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A simple and efficient method is explored for the synthesis of 2-hydroxyimino-2-
phenylacetonitriles (2) and phthalimides (4), by using nitromethane as nitrogen donors. Both
reactions are promoted by Cu(II) system with the participation of dioxygen as an oxidant. The
scope of the method has been successfully demonstrated with a total of 51 examples. The
flexible and diversified characteristics of reactions are introduced in terms of electronic effect,
steric effect, position of substituted groups, and intramolecular charge transfer. Experimental
studies suggest that the methyl nitrite could be a precursor in the path to the final products. A
possible reaction mechanism is proposed, including the Cu(II)/O2-facilitated transformation of
nitromethane to methyl nitrite, the base-induced formation of 2-hydroxyimino-2-
phenylacetonitriles, and the base-dioxygen-promoted formation of phthalimides.

Keywords: copper-dioxygen, nitrogen source, nitromethane transformation, methyl nitrite, phthalimide,
2-hydroxyimino-2-phenylacetonitrile

INTRODUCTION

Nitrogen is one of the most important elements that constitute organisms and plays an
important role in life activities of biomolecules. Cyano-oxime compounds and their derivatives
have shown tremendous potentials for the development of a variety of biological compounds
such as herbicides, drugs, and antibacterial agents (Gerasimchuk et al., 2008; El-Faham et al.,
2014). The presence of two important functional groups in a single molecule makes them
widely applicable for the synthesis of nitrogenous organic compounds in chemical engineering
(Robertson et al., 2005; Aakeröy et al., 2012; Soliman et al., 2017). Of these, 2-hydroxyimino-2-
phenylacetonitriles (2) are useful building blocks for the construction of polynitrogen organic
substances, especially for the synthesis of peptides and/or nitrogen-containing heterocyclic
compounds (Itoh et al., 1975; Kunai et al., 1990; Neel and Zhao, 2018; Alam et al., 2020). A few
methods are available for the synthesis of these compounds, including the condensation of
phenylketone/benzaldehyde and the cyanidation of their secondary products (Schemes 1A,B)
(Ma et al., 1999; Uysal, 2010; Lemercier and Pierce, 2014; Kryshenko et al., 2016; Ushakov
et al., 2019), the nitrosylation and nitridation of benzyl-cyanide (Schemes 1C,D) (Dubery
et al., 1999; Bohle and Perepichka, 2009; Bohle et al., 2013; Neel and Zhao, 2018), and the
nitration and nitrosation of styrene (Schemes 1E,F) (Kunai et al., 1990; Alam et al., 2020).
However, these methods suffer from several drawbacks, such as the use of toxic reagents,
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rigorous reaction conditions, the cost of starting materials,
multistep processes, and/or low yields. Thus, a simple and
efficient method for the synthesis of compound 2 is desired,
consistent with the development of benzyl-cyano-oxime

compounds and their related pharmacological and/or
material chemistry.

In the literature, the direct protocol to enhance the scope of
conventional synthesis of N-containing compounds generally

SCHEME 1 | Previous work of the synthesis of 2-(hydroxyimino)-2-phenylacetonitrile and the reported applications of nitromethane as nitrogen donor.
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involves the development and utilization of nitrogen transfer
agents. Many nitrogen donors have been used in the catalytic
transformations, e.g., oxidative amination, nitrogenation, and
nitrogen heterocyclization. They include diazo/azide (Hennessy
and Betley, 2013), isocyanide (Kim and Hong, 2015), cyanide
(Wu et al., 2016a), ammonia (Shimokawa et al., 2016),
sulfonamide/amide (Wang et al., 2019a), and hydroxylamine
(Mudshinge et al., 2020). In contrast, the reactivity of
nitromethane as a nitrogen donor was rarely developed, until
a recent article in the journal of Science provided a reference of
nitromethane activation for use in the Schmidt reaction
(Scheme 1L) (Liu et al., 2019). The efficient utilization of
nitro compounds as nitrogen donors has attracted
considerable attention, and the interest in the activation of
nitromethane grows.

Nitromethane is shelf-stable and commercially available. It is
commonly used as a solvent for organic synthesis. It is also used
as an intermediate in the carbon-chain-growth synthesis reaction
owing to the strongly electrophilic properties of the nitro group
(Xu et al., 2015; Aksenov et al., 2015; Wu et al., 2016b; Aksenov
et al., 2020), for example, nitroaldol reactions (Jacobsen, 2001;
Akagawa and Kudo, 2012; Kwiatkowski et al., 2014; Fu et al.,
2019), cross dehydrogenative coupling reaction (Li et al., 2006;
Basle and Li, 2007), and nitro-Mannich reactions (Schemes
1G–I) (Noble and Anderson, 2013). These reactions took
place in the active site of the methyl group, without any
change to the skeleton of the nitro group. Moreover,
nitromethane is also used as cyano and nitroso sources in the
formation of nitriles and nitrosamines (Schemes 1J,K), in the
presence of zinc or copper catalysts, respectively (Nagase et al.,
2014; Sakai et al., 2015; Chaudhary et al., 2016; Ogiwara et al.,
2017; Qiu et al., 2018; Mudithanapelli et al., 2019). However, the
substrates of those reactions are limited to heterocycles/aryl
iodides and amines.

Copper complexes are often used as oxidants and/or oxidation
catalysts in organic catalytic synthesis. As advanced oxidizing
agents, copper-oxygen species have been used in the activation of
C-H bond of alkyl group (Allen et al., 2013; Thorseth et al., 2013;
Solomon et al., 2014; Elwell et al., 2017). On considering our
previous work on the C-H bond activation of pyridine (Xiang
et al., 2019), we set out to study the application of copper(II)-
oxygen species on the activation of nitromethane, from the
perspective of applied chemistry and practical use. We herein
report a new method for the synthesis of 2-hydroxyimino-2-
phenylacetonitrile (2a) and its derivatives, by nitrosation of
phenylacetonitriles with nitromethane under dioxygen
atmosphere (Scheme 1M). The employment of easily available
reagents, environmentally friendly solvents, and mild reaction
conditions make this process very practical. Meanwhile, the
copper(II)-oxygen facilitated nitrosation reaction is validated
with the amination of indanones with nitromethane in yields
up to 80% (Scheme 1N). Experimental studies showed that the
methyl nitrite could be an intermediate of the activation of
nitromethane in our system, through which the final products
two and four were obtained by means of nucleophilic reaction
and electrophilic reaction, respectively.

MATERIAL AND METHODS

General Information
The single-crystal data of compounds were collected by a Cu/
Mo-Kα rotating anode source, using a Supernova diffractometer
with the ω-scan method. ESI-MS were obtained using a Bruker
Impact II quadrupole time-of-flight mass spectrometer. 1H
NMR and 13C NMR spectra were recorded on Bruker
Avance III (400 MHz) and JNM ECS400S (400 MHz).
Chemical shifts are expressed in δ ppm values with reference
to tetramethylsilane (TMS) as an internal standard. NMR
multiplicities are abbreviated as follows: s � singlet, d �
doublet, and m � multiplet. Coupling constants (J) are
expressed in Hz. 1H and 13C NMR spectra are provided for
all the compounds in the SI. Pyridine was distilled before use.
MeNO2 and DMF were distilled over CaH2 and stored over
molecular sieve (3Å). THF was distilled with metal sodium over
a period of 5 h. All other reagents were of analytical grade,
purchased from commercial sources, and used as received.

Warning. The starting materials of nitroalkanes and the
nitrointermediates generated during reactions are energetic
and should be handled as if they are explosive materials. All
the reactions should be conducted behind a blast shield.

General Procedure for the Synthesis of Compounds
Shown in Scheme 2
For safety reasons, the feeding order of chemicals should be
followed. To a mixture of phenylacetonitriles (0.60 mmol), 4-
dimethylaminopyridine (DMAP, 0.40 mmol), NaOH (0.40mmol),
CuSO4.5H2O (0.20mmol), and THF (1mL) in a 50mL Teflon
screw-cap sealed tube, MeNO2 (0.20 mmol) was added slowly in air
atmosphere. The tube was charged with O2 (1 atm) and the mixture
was stirred at 120 °C for 24 h. After cooling to room temperature, the
reaction mixture was diluted with dichloromethane (20mL), filtered
through a pad of silica gel, and concentrated under reduced pressure.
The crude product was purified on a silica gel column eluted with
petroleum ether/ethyl acetate (7:1 v/v) to afford the products in
yields up to 82% (2e). The scale-up production of compound 2 was
examined with the typical nitrile of phenylacetonitrile. The reaction
of PhCH2CN (3.51 g, 30mmol), DMAP (2.44 g, 20mmol), NaOH
(0.80 g, 20mmol), CuSO4.5H2O (2.50 g, 10 mmol), THF (30mL),
and MeNO2 (0.61 g, 10mmol) under the same conditions afforded
the product 2a in yield 68% (0.99 g).

General Procedure for the Synthesis of Compounds
Shown in Scheme 3
Part a. For safety reasons, the reaction procedure should be
strictly followed. A mixture of indanones (0.20 mmol), DMAP
(0.40 mmol), tBuOK (0.40 mmol), and CuSO4.5H2O (0.20 mmol)
in a 50 mL Teflon screw-cap sealed tube was stirred for 5 min in
air atmosphere. The mixture was cooled to 0 °C and MeNO2

(1 mL) was added dropwise while stirring. After the addition was
completed, the mixture was warmed up, charged with O2 (1 atm),
and stirred at 120 °C for 24 h. After cooling to room temperature,
the reaction mixture was diluted with dichloromethane (20 mL),
filtered through a pad of silica gel, and concentrated under
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reduced pressure. The crude product was purified on a silica gel
column eluted with dichloromethane/methanol (20:1 v/v) to
afford the products in yields up to 80% (4e). The scale-up

production of compound 4 was examined with the typical
starting material of 1-indanone. The reaction of 1-indanone
(1.32 g, 10 mmol), DMAP (2.44 g, 20 mmol), tBuOK (2.24 g,

SCHEME 2 | Scope of phenylacetonitriles with respect to compound 2a. aReaction conditions: substrate 1 (0.6 mmol), MeNO2 (0.2 mmol), CuSO4.5H2O
(0.2 mmol), DMAP (0.4 mmol), NaOH (0.4 mmol), THF (1 mL), O2 (1 atm), 120 °C, and 24 h.
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20 mmol), CuSO4.5H2O (2.50 g, 10 mmol), and MeNO2 (30 mL)
under the same conditions shown above afforded the product 4a
in yield 65% (0.96 g).

Part b.The above procedure (part a) wasmodified for the preparation
of compounds listed in Part b, with the use of corresponding 1-carbonyl-
benzohetercyclic compounds (0.2mmol) as substrates.

SCHEME 3 | Scope of indanones with respect to compound 4a. aReaction conditions: substrate 3 (0.2 mmol), MeNO2 (1 mL), CuSO4.5H2O (0.2 mmol), DMAP
(0.4 mmol), tBuOK (0.4 mmol), O2 (1 atm), 120 °C, and 24 h.
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Part c. The above procedure (part a) was used for the
preparation of compound 4a with the use of nitroethane,
nitropropane, 1-nitrobutane, 2-nitropropane, and 2-methyl-2-
nitropropane as solvents (1 mL), respectively.

Experimental Procedure for the Synthesis of
Compounds Shown in Scheme 4
For Safety Reasons, the Feeding Order of Chemicals Should Be
Followed

a. Amixture of indanone (23.6mg, 0.20 mmol), DMAP (48.8mg,
0.40 mmol), tBuOK (44.8 mg, 0.40 mmol), and CuSO4.5H2O
(50.0 mg, 0.20 mmol) in a 50 mL Teflon screw-cap sealed tube
was stirred for 5 min in air atmosphere. The mixture was
cooled to 0 °C and MeNO2 (1 mL) was added dropwise while
stirring. After the addition was completed, the mixture was
warmed up to room temperature. The tube was charged with
O2 (1 atm) and the mixture was stirred at 120 °C for 24 h. After
cooling to room temperature, the reaction mixture was diluted
with dichloromethane (20 mL), filtered through a pad of silica
gel, and concentrated under reduced pressure. The residue was
checked with the techniques of Thin-Layer Chromatography
(TLC) and 1HNMR, but no signal of compound 4a was found.

b. A mixture of 1-indanone (26.4 mg, 0.20 mmol), DMAP (48.8
mg, 0.40 mmol), tBuOK (44.8 mg, 0.40 mmol), and
CuSO4.5H2O (50.0 mg, 0.20 mmol) in a 50 mL Teflon
screw-cap sealed tube was stirred for 5 min in air
atmosphere. The mixture was cooled to 0 °C and tBuNO2

(1mL) was added dropwise while stirring. After the addition
was completed, the mixture was warmed up to room
temperature. The tube was charged with O2 (1 atm) and
the mixture was stirred at 120 °C for 24 h. After cooling to
room temperature, the reaction mixture was diluted with
dichloromethane (20 mL), acidified by acetic acid to pH �
3, filtered through a pad of silica gel, and concentrated under
reduced pressure. The crude product was purified on a silica
gel column eluted with dichloromethane/methanol (10:1 v/v)
to afford the product 3′ in yield 50% (16.6 mg).

c. A mixture of 1-indanone (26.4 mg, 0.20mmol) and tBuOK
(44.8 mg, 0.40mmol) in a 50 mL Teflon screw-cap sealed tube
was stirred for 5 min in air atmosphere. The mixture was
cooled to 0 °C and tBuNO2 (1mL) was added dropwise while
stirring. After the addition was completed, the mixture was
warmed up to room temperature. The tube was charged with
N2 (1 atm) and the mixture was stirred at 120 °C for 24 h. The
reaction mixture was cooled, diluted with dichloromethane
(20 mL), acidified by acetic acid to pH � 3, filtered through a
pad of silica gel, and concentrated under reduced pressure.
The residue was checked with the techniques of TLC and 1H
NMR, but no signal of compound 3′ was found.

d. Amixture of o-phthalic acid (33.2mg, 0.20mmol), DMAP (48.8
mg, 0.40mmol), tBuOK (44.8 mg, 0.40mmol), and
CuSO4.5H2O (50.0 mg, 0.20mmol) in a 50mL Teflon screw-
cap sealed tube was stirred for 5min in air atmosphere. The
mixture was cooled to 0 °C and MeNO2 (1mL) was added
dropwise while stirring. After the addition was completed, the
mixture was warmed up to room temperature. The tube was

charged with O2 (1 atm) and stirred at 120 °C for 24 h. The
reaction mixture was cooled, diluted with dichloromethane
(20mL), filtered through a pad of silica gel, and concentrated
under reduced pressure. The crude product was purified on a
silica gel column eluted with dichloromethane/methanol (20:1
v/v) to afford the product 4a in yield 68% (20.0 mg).

e. A mixture of o-phthalic anhydride (29.6 mg, 0.20mmol),
DMAP (48.8 mg, 0.40 mmol), tBuOK (44.8 mg, 0.40mmol),
and CuSO4.5H2O (50.0 mg, 0.20mmol) in a 50mL Teflon
screw-cap sealed tube was stirred for 5min in air atmosphere.
The mixture was cooled to 0 °C and MeNO2 (1 mL) was added
dropwise while stirring. The same procedure of (d) was followed
for the processing of solution and the purification of crude
product. The yield of phthalimide (4a) is 75% (22.0 mg).

f. A mixture of o-phthalic anhydride (29.6 mg, 0.20 mmol) and
tBuOK (44.8 mg, 0.40 mmol) in a 50 mL Teflon screw-cap
sealed tube was stirred for 5 min in air atmosphere. The
mixture was cooled to 0 °C and tBuNO2 (1 mL) was added
dropwise while stirring. After the addition was completed,
the mixture was warmed up to room temperature. The tube
was charged with N2 (1 atm) and the mixture was stirred at
120 °C for 24 h. The reaction mixture was cooled, diluted
with dichloromethane (20 mL), filtered through a pad of
silica gel, and concentrated under reduced pressure. The
residue was checked with the techniques of TLC and 1H
NMR, but no signal of compound 4a was found.

g. A mixture of o-phthalic anhydride (29.6 mg, 0.20mmol) and
tBuOK (44.8 mg, 0.40 mmol) in a 50mL Teflon screw-cap
sealed tube was stirred for 5 min in air atmosphere. Themixture
was cooled to 0 °C and nBuONO (1mL) was added dropwise
while stirring. After the addition was completed, the mixture
was warmed up to room temperature. The tube was charged
with N2 (1 atm) and stirred at 120 °C for 24 h. The reaction
mixture was cooled, diluted with dichloromethane (20 mL),
filtered through a pad of silica gel, and concentrated under
reduced pressure. The crude product was purified on a silica gel
column eluted with dichloromethane/methanol (20:1 v/v) to
afford the product 4a in yield 70% (20.6 mg).

h. To amixture of phenylacetonitrile (70.3 mg, 0.60mmol), NaOH
(16.0mg, 0.40mmol), andTHF (1mL) in a 50mLTeflon screw-
cap sealed tube, nBuONO (20.6 mg, 0.20mmol) was added
slowly in air atmosphere. The tube was charged with N2 (1 atm)
and the mixture was stirred at 120 °C for 24 h. After cooling to
room temperature, the reaction mixture was diluted with
dichloromethane (20mL), filtered through a pad of silica gel,
and concentrated under reduced pressure. The crude product
was purified on a silica gel column eluted with petroleum ether/
ethyl acetate (7:1 v/v) to afford 2-(hydroxyimino)-2-
phenylacetonitrile (2a) in yield 65% (19.0 mg).

i. A mixture of 1-indanone (26.4 mg, 0.20 mmol), tBuOK (44.8
mg, 0.40 mmol), and compound 5 (80.8 mg, 0.10 mmol, green
crystalline solid) in a 50 mL Teflon screw-cap sealed tube was
stirred for 5 min in air atmosphere. The mixture was cooled to
0 °C and MeNO2 (1mL) was added dropwise while stirring.
The same procedure of (d) was followed for the processing of
solution and the purification of crude product. The yield of
phthalimide (4a) is 72% (21.2 mg).
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j. To a mixture of phenylacetonitrile (70.3 mg, 0.60 mmol),
NaOH (16.0 mg, 0.40 mmol), compound 5 (80.8 mg, 0.10
mmol, green crystalline solid), and THF (1 mL) in a 50mL

Teflon screw-cap sealed tube, MeNO2 (12.2 mg, 0.20 mmol)
was added slowly in air atmosphere. The tube was charged
with O2 (1 atm) and the mixture was stirred at 120 °C for 24 h.

SCHEME 4 | Mechanistic exploration of the synthesis of phthalimide and 2-hydroxyimino-2-phenylacetonitrile.
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After cooling to room temperature, the reaction mixture was
diluted with dichloromethane (20 mL), filtered through a pad
of silica gel, and concentrated under reduced pressure. The
crude product was purified on a silica gel column eluted with
petroleum ether/ethyl acetate (7:1 v/v) to afford the product 2a
in yield 58% (17.0 mg).

The Synthetic Procedure for Compound 5
Amixture of CuSO4.5H2O (25.0 mg, 0.10mmol) and DMAP (24.4
mg, 0.20 mmol) was stirring in driedMeNO2 (10 mL) for 30 min to
give a dark green solution. The mixture was filtered and the filtrate
was added Et2O to deposit the product as some green crystalline
solid, which was collected, washed with THF/Et2O (0.5/1 mL), and
dried (28 mg, 69%). Anal. Calcd. for C28H40Cu2N8O8S2: C, 41.63;
H, 4.99; N, 13.87. Found (%): C, 41.16; H, 4.94; N, 14.03. The
crystal suitable for X-ray crystallography was grown by diffusion of
Et2O into a solution of compound 5 in DMF.

NMR DATA

2-(Hydroxyimino)-2-phenylacetonitrile (2a)
(Alam et al., 2020)
Yield, 78% (22.8 mg); white powder; melting point, 120–122 °C
(literature 120–122 °C); 1H NMR (400 MHz, DMSO-d6): δ 13.89
(s, 1H), 7.81 (brs, 2H), 7.62 (brs, 3H); 13C NMR (100 MHz,
DMSO-d6): δ 131.7, 131.4, 130.0, 129.8, 126.0, 110.6.

2-(Hydroxyimino)-2-(2-methyl)-
phenylacetonitrile (2b) (Alam et al., 2020)
Yield, 75% (24.1 mg); white powder; melting point, 132–134 °C;
1H NMR (400 MHz, DMSO-d6): δ 13.85 (s, 1H), 7.57 (d, J � 7.5
Hz, 1H), 7.49 (t, J � 7.1 Hz, 1H), 7.41–7.45 (m, 2H), 2.51 (s, 3H);
13C NMR (100 MHz, DMSO-d6): δ 137.0, 132.1, 131.8, 130.9,
129.7, 129.3, 127.2, 111.4, 21.1; HRMS m/z (ESI) [M + Na+]
calculated for C9H8N2O1Na, 183.0534; found, 183.0559.

2-(Hydroxyimino)-2-(3-methyl)-
phenylacetonitrile (2c) (Alam et al., 2020)
Yield, 77% (24.7 mg); white powder; melting point, 124–126 °C;
1HNMR (400 MHz, DMSO-d6): δ 13.75 (s, 1H), 7.53 (s, 1H), 7.52
(d, J � 7.6 Hz, 1H), 7.41 (t, J � 7.6 Hz, 1H), 7.35 (d, J � 7.6 Hz, 1H),
2.37 (s, 3H); 13C NMR (100 MHz, DMSO-d6): δ 138.8, 131.6,
131.2, 129.5, 129.3, 125.9, 122.8, 110.2, 20.9.

2-(Hydroxyimino)-2-(4-methyl)-
phenylacetonitrile (2d) (Alam et al., 2020)
Yield, 78% (25.0 mg); white powder; melting point, 150–152
(literature 150–152 °C); 1H NMR (400 MHz, DMSO-d6): δ
13.70 (s, 1H), 7.66 (d, J � 8.0 Hz, 2H), 7.38 (d, J � 8.0 Hz,
2H), 2.40 (s, 3H); 13C NMR (100 MHz, DMSO-d6): δ 141.4, 131.6,
130.4, 127.3, 126.0, 110.7, 21.4.

SCHEME 5 | Crystal structures of compounds 2o (CCDC 2007798), 4n (CCDC 2007797), and 5 (CCDC 2007804), showing the thermal ellipsoids of 50%
probability surfaces. The weak interactions between molecules with the Cu(1)-O(3A) and Cu(1A)-O(3) bond lengths of 2.193(1) Å are shown.
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4-(tert-Butyl)-N-hydroxybenzimidoyl
Cyanide (2e) (Alam et al., 2020)
Yield, 82% (33.1 mg); pale yellow powder; melting point, 158–160 °C
(literature 158–160 °C); 1H NMR (400MHz, DMSO-d6): δ 13.58 (s,
1H), 7.53 (d, J� 8.0Hz, 2H), 7.41 (d, J� 8.0Hz, 2H), 1.16 (s, 9H); 13C
NMR (100MHz, DMSO-d6): δ 153.8, 131.1, 126.9, 126.2, 125.4,
110.2, 34.7, 30.9.

2-(Hydroxyimino)-2-(4-phenyl)-
phenylacetonitrile (2f) (Alam et al., 2020)
Yield, 60% (26.4 mg); white powder; melting point, 140–142 °C
(literature 141–143 °C); 1H NMR (400 MHz, DMSO-d6): δ
13.83 (s, 1H), 7.85 (d, J � 8.0 Hz, 2H), 7.81 (d, J � 8.0 Hz,
2H), 7.73 (d, J � 7.2 Hz, 2H), 7.50 (t, J � 7.2 Hz, 2H), 7.42 (t, J �
7.2 Hz, 1H); 13C NMR (100 MHz, DMSO-d6): δ 142.4, 138.9,
130.9, 129.1, 128.6, 128.2, 127.5, 126.8, 126.1, 110.2; HRMS m/z
(ESI) [M + H+]: calculated for C14H11N2O1, 223.0872; found,
223.0866.

2-(Hydroxyimino)-2-(4-bromo)-
phenylacetonitrile (2g) (Gao et al., 2018)
Yield, 46% (20.7 mg); white powder; melting point, 127–129 °C
(literature 123–125 °C); 1H NMR (400 MHz, DMSO-d6): δ
13.94 (s, 1H), 7.74 (d, J � 8.0 Hz, 2H), 7.66 (d, J � 8.0 Hz, 2H);
13C NMR (100 MHz, DMSO-d6): δ 132.3, 130.4, 128.8, 127.4,
124.3, 109.9; HRMS m/z (ESI) [M + 2Na+ - H+]: calculated for
C8H4N2O1BrNa2, 268.9297; found, 268.9295.

2-(Hydroxyimino)-2-(4-chloro)-
phenylacetonitrile (2h) (Neel and Zhao,
2018)
Yield, 45% (16.3 mg); white powder; melting point, 137–139 °C
(literature 139–141 °C); 1H NMR (400 MHz, DMSO-d6): δ 13.95
(s, 1H), 7.74 (d, J � 8.6 Hz, 2H), 7.60 (d, J � 8.6 Hz, 2H); 13C NMR
(100 MHz, DMSO-d6): δ 135.5, 130.3, 129.4, 128.5, 127.3, 109.9.

2-(Hydroxyimino)-2-(4-fluoro)-
phenylacetonitrile (2i) (Gao et al., 2018)
Yield, 42% (13.8 mg); white powder; melting point, 112–114 °C
(literature 112–114 °C); 1H NMR (400 MHz, DMSO-d6): δ 13.83
(s, 1H), 7.78 (brs, 2H), 7.37 (dd, JHF � 8.0 Hz, JHH � 8.0 Hz, 2H);
13C NMR (100 MHz, DMSO-d6): δ 164.0 (d, J � 225.3 Hz), 130.2,
128.0 (d, J � 9.0 Hz), 116.5 (d, J � 22.5 Hz), 110.1, 99.6; HRMS
m/z (ESI) [M + 2Na+ - H+]: calculated for C8H4N2O1F1Na2,
209.0098; found, 209.0101.

2-(Hydroxyimino)-2-(3-fluoro)-
phenylacetonitrile (2j) (Alam et al., 2020)
Yield, 50% (16.4 mg); white powder; melting point, 120–122 °C
(literature 120–122 °C); 1H NMR (400 MHz, DMSO-d6): δ 14.03
(s, 1H), 7.53–7.61 (m, 2H), 7.49 (d, J � 9.6 Hz, 1H), 7.39 (td, JHH �
8.0 Hz, JHF � 3.0 Hz, 1H); 13C NMR (100 MHz, DMSO-d6): δ
162.7 (d, J � 243.6 Hz), 132.2 (d, J � 8.4 Hz), 132.1 (d, J � 8.4 Hz),
130.7 (d, J � 3.6 Hz), 122.6 (d, J � 2.8 Hz), 118.3 (d, J � 21.3 Hz),
112.3 (d, J � 24.2 Hz), 110.3.

TABLE 1 | Optimization of the formation of 2-hydroxyimino-2-phenylacetonitrilea.

En Copper source Base Solvent Amount of 1a to
nitro (equiv)

Atm L Yieldb

1 CuSO4·5H2O NaOH THF 3 O2 L1 78%
2 Cu(ClO4)2·6H2O NaOH THF 3 O2 L1 74%
3 Cu(OTf)2 NaOH THF 3 O2 L1 75%
4 Cu(OAc)2·H2O NaOH THF 3 O2 L1 54%
5 None NaOH THF 3 O2 L1 None
6 NiSO4·6H2O NaOH THF 3 O2 L1 None
7 ZnSO4·7H2O NaOH THF 3 O2 L1 None
8 CuSO4·5H2O

tBuOK THF 3 O2 L1 Trace
9 CuSO4·5H2O K2CO3 THF 3 O2 L1 Trace
10 CuSO4·5H2O Et3N THF 3 O2 L1 68%
11 CuSO4·5H2O NaOH DMF 3 O2 L1 Trace
12 CuSO4·5H2O NaOH Dioxane 3 O2 L1 30%
13 CuSO4·5H2O NaOH Toluene 3 O2 L1 Trace
14 CuSO4·5H2O NaOH THF 1 O2 L1 54%
15 CuSO4·5H2O NaOH THF 2 O2 L1 66%
16 CuSO4·5H2O NaOH THF 5 O2 L1 77%
17 CuSO4·5H2O NaOH THF 3 Air L1 68%
18 CuSO4·5H2O NaOH THF 3 N2 L1 None
19 CuSO4·5H2O NaOH THF 3 O2 L2 30%
20 CuSO4·5H2O NaOH THF 3 O2 L3 27%
21 CuSO4·5H2O NaOH THF 3 O2 L4 25%
22 CuSO4·5H2O NaOH THF 3 O2 L5 37%

aReaction conditions: 1a (0.6 mmol), CH3NO2 (0.2 mmol), CuSO4·5H2O (0.2 mmol), DMAP (0.4 mmol), base (0.2 mmol), solvent (1 mL), and 120 °C.
bIsolated yield. DMAP � 4-dimethylaminopyridine; nitro � nitromethane; atm � atmosphere; L � ligand.
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2-(Hydroxyimino)-2-(2-fluoro)-
phenylacetonitrile (2k) (Alam et al., 2020)
Yield, 43% (14.1 mg); white powder; melting point, 128–130 °C
(literature 132–134 °C); 1H NMR (400 MHz, DMSO-d6): δ 14.12
(s, 1H), 7.69 (dd, JHH � 7.6 Hz, JHF � 6.4 Hz, 1H), 7.59 (td, JHH �
8.0 Hz, JHF � 5.2 Hz, 1H), 7.34–7.43 (m, 2H); 13C NMR
(100 MHz, DMSO-d6): δ 159.5 (d, J � 250.7 Hz), 133.4 (d, J �
8.6 Hz), 129.5, 127.1, 125.8 (d, J � 3.5 Hz), 118.2 (d, J � 10.4 Hz),
117.2 (d, J � 20.8 Hz), 110.5.

2-(Hydroxyimino)-2-(4-trifluoromethyl)-
phenylacetonitrile (2l) (Neel and Zhao, 2018)
Yield, 47% (20.1 mg); white powder; melting point, > 200 °C; 1H
NMR (400 MHz, DMSO-d6): δ 14.21 (s, 1H), 7.88–7.95 (m, 4H);
13C NMR (100 MHz, DMSO-d6): δ 133.5, 130.6 (q, J � 32.0 Hz),
130.3, 126.4, 126.3 (q, J � 3.7 Hz), 123.9 (q, J � 270.8 Hz), 109.9.

2-(Hydroxyimino)-2-(2,5-dimethyl)-
phenylacetonitrile (2m)
Yield, 55% (19.2 mg); white powder; melting point, > 200 °C; 1H
NMR (400MHz, DMSO-d6): δ 13.75 (s, 1H), 7.30 (s, 1H), 7.24 (brs,
2H), 2.38 (s, 3H), 2.32 (s, 3H); 13C NMR (100MHz, DMSO-d6): δ
136.2, 133.7, 132.0, 131.7, 131.4, 129.9, 128.9, 111.3, 20.8, 20.6.

2-(Hydroxyimino)-2-(3,5-dimethyl)-
phenylacetonitrile (2n)
Yield, 56% (19.5 mg); white powder; melting point, 153–155 °C; 1H
NMR (400MHz, DMSO-d6): δ 13.70 (s, 1H), 7.32 (s, 2H), 7.16 (s,
1H), 2.32 (s, 6H); 13C NMR (100MHz, DMSO-d6): δ 139.1, 132.8,

131.7, 129.9, 123.6, 110.7, 21.2; HRMSm/z (ESI) [M + 2Na+ - H+]:
calculated for C10H9N2O1Na2, 219.0505; found, 219.0504.

2-(Hydroxyimino)-2-(3,4-dimethoxyl)-
phenylacetonitrile (2o)
Yield, 56% (23.1 mg); white powder; melting point, 183–185 °C
(literature 183–191 °C); 1H NMR (400 MHz, DMSO-d6): δ 13.48
(s, 1H), 7.25 (s, 1H), 7.23 (d, J � 8.0 Hz, 1H), 7.10 (d, J � 8.0 Hz,
1H), 3.82 (s, 3H), 3.81 (s, 3H); 13C NMR (100 MHz, DMSO-d6): δ
151.7, 149.6, 131.3, 122.5, 120.1, 112.2, 110.7, 107.6, 56.1, 55.9;
HRMSm/z (ESI) [M + 2Na+ - H+]: calculated for C10H9N2O3Na2,
251.0403; found, 251.0403.

N-Hydroxybenzo[d][1,3]
dioxole-5-carbimidoyl Cyanide (2p)
Yield, 57% (21.7 mg); white powder; melting point, 76–78 °C
(literature 76–78 °C); 1H NMR (400 MHz, DMSO-d6): δ 13.55 (s,
1H), 7.23 (s, 1H), 7.19 (d, J � 8.1 Hz, 1H), 7.06 (d, J � 8.1 Hz, 1H),
6.12 (s, 2H); 13C NMR (100 MHz, DMSO-d6): δ 150.2, 148.8,
131.2, 124.1, 121.7, 110.6, 109.2, 104.8, 102.5; HRMS m/z (ESI)
[M + 2Na+ - H+]: calculated for C9H5N2O3Na2, 235.0090; found,
235.0089.

2,4-Difluoro-N-hydroxybenzimidoyl
Cyanide (2q)
Yield, 20% (14.6 mg) for 0.4 mmol; pale yellow powder; melting
point, > 200 °C; 1H NMR (400 MHz, DMSO-d6): δ 14.14 (s, 1H),
7.72–7.80 (m, 1H), 7.49 (t, J � 8.8 Hz, 1H), 7.26 (t, J � 8.8 Hz, 1H);
13C NMR (100 MHz, DMSO-d6): δ 164.1 (dd, J � 262.3, 11.7 Hz),

SCHEME 6 | The plausible mechanism of the transformation of nitromethane to 2-hydroxyimino-2-phenylacetonitrile (2a) and phthalimide (4a). The image in the
dashed-line-box of (c) is shown for illustrative purposes, displaying how the electron transfer occurs.
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160.0 (dd, J � 253.1, 12.8 Hz), 131.2 (dd, J � 10.3, 3.2 Hz), 126.4,
115.0 (dd, J � 10.6, 3.7 Hz), 113.3 (dd, J � 22.0, 3.6 Hz), 110.4,
105.8 (t, J � 26.0 Hz); HRMS m/z (ESI) [M + H+]: calculated for
C8H5N2O1F2, 183.0370; found, 183.0342.

2-(Hydroxyimino)-2-naphthylacetonitrile
(2r) (Gao et al., 2018)
Yield, 25% (9.8 mg); white powder; melting point, 143–145 °C
(literature 145 °C); 1H NMR (400 MHz, DMSO-d6): δ 13.88 (s,
1H), 8.22 (s, 1H), 8.11 (d, J � 9.2 Hz, 1H), 8.02 (d, J � 8.8 Hz, 1H),
7.98 (d, J � 9.2 Hz, 1H), 7.89 (d, J � 8.8 Hz, 1H), 7.58–7.65 (m,
2H); 13C NMR (100 MHz, DMSO-d6): δ 134.2, 133.0, 131.9,
129.6, 129.2, 128.3, 127.73, 127.71, 127.0, 121.8, 110.6; HRMS
m/z (ESI) [M + 2Na+ - H+]: calculated for C12H7N2O1Na2,
241.0348; found, 241.0350.

Hydroxy-1-naphthimidoyl Cyanide (2s)
Yield, 32% (25.1 mg) for 0.4 mmol; pale yellow powder; melting
point, > 200 °C; 1H NMR (400 MHz, DMSO-d6): δ 14.05 (s, 1H),
8.45 (d, J � 8.4 Hz, 1H), 8.10 (d, J � 8.4 Hz, 1H), 8.04 (d, J � 7.2 Hz,
1H), 7.82 (d, J � 7.2 Hz, 1H), 7.60–7.68 (m, 3H); 13C NMR
(100 MHz, DMSO-d6): δ 134.0, 131.8, 131.5, 129.9, 129.4, 129.0,
128.3, 127.2, 126.7, 125.9, 125.0, 111.6; HRMS m/z (ESI) [M +
Na+]: calculated for C12H8N2O1Na, 219.0534; found, 219.0514.

N-Hydroxythiophene-2-carbimidoyl
Cyanide (2t)
Yield, 37% (22.5 mg) for 0.4 mmol; white powder; melting point,
103–105 °C (literature 103–104 °C); 1H NMR (400MHz, DMSO-
d6): δ 14.22 (s, 1H), 7.97 (dd, J� 5.2, 1.2Hz, 1H), 7.65 (dd, J� 3.6, 1.2
Hz, 1H), 7.25 (dd, J� 5.2, 4.0Hz, 1H); 13CNMR (100MHz, DMSO-
d6): δ 134.1, 131.7, 129.7, 128.6, 127.3, 114.9; HRMSm/z (ESI) [M +
H+]: calculated for C6H5N2O1S1, 153.0123; found, 153.0114.

N-Hydroxythiophene-3-carbimidoyl
Cyanide (2u)
Yield, 28% (17 mg) for 0.4 mmol; white powder; melting point,
98–100 °C (literature 96–106 °C); 1H NMR (400 MHz, DMSO-
d6): δ 13.83 (s, 1H), 8.47 (dd, J � 3.2, 1.2 Hz), 7.73 (dd, J � 5.2,
3.2 Hz), 7.59 (dd, J � 5.2, 1.2 Hz); 13C NMR (100 MHz, DMSO-
d6): δ 132.5, 129.7, 128.8, 128.08, 128.06, 116.1; HRMS m/z (ESI)
[M +H+]: calculated for C6H5N2O1S1, 153.0123; found, 153.0114.

Phthalimide (4a) (Wang et al., 2019b)
Yield, 79% (23.3 mg); white powder; melting point, > 200 °C
(literature 232–234 °C); 1H NMR (400 MHz, DMSO-d6): δ 11.40
(s, 1H), 7.83 (s, 4H); 13C NMR (100 MHz, DMSO-d6): δ 169.7,
134.8, 133.1, 123.4.

3-Methyl-phthalimide (4b)
Yield, 53% (17.1 mg); white powder; melting point, 188–190 °C
(literature 193–195 °C); 1HNMR (400MHz, DMSO-d6): δ 11.22 (s,
1H), 7.66 (t, J � 7.4 Hz, 1H), 7.60 (d, J � 7.0 Hz, 1H), 7.57 (d, J � 7.6
Hz, 1H), 2.58 (s, 3H); 13C NMR (100MHz, DMSO-d6): δ 170.6,

169.5, 137.6, 136.8, 134.3, 133.5, 129.6, 121.0, 17.4; HRMSm/z (ESI)
[M + NH4

+]: calculated for C9H11N2O2, 179.0820; found, 179.0815.

4-Methylphthalimide (4c) (Wang et al., 2019b)
Yield, 75% (24.1 mg) for 6-methyl-indanone, 57% (18.4 mg) for
5-methyl-indanone; white powder; melting point, 196–198 °C
(literature 195–197 °C); 1H NMR (400 MHz, DMSO-d6): δ 11.22
(s, 1H), 7.69 (d, J � 7.6 Hz, 1H), 7.62 (s, 1H), 7.61 (d, J � 8.0 Hz,
1H), 2.46 (s, 3H); 13C NMR (100 MHz, DMSO-d6): δ 169.77,
169.68, 145.6, 135.2, 133.4, 130.5, 123.8, 123.3, 21.8.

4-tert-Butyl-phthalimide (4d)
Yield, 75% (30.5 mg); white powder; melting point, 134–136 °C
(literature 132–134 °C); 1H NMR (400 MHz, DMSO-d6): δ 11.24
(s, 1H), 7.84 (d, J � 7.6 Hz, 1H), 7.78 (s, 1H), 7.73 (d, J � 7.6 Hz,
1H), 1.32 (s, 9H); 13C NMR (100 MHz, DMSO-d6): δ 169.4, 169.1,
158.0, 132.9, 131.3, 130.1, 122.8, 119.7, 35.4, 30.8; HRMS m/z
(ESI) [M + 2Na+ - H+]: calculated for C12H12N1O2Na2, 248.0658;
found, 248.0656.

4-Methoxylphthalimide (4e) (Wang et al.,
2019b)
Yield, 80% (28.3 mg) for 6-methoxyl-indanone, 75% (26.6 mg)
for 5-methoxyl-indanone; white powder; melting point, > 200 °C
(literature 224–225 °C); 1H NMR (400 MHz, DMSO-d6): δ 11.17
(s, 1H), 7.72 (d, J � 8.0 Hz, 1H), 7.29 (s, 1H), 7.28 (d, J � 8.0 Hz,
1H), 3.90 (s, 3H); 13C NMR (100 MHz, DMSO-d6): δ 168.90,
168.85, 164.3, 135.3, 124.8, 124.5, 119.9, 107.9, 56.2.

4-Benzyloxy-phthalimide (4f) (Punchi
Hewage et al., 2019)
Yield, 75% (38.0 mg); white powder; melting point, 154–156 °C
(literature 159–161 °C); 1H NMR (400 MHz, DMSO-d6): δ 11.20
(s, 1H), 7.73 (d, J � 8.0 Hz, 1H), 7.47 (d, J � 8.0 Hz, 1H), 7.46 (s,
1H), 7.33–7.42 (m, 5H), 5.28 (s, 2H); 13C NMR (100 MHz,
DMSO-d6): δ 168.88, 168.86, 163.3, 136.2, 135.2, 128.6, 128.2,
127.9, 124.80, 124.68, 120.7, 108.6, 70.1.

4-Phenylphthalimide (4g) (Wang et al., 2019b)
Yield, 78% (34.8 mg); white powder; melting point, 198–200
°C (literature 200–202 °C); 1H NMR (400 MHz, DMSO-d6): δ
11.38 (s, 1H), 8.10 (d, J � 7.6, 1H), 8.04 (s, 1H), 7.89 (d, J � 7.6
Hz, 1H), 7.80 (d, J � 7.6 Hz, 2H), 7.54 (t, J � 7.6 Hz, 2H), 7.47
(t, J � 7.6 Hz, 1H); 13C NMR (100 MHz, DMSO-d6): δ 169.01,
168.99, 146.2, 138.4, 133.7, 132.5, 131.3, 129.2, 128.8, 127.3,
123.6, 120.9.

4-Bromophthalimide (4h) (de Nanteuil et al.,
2013)
Yield, 75% (35.8 mg); white powder; melting point, > 200 °C
(literature 230–233 °C); 1H NMR (400 MHz, DMSO-d6): δ 11.48
(s, 1H), 8.02 (d, J � 7.8 Hz, H), 8.00 (s, 1H), 7.75 (d, J � 7.8 Hz,
1H); 13C NMR (100 MHz, DMSO-d6): δ 168.5, 167.9, 137.0,
134.7, 131.6, 127.9, 125.9, 124.9.
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4-Chlorophthalimide (4i) (Wang et al., 2019b)
Yield, 71% (25.8 mg); white powder; melting point, > 200 °C
(literature 228–230 °C); 1H NMR (400 MHz, DMSO-d6): δ 11.50
(s, 1H), 7.88 (s, 1H), 7.87 (d, J � 7.0 Hz, 1H), 7.82 (d, J � 7.0 Hz,
1H); 13C NMR (100 MHz, DMSO-d6): δ 168.4, 168.0, 139.1,
134.7, 134.1, 131.2, 124.8, 123.1.

4-Fluorophthalimide (4j)
Yield, 65% (21.5 mg) for 6-fluoro-indanone, 71% (23.4 mg) for 5-
fluoro-indanone; white powder; melting point, 175–177 °C
(literature 178–179 °C); 1H NMR (400 MHz, DMSO-d6): δ
11.46 (s, 1H), 7.89 (dd, JHH � 8.0, JHF � 4.4 Hz, 1H), 7.69 (dd,
JHF � 7.6, JHH � 2.4 Hz, 1H), 7.64 (td, JHF/HH � 8.8, JHH � 2.4 Hz,
1H); 13C NMR (100 MHz, DMSO-d6): δ 168.3, 167.9 (d, J �
1.8 Hz), 165.8 (d, J � 251.3 Hz), 135.6 (d, J � 9.5 Hz), 128.8 (d, J �
2.4 Hz), 125.7 (d, J � 9.7 Hz), 121.2 (d, J � 23.7 Hz), 110.7 (d, J �
24.7 Hz); HRMS m/z (ESI) [M + 2Na+ - H+]: calculated for
C8H3N1O2F1Na2, 209.9938; found, 209.9959.

4-Cyano-phthalimide (4k)
Yield, 10% (6.9 mg for 0.4 mmol); white powder; melting point, >
200 °C (literature 237–238 °C); 1H NMR (400 MHz, DMSO-d6): δ
11.75 (s, 1H), 8.35 (s, 1H), 8.29 (d, J � 7.6 Hz, 1H), 8.00 (d, J � 7.6
Hz, 1H); 13C NMR (100 MHz, DMSO-d6): δ 168.0, 167.8, 138.5,
136.1, 133.3, 126.8, 123.8, 117.6, 116.4; HRMS m/z (ESI) [M +
NH4

+]: calculated for C9H8N3O2, 190.0617; found, 190.0575.

4-Nitro-phthalimide (4l) (Song et al., 2018)
Yield, 10% (7.7 mg for 0.4 mmol); pale yellow powder; melting
point, 196–198 °C (literature 198–202 °C); 1H NMR (400 MHz,
DMSO-d6): δ 11.84 (s, 1H), 8.60 (d, J � 8.0 Hz, 1H), 8.43 (s, 1H),
8.07 (d, J � 8.0 Hz, 1H); 13C NMR (100 MHz, DMSO-d6): δ 167.7,
167.4, 151.4, 137.4, 134.1, 129.5, 124.6, 117.9.

4,5-Dimethoxyl-phthalimide (4m)
Yield, 70% (29.0 mg); white powder; melting point, > 200 °C
(literature 318–320 °C); 1H NMR (400 MHz, DMSO-d6): δ 10.97
(s, 1H), 7.33 (s, 2H), 3.91 (s, 6H); 13C NMR (100 MHz, DMSO-
d6): δ 169.3, 153.6, 125.7, 105.4, 56.3; HRMSm/z (ESI) [M +Na+]:
calculated for C10H9N1O4Na, 230.0430; found, 230.0474.

7,8-Dihydro-1H-furo[3,2-e]
isoindole-1,3(2H)-dione (4n)
Yield, 43% (16.3mg); white powder;melting point,> 200 °C; 1HNMR
(400MHz, DMSO-d6): δ 11.11 (s, 1H), 7.55 (d, J � 8.0 Hz, 1H), 7.08
(d, J� 8.0Hz, 1H), 4.73 (t, J� 8.8Hz, 2H), 3.39 (t, J� 8.8Hz, 2H); 13C
NMR (100MHz,DMSO-d6): δ 168.8, 166.0, 129.4, 125.7, 124.5, 123.9,
112.9, 73.2, 27.0; HRMS m/z (ESI) [M + 2Na+ - H+]: calculated for
C10H6N1O3Na2, 234.0138; found, 234.0141.

RESULTS AND DISCUSSION

All the reactions were carried out under a dioxygen atmosphere in
solvents (1 mL). We choose phenylacetonitrile (1a) as the model
substrate and optimized the reaction by changing ingredients to find

out the most efficient conditions (Table 1). Based on the yields
obtained, it is found that the reaction of 1a (0.6 mmol), nitromethane
(0.2mmol), CuSO4.5H2O (0.2 mmol), 4-dimethylaminopyridine
(DMAP, 0.4 mmol), and sodium hydroxide (0.4 mmol) in THF
(1mL) at 120 °C under dioxygen atmosphere for 24 h gives the
best result, yielding the target product 2-hydroxyimino-2-
phenylacetonitrile (2a) in 78% (entry 1). Other copper sources
such as Cu(ClO4)2·6H2O and Cu(OTf)2 afford the compound 2a
in similar yields (entries 2-3). However, the use of copper salt
Cu(OAc)2·H2O for reaction would lead to the decline of yield to
54% (entry 4). It is proposed that the coordination interaction
between the acetate ligands and the Cu(II) center was strong,
which made the replacement of the OAc− groups with the
deprotonated nitromethane more difficult. Therefore, the
formation of the active intermediate of [CuII(DMAP)2(CH2NO2)]

−

became difficult accordingly (see the following mechanism section,
Scheme 6). No compound 2a could be isolated without the
participation of copper salt or with the replacement of copper
salts with NiSO4.6H2O and ZnSO4.7H2O (entries 6-7). The base
of NaOH is found to be necessary for the processing of reaction. Both
the strong base tBuOK and the weak base K2CO3 resulted in the
decreasing of yield to trace (entries 8-9). Interestingly, the use of the
organic base of Et3N generated the product in a considerable good
yield 68% (entry 10), probably due to the perfect solubility of it in
THF. The type of solvent is essential for the production of 2a. The
coupling reaction proceeds efficiently in THF, but it turns out to be
difficult to process in the solvents of DMF, 1,4-dioxane, and toluene
with the yields decreasing down to trace (entries 11–13). An excess of
1a (3 equivalents of nitromethane) would help to enhance the
synthetic rate and increase the production of 2a (78%, entry 1),
but overaddition of 1a (5 equivalents) did not do help to improve
the rate of production (77%, entry 16). In contrast, the use of
less amount of 1a, such as one equivalent or two equivalents,
would decrease the yields down to 54% and 66% (entries 14-15),
respectively. It has been shown that the strong base of EtONa
and tBuOK et al. would promote an extra transformation of
phenylacetonitrile to β-enaminonitrile and/or 4-aminopyrimidine
bymean of self-condensation (Zhu et al., 2019; Li et al., 2020), which
would lead to the loss of the starting material of 1a unwillingly. In
addition, the dioxygen atmosphere is crucial for the activation of
nitromethane. The reaction in an atmosphere of air would lead to the
decline of yield to 66%, and no product could be isolated from the
reaction under N2 atmosphere (entries 17-18). This result indicates
the role of dioxygen as an oxidant in the reaction. Finally, the
influence of ligand on the production of 2a was examined with
pyridine (L2), 4,4′-dimethyl-2,2′-bipyridyl (L3), 1,10-phenanthroline
(L4), andN,N,N′,N′-tetramethylethylenediamine (L5). It showed that
the production of 2a could be achieved with the employment of
those ligands, but their yields were generally low at a level of ca. 30%
(entries 19–22).

Table 1. Optimization of the formation of 2-hydroxyimino-2-
phenylacetonitrile.

Under the optimal conditions, we set out to examine the scope
of phenylacetonitriles for the generation of benzyl-cyano-oxime
compounds (Scheme 2). A total of 26 reactions were carried out
for the analysis of the implication of reaction, including twenty-one
phenylacetonitrile substrates (2a–2u) and five nitro compounds
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(I–V). The yield distribution and production efficiency of 2-
hydroxyimino-2-phenylacetonitriles (2) are discussed based on the
electronic effect, steric effect, and the synergic effect of functional
groups on the nitriles. Firstly, the experimental results show that the
electron-donating groups would help to improve the yields of
compounds (2a–2e) compared to the electron-withdrawing groups
(2g–2i, 2l), with the yield difference of ca. 25% between them. The
phenyl-group-substituted phenylacetonitrile afforded the product in a
moderate yield of 60% (2f). Secondly, the steric hindrance to the
reaction was studied by employing methyl group (2b-2d) and fluoro
group (2i–2k) in the para-, meta-, and orthopositions of phenyl
group, respectively. It is found that the size of methyl group or fluoro
group is not important for the production of compounds (2b-2d,
2i–2k), but the difunctional groups would lead to a drop of yields
about 20% correspondingly (2m–2q) (Scheme 5A). Thirdly, the
coupling reaction was examined with varied aromatic-group-
substituted acetonitriles as substrates, for example, naphthyl
acetonitriles and thienyl acetonitriles. All the reactions could
succeed in the production of cyano-oxime compounds, but the
efficiency of transformation was relatively low, and the products
were obtained in yields about 30% (2r–2u). It is clear that the
deprotonation of aromatic acetonitrile is a key step for the
formation of 2-hydroxyimino-2-phenylacetonitriles in our system.
The reaction of the methyl-substituted phenylacetonitrile in the
position of carbon proximal to the cyanide group did not generate
the corresponding compound at all. In addition, the scope of
nitroalkanes was also examined for comparison. Five nitro
compounds, e.g., nitroethane, 1-nitropropane, 2-nitropropane, 1-
nitrobutane, and 2-methyl-2-nitropropane, were selected to
examine the percent of the transformation efficiency from nitro to
oxime. It is shown that the nitro compounds with α-hydrogen on the
carbon atom proximal to the cyanide group provided the product 2a
in moderate yields (Schemes 2I–V), while no product could be
isolatedwith the use of 2-methyl-2-nitropropane as a startingmaterial
(Scheme 2VI). It is proposed that the initial deprotonation of the α-H
to the nitro group is critical for the activation of nitro compounds, by
which the nitro group would transfer to nitroso group via oxidation
and nitrification reactions (see below).

Interestingly, our reaction can also be extended to the formation
of functional phthalimides (Scheme 3). Twenty-seven reactions were
carried out to examine the transformation of 1-indanones to
phthalimides, by using nitromethane as nitrogen donor. The
experimental results show that the electronic effect of substituted
groups on the phenyl ring of 1-indanones has a significant impact on
the production of phthalimides (4). The reaction of 1-indanones,
with electron-donating groups (H-, Me-, Me3C-, MeO-, PhCH2O-)
and weak electron-withdrawing groups (Ph-, Br-) on the 6′-position
of phenyl ring, afforded the phthalimides in moderate to high yields
(75–80%; 4a and 4c-4h). The 4′-methyl group substituted indanone
provided lower production efficiency (53%), probably due to the
steric effect on the activation of the 3-carbon of indanone (4b). In
contrast, the production of four would be influenced by the
introduction of medium electron-withdrawing groups to the
phenyl ring. The reaction of 1-indanones with the substituted
chloro and fluoro groups in the 6′-position of phenyl ring
afforded the product in lower yields 71% and 65% (4i and 4j),
respectively. With the strong electron-withdrawing groups, such as

cyano and nitro groups, the substituted 1-indanones would only be
able to offer the products in yields about 10% (4k and 4l). In
addition, the disubstitution of the phenyl ring of 1-indanones would
have a negative influence on the yield of product. The dimethoxyl-
group-substituted 1-indanone generated the compound 4m in a
lower yield (70%) compared to the single methoxyl group
substituted 1-indanone (4e, 80%). The disubstituted groups in the
6′,7′-positions of 1-indanone led to the decline of yield dramatically
down to 43% (4n) (Scheme 5B). This point of view is consistent with
the result presented in the formation of 4b that the substitution on
the carbon atoms adjacent to the five-member ring of 1-indanones
would significantly decrease the yields of phthalimides in our system.

Furthermore, the reactions of 5′-substituted 1-indanones with
methyl, methoxyl, and fluoro groups also generated the
phthalimides in good yields (Scheme 3, Part b, I–III), even
though they have the same structures to compounds 4c, 4e, and
4j. Apart from the 1-indanone with a 5-member ring on the side of
ketone, the 1-tetralone with a 6-member ring and the 1-
benzosuberone with a 7-member ring are also able to produce
the compound 4a under the standard reaction conditions (Scheme
3, Part b, IV-V). It implies that the methylene groups next to the
phenyl ring of 1-indanone and its derivatives (3′-carbon in 1-
indanone; 4′-carbon in 1-tetralone; 5′-carbon in 1-benzosuberone)
would be oxidized in the processing of reaction. The cleavage of
C-C bond between the ketone groups and the unsaturated carbon
atoms adjacent to them (1′- and 2′-carbon and 2′- and 3′-carbon
in 1-indanone; 1′- and 2′-carbon and 3′- and 4′-carbon in 1-
tetralone; 1′- and 2′-carbon and 4′- and 5′-carbon in 1-
benzosuberone) would occur with the insertion of nitrogen
atom. This inference is consistent with our experimental results
that the reactions of indan-1,2-dione, indan-1,3-dione, and 1,2,3-
indantrione (ninhydrin) in our system are also able to provide the
product 4a (Scheme 3, Part b, VI–VIII). Finally, other organic nitro
compounds, such as nitroethane, 1-nitropropane, 2-nitropropane,
and 1-nitrobutane, are also suitable for the formation of compound
4a, with the yields decreasing gradually from 65% to 30% (Scheme
3, Part c, I–V). No reaction occurred with the use of 2-methyl-2-
nitropropane as a nitrogen donor (Scheme 3, Part c, VI).

The above experiment results aroused our great interest in
exploring the reaction mechanism. A number of reactions were
carried out for a better understanding of how the reactions
occurred (Scheme 4). Firstly, the species of 1-indanone was
reduced to form an aromatic hydrocarbon compound, indanone,
which was found not able to generate the compound 4a under our
conditions. It implies that the presence of carbonyl group in 1′or 3′-
position of indanone is required for the processing of reaction
(Scheme 4A). Secondly, the oxidation of aromatic ketone in our
system was examined in the solution of 2-methyl-2-nitropropane
(Me3C-NO2). The solvent of 2-methyl-2-nitropropane was used with
the aim of maintaining the condition of the solvent close to
nitromethane without the presence of α-H. The reaction of 1-
indanone with Me3C-NO2 under our conditions afforded phthalic
acid (3′) rather than phthalimide (4a) after acidification (Scheme 4B).
No phthalic acid could be obtained without the addition of
CuSO4.5H2O and DMAP under dinitrogen atmosphere (Scheme
4C). This result indicates that the oxidation of 1-indanone to phthalic
acid could be achieved by the activate oxygen, probably coordinating
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on the Cu(II) intermediate (Wang et al., 2015). The aromatic ketone
species underwent a C-C bond cleavage to form an intermediate
species of o-phthalic anhydride during the reaction, and the insertion
of nitrogen donor occurred with the species of o-phthalic anhydride
(Scheme 6). Thirdly, the activation of nitromethane was investigated
by using phthalic acid and/or o-phthalic anhydride as the starting
materials. The experimental results showed that the reaction of
phthalic acid or o-phthalic anhydride under the standard
conditions afforded the phthalimide in yield 68% and 75%,
respectively (Schemes 4D,E). No product could be isolated in the
absence of CuSO4.5H2O and DMAP under dinitrogen atmosphere
(Scheme 4F). That is to say, the combination of Cu(II) salt, DMAP,
and dioxygen facilitated the activation of nitromethane. Meanwhile,
the reaction of o-phthalic anhydride with butyl nitrite under the same
conditions provided the target product 2a in yield 70% (Scheme 4G).
The reaction of phenylacetonitrile with butyl nitrite afforded the
compound 4a in yield 65% (Scheme 4H). It is noted that the butyl
nitrite was used instead of methyl nitrite for the reasons of
commercial availability, easy handling, and same performance.
Thus, the methyl nitrite is thought to be an intermediate of the
reaction in the process of the oxidation of nitromethane, which
resembles the research of the oxygen consumption in the oxidation of
nitromethane by visible light irradiation of Rose Bengal (Bilski et al.,
1994). Fourthly, the stirring of CuSO4.5H2O and DMAP in
nitromethane at room temperature formed a dark green solution,
fromwhich a dinuclear copper(II) species of [CuII(DMAP)2(SO4)] 5)
(Scheme 5C) was isolated by diffusion of Et2O into the reaction
solution (Scheme 4I). The reactions of 1-indanone or
phenylacetonitrile with nitromethane in the presence of
compound 5 generated the products 4a and 2a in similar yields
(Schemes 4J,K). It implies that compound 5 would be an
intermediate of activated copper(II) species for the transformation
of nitromethane to methyl nitrite.

Based on the above results, a plausible mechanism is depicted
in Scheme 6. The model of the reaction is divided into three parts,
the transformation of nitromethane to methyl nitrite (Scheme 6-
(I)), the formation of 2-hydroxyimino-2-phenylacetonitrile
(Scheme 6-(II)), and the generation of phthalimide (Scheme
6-(III)). The deprotonation of CH3NO2 molecule (a) leads to the
generation of intermediate (b), by which intermediate (c) is
formed with the participation of [CuII(DMAP)2(SO4)]. The
latter is produced simultaneously by the reaction of
CuSO4.5H2O with two equivalents of DMAP (Scheme 5C).
Two molecules of (c) react with one equivalent of dioxygen to
generate the intermediate (e), through the transition state of (d).
Methyl nitrite (f) is generated with the release of [CuIIO(L) (L′)]2+
(L � DMAP) into the solution (Scriven, 1983; Ragnarsson and
Grehn, 1998). The [CuIIO(L) (L’)]2+ species undergoes a
decomposition to deposit the metal moiety as a black
precipitate CuO. The decomposition process is not clear to us.

On one hand, one of hydrogen atoms on themethylene group of
phenyl acetonitrile molecule (g) is deprotonated to form a
cyanoalkylide anion (h). The anion attacks an adjacent
CH3ONO molecule on the nitrogen atom to form the
intermediate species (i). The deprotonation of the second
hydrogen atoms of the methylene group of (i) with the transfer
of the pair electrons to the C-N bond generates the compound 2a

(Scheme 6-(II)). On the other hand, the continuous oxidation of 1-
indanone (j) in the presence of [CuII(DMAP)2(SO4)] and dioxygen
generates the intermediate species o-phthalic anhydride (n)
(Scheme 6-(III)) (Wang et al., 2015). Meanwhile, the methyl
nitrite (f) undergoes a thermal decomposition reaction to
generate the species HCHO and HNO (Brower, 1988; Zhu
et al., 2013). The HNO is reduced to NH2OH in the presence
of formaldehyde, and the generated NH2OH is inserted into the
intermediate o-phthalic anhydride (n) to form the species (o). The
species (o) is reduced by the generated formic acid from the
oxidation of formaldehyde (Liu et al., 2019), forming the final
product phthalimide (4a).

CONCLUSION

In summary, we have developed a simple and efficient method for
the synthesis of 2-(hydroxyimino)-2-phenylacetonitriles and
phthalimides in a total of 51 samples, by using nitromethane as
the nitrogen donor. The production of two types of compounds
indicates the flexible and diversified characteristics of our system in
the activation of nitromethane for the synthesis of N-containing
compounds. The extra diversity and stability of compounds are
discussed in terms of electronic effect, steric effect, position of
substituted groups, and intramolecular charge transfer. The
mechanism study shows that the methyl nitrite is generated as
an intermediate in the reaction, and the transformation of
nitromethane to methyl nitrite is promoted by the Cu(II)
intermediate with the participation of dioxygen as oxidant. The
proposed nitromethane transformation process is supported by the
experimental results. The employment of easily available reagents
and mild reaction condition makes this method more interesting
for chemists. This workmight provide a clue to apply nitromethane
as a nitrogen donor in the development of organic synthetic
chemistry, biological chemistry, and pharmaceutical chemistry.
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