeutic
Target
Given the potential effects on reducing cancer risk observed in
retrospective population studies, expression of components of
the RAS have been assessed in many different tumor types to
clarify the potential role of the RAS in tumorigenesis (Table 1).

These studies have helped define the role of the RAS in
tumorigenesis, and collectively show that components of the
RAS are expressed in many different cancer types (39, 85).

The effects on tumor growth, angiogenesis, metastasis and
survival indicate that the RAS plays a role in the hallmarks
of cancer (39, 86, 87). It is also thought to contribute to an
immunosuppressive microenvironment in tumors and reduce
infiltration of tumor-associated macrophages (88). The increased
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TABLE 3 | ACE inhibitors inhibit tumorigenesis in cell and animal models.

Drug name Effect in tumor models or cell lines Tumor types and references

Captopril Reduced growth Renal cancer (110), lung cancer (111), colorectal cancer liver metastases (112, 113), lung

cancer cells (111), esophageal squamous cell carcinoma cells (114)

Increased growth Fibrosarcoma (115)

Reduced metastases Lung cancer (111)

Decreased survival of tumor-bearing animals Renal cancer (115)

Enalapril Inhibition of growth Pancreatic cancer (116, 117), neuroendocrine cancer cells (117)

Inhibition of invasion Pancreatic cancer (116), gastric cancer cells (61)

Perindopril Reduced growth and angiogenesis Hepatocellular carcinoma (118–120)

TABLE 4 | ARBs inhibit tumorigenesis in cell and animal models.

Drug name Effect in tumor models or cell lines Tumor types and references

Candesartan Inhibition of growth and proliferation Gastric cancer cells (121), lung cancer cells (122)

Reduced angiogenesis Renal cancer (123), ovarian cancer (68), breast cancer (124)

Reduced metastases Renal cancer (123)

Prolonged survival of tumor-bearing animals Peritoneal carcinomatosis (121)

Irbesartan Reduced growth Colorectal cancer liver metastases (112), esophageal squamous cell carcinoma cells (114)

Losartan Reduced growth Breast cancer (70), esophageal squamous cell carcinoma cells (114)

Increased proliferation Melanoma cells (125)

Reduced invasion Breast cancer (70)

Reduced angiogenesis Pancreatic cancer (126)

Olmesartan Reduced invasion Gastric cancer cells (61)

Telmisartan Inhibition of growth and proliferation Prostate cancer cells (127), uterine leiomyoma cells (128), lung cancer cells (129)

expression of components of the RAS in different cancer types
may contribute to tumorigenesis and the poor clinical outcome
seen in some cancer types. This suggests that regulation of
the RAS may be a general mechanism for cancer prevention
and warrants further investigation to understand the precise
underlying mechanisms.

Given that the RAS is over-expressed in many cancer
types and the use of RAS modulators may affect cancer
risk and cancer survival, numerous studies have assessed
the effect of RAS inhibitors in vitro and on tumor models
in vivo. These have focused on β-blockers (Table 2), ACEI
(Table 3), and ARBs (Table 4) to assess the role of the RAS in
tumor development.

Studies investigating β-blockers in cancer (Table 2) have
largely used the β-blocker Propranolol and have shown that
across a wide range of cancer types, Propranolol inhibits the
growth of tumors and tumor cells. This suggests that Propranolol
could be repurposed for cancer treatment (130, 131), as has been
the case for the benign vascular tumor infantile hemangioma for
which it is an effective treatment (132–134).

Given the effects of β-blockers on cancer and cancer cell
growth, other studies have investigated the impact of other classes
of drugs that modulate the RAS on neoplastic processes. One of
these classes is ACEIs, which block the action of ACE and hence
downstream production of ATII (Figure 2). Studies looking at
ACEIs (Table 3) are extensive and demonstrate that this class of
drugs (including Captopril, Enalapril, and Perindopril) appear

to prevent tumor growth and invasion in many different tumor
types and models.

Another broad class of drugs that modulate the RAS are ARBs,
which block ATIIR1 (Figure 2). Studies using ARBs to assess
cancer development in cell and animal models (Table 4) have
also shown that different drugs within this class (Candesartan,
Irbesartan, Losartan, Olmesartan, and Telmisartan) inhibit
tumor development across several tumor types.

These studies underscore the complex nature of the RAS
and suggests that different RAS modulators may have different
effects in different tumor types. Taken together, they suggest
that anti-hypertensive drugs which target the RAS have shown
promise for repurposing in the cancer setting. Across several
classes of drugs (β-blockers, ACEIs, and ARBs) in both
in vitro and in vivo models, they have been shown to reduce
tumor cell growth, migration, invasion, and metastasis in
numerous cancer types. These processes comprise many of the
characteristics of CSCs and of the hallmarks of cancer (135),
and are consistent with the expression of some components of
the RAS in high-grade disease and the associated poor survival
(Table 1). This suggests that there is merit in repurposing RAS
inhibitors for cancer treatment. Many clinical trials using this
approach are currently underway, despite limited functional
work and mechanistic understanding about how this approach
might work in cancer patients. With the development of
new agents targeting specific parts of the pathway, including
the bypass loops, and the refinement of existing drugs, new
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opportunities are emerging for modulating the RAS pathway,
either in combination with current therapies or by targeting the
entire RAS and its bypass loops, and pathways converging on
the RAS.

CANCER STEM CELLS EXPRESS
COMPONENTS OF THE RAS

Given the well characterized role of the RAS in both stem cell
maintenance and tumorigenesis, it is possible that these functions
are directed by RAS signaling in CSCs. In order to demonstrate
this, it is important to first establish that CSCs express both CSC
markers and components of the RAS. This has been shown to be
the case in numerous cancer types, including glioblastoma (136–
138), metastases to the liver from colon adenocarcinoma (139,
140), head and neck cutaneous squamous cell carcinoma (141),
and oral cavity squamous cell carcinoma affecting the buccal
mucosa (142, 143), oral tongue (144–146), and lip (147, 148). In
addition, components of the RAS have also been demonstrated
on the tumor stem cells of benign tumors such as meningioma
(149, 150), infantile hemangioma (151, 152), and pyogenic
granuloma (153). Importantly, the expression of cathepsins B,
D, and G in some of these cancer types (74, 138, 140, 146, 150)
suggests the presence of bypass loops of the RAS which could
circumvent the action of traditional RAS inhibitors and offer a
potential explanation for the differing findings of cancer risk and
cancer survival with long-term use of traditional RAS inhibitors.
Given the presence of components of the RAS in CSCs in these
cancers, it is possible that the expression of these components is
controlling the differentiation and function of the CSCs within
these tumors.

Despite the indirect evidence from retrospective population
studies and more substantial direct evidence from in vitro
studies and in vivo tumor models, very little is known about
the mechanism by which RAS modulators influence tumor
development. Although expression of components of the RAS
has been demonstrated in CSCs, their function and how they
might respond to RAS modulators has yet to be characterized.
However, the fact that many clinical trials involving targeting of
the RAS in cancer have taken place and are currently underway
underscores the role of RAS in tumorigenesis and the need
for further investigations into this system. Importantly, the
findings in tumor model systems are seen consistently across
a broad range of tumor types, suggesting its common role
in cancer biology which may be affected through CSCs and
their functions.

The expression of both components of the RAS and CSC
markers in several cancer types may indicate that the CSCs

may be a novel therapeutic target through modulation of the
RAS. It is possible that a multi-faceted strategy simultaneously
targeting multiple critical points of the RAS and related
signaling pathways may result in durable cancer treatments

by altering CSC function. Indeed, Phase II trials in metastatic
renal cell carcinoma using either Perindopril or Candesartan
in combination with other agents, including a cyclooxygenase-
2 inhibitor have shown potential for stabilizing the disease
and reducing recurrence (154). Propranolol treatment in
combination with a cyclooxygenase-2 inhibitor is well tolerated
in breast cancer patients and transcriptional profiling showed
the combination reduced markers of invasion and inflammation
(155). Furthermore, targeting other pathways which converge
on the RAS may also prove worthwhile, as Metformin
selectively kills CSCs in mouse breast cancer models (156), and
targeting Wnt signaling is known strategy for CSC elimination
(157, 158).

CONCLUSION

The involvement of the RAS in both tumor development and
stem cell maintenance suggests that these roles may converge
on CSC maintenance and function. Given the ability of CSCs
to promote cell migration, invasion and metastasis (17), and the
reduction of these processes by RAS inhibitors in vitro and in
vivo, it may be that the success of RAS inhibitors in reducing
cancer risk and improving cancer survival is due to their effects
on CSCs. In support of this, components of the RAS and enzymes
that constitute bypass loops of the RAS have been shown to
be expressed in CSCs of several different cancer types. This
offers an avenue for targeted therapies using RAS inhibitors,
modulators of the bypass loops, and agents targeting other
signaling pathways that converge on the RAS. Importantly, RAS
inhibitors are commonly available, well tolerated and inexpensive
and have been shown to be effective in controlling tumor growth
in several settings. However, many of these studies have relied
on immortalized cancer cell lines and xenograft tumor models,
and in order to better understand the mechanisms of these drugs
and the discrepancies observed in their effects clinically, models
closer to the patient need to be employed. In addition, the nature
of the RAS and its crosstalk with other pathways means a system-
wide approach simultaneously targeting multiple key steps of the
RAS is needed to achieve effective cancer control.
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