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Abstract: Icing detection of composite insulators is essential for the security and stability of power
grids. As conventional methods have met difficulties in harsh weather, a 110 kV composite insulator
with embedded Fiber Bragg Gratings (FBGs) was proposed for detecting glaze icing in this paper. FBG
temperature compensation sensors in ceramic tubes were adopted for simultaneous measurement of
icicle loads and temperature. Then, temperature calibration experiments and simulated icicle load
experiments were carried out to obtain temperature and icicle load characteristics of FBGs. The results
showed that temperature sensitivities of FBG strain sensors and FBG temperature compensation
sensors were 18.16 pm/◦C, and 13.18 pm/◦C, respectively. Besides, wavelength shifts were linearly
related to icicle loads within the polar angle range of −60◦ to 60◦, and the load coefficient of FBG
facing the icicle was -34.6 pm/N. In addition, the wavelength shift generated by several icicles was
equal to the sum of wavelength shifts generated by each icicle within the polar angle range of −15◦

to 15◦. Finally, icicles can cause wavelength shifts of FBGs within a big shed spacing. The paper
provides a novel icing detection technology for composite insulators in transmission lines.

Keywords: Fiber Bragg Grating (FBG); composite insulator with embedded FBGs; glaze icing;
icing detection

1. Introduction

Since the 21st century, the global climate has changed dramatically, and the shortage of conventional
energy has become increasingly severe. It is significant to construct smart grids for the electric power
industry [1]. Currently, the sensing technologies of electrical equipment are an essential foundation to
ensure safe operation, promote controllability, and achieve intelligence of smart grid [2].

In March 2019, the Internet Department, State Grid Corporation of China, published an outline
for the construction of the Ubiquitous Power Internet of Things (UPIoT). UPIoT includes four layers:
sensing layer, network layer, platform layer, and application layer. In particular, the sensing layer
is comprised of various sensors, edge computing equipment, and local communication networks to
achieve acquisition, aggregation, and processing of data from conditions of power equipment. In
summary, intelligent sensing technologies are one of the core foundations of the sensing layer in
UPIoT [3].

Insulators in transmission lines are easily covered by ice in cold and high humidity regions,
resulting in flashover accidents and even severe disasters of power grids. To date, there have been
several methods (e.g., ultraviolet imaging, unmanned aerial vehicle (UAV), and video camera) to
detect icing conditions on insulators. Wu and Liao [4,5] processed aerial insulators images from UAV
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based on a texture segmentation algorithm and a robust detection algorithm. On the other hand, some
researchers monitored icing conditions of insulators and conductors using video cameras installed
on power towers. Huang proposed an online technology for measuring icing shape on transmission
lines based on vision and force sensors. The technology can accurately represent the icing shape on
transmission lines [6]. Hao proposed a GrabCut segmentation algorithm and processed iced insulator
images captured under artificial icing simulations and natural conditions. The results demonstrated
that the method can recognize the icing conditions of in-service glass insulators [7]. The above
technologies were helpful to improve performance of detecting iced insulators. However, in harsh
environments, unmanned aerial vehicles are not able to fly long distances. In addition, cameras on
power towers are easy to lose power supply and covered by ice causing blurry images. Consequently,
the technologies are not suitable for long-term monitoring iced insulators in all weather.

Currently, optical fiber sensors (OFS) have been widely used in various electrical equipment, such
as transmission lines [8,9], power transformers [10,11], and insulator strings [12]. OFS is small in size,
immune to electromagnetic interferences, chemically resistant, and has no power supply requirements.
Besides, the composite insulator is long and stick-shaped. Therefore, OFS can be embedded into
composite insulators, which establish distributed optical fiber sensing networks of the power grid.

Fiber Bragg grating (FBG) is one of the typical OFS, and it has been successfully developed in
monitoring conditions of composite insulators. In 1992, Seike et al. [13] first proposed an optical fiber
composite insulator for detecting fault points in electric power transmission networks. An optical
fiber was embedded in a central through-hole of the composite insulator. However, the insulation
properties of the method were not satisfactory. Trouillet et al. [14] investigated strain distribution and
internal temperature of a core rod using an optical fiber with six FBGs. The method provided the
basis for detecting operating conditions of core rod in the composite insulator based on FBGs. Central
China Power Group [15] and China Electric Power Research Institute [16–22] implanted FBGs into the
core rod of composite insulators, and performed calibration tests to research the relationship between
the center wavelength of FBG and the temperature/stress of composite insulators. From 2010 to 2019,
the composite insulators with FBG embedded have been operated on 110 kV [21], 220 kV [17], 500
kV [17], and UHV [22] transmission lines, which validated the feasibility of the proposed method in
the field. However, the methods embedded optical fibers into the core rod, which were not suitable for
detecting glaze icing on the composite insulator sheds.

For theoretical analysis, Kumosa [23,24] and Portnov [25] established numerical models that can
be used to evaluate the relationship between Bragg wavelength shift and internal stress of the core rod
in composite insulators. Kerrouche et al. [26] calculated strain/shear stress from a substrate to FBGs.
The results showed a relatively uniform stress distribution along the substrate. Chen et al. [27,28]
simulated reflection spectrum of FBGs based on analysis of the stress distribution of a core rod in a
composite insulator.

The above studies have validated the feasibility of embedding FBG sensors into the core rod of
composite insulators. In addition to those studies, few studies have investigated glaze icing detection of
composite insulator based on FBG, although glaze icing detection is one of the significant characteristics
for fault detection in insulators.

In this study, a 110 kV composite insulator with embedded FBGs was designed to detect glaze
icing. Firstly, the FBG sensing principle and the design of FBG temperature compensation sensors were
described. Secondly, the FBG arrangement in the composite insulator was presented in detail. Then,
temperature calibration experiments were performed, and FBG temperature characteristics errors
were analyzed as well. The results indicate that the compensation method can measure temperature
and icicle loads of FBGs simultaneously. Moreover, a polar coordinate system was proposed for
describing positions of simulated loads and FBGs on insulator sheds. Finally, simulated icicle load
experiments were performed to find the relationship between an icicle, several icicles, icicle positions,
and wavelength shifts. The proposed method introduces a novel way for glaze icing detection of
composite insulators in transmission lines.
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2. Detection Principle

2.1. FBG Sensing Principle

An FBG is a spatial phase grating inscribing into the photosensitive fiber core. The FBG has a
significant property of serving as a narrow band filter or reflector. More specifically, it can reflect a
narrow band of light with a specific wavelength from an incident broad source, and the rest of the light
with other wavelengths passes through the FBG. The FBG reflection wavelength is defined as λB [29]:

λB = 2neff ·Λ (1)

where neff is the effective refractive index of the optical fiber, and Λ denotes the periodicity of the grating.
Temperature, stain, or other environmental parameters would change the refractive index and

periodicity of the FBG resulting in a wavelength shift. In this case, the FBG wavelength shift caused by
temperature change (∆T) and axial strain (ε) can be expressed as [30]:

∆λB = λB(α f + ξ)∆T + λB(1− Pe)ε
= KB,T∆T + KB,εε

(2)

whereαf denotes the thermal expansion coefficient, ξ is the thermo-optic coefficient, Pe is the elastic-optic
coefficient, and KB,T and KB,ε are both constant which denote the temperature sensitivity (pm/◦C) and
the axial strain sensitivity (pm/µε), respectively.

2.2. Simultaneous Measurement of FBG Temperature and Strain

Glaze icing can change the temperature and strain of insulator sheds, which both cause the
wavelength shifts of FBG at the same time. Therefore, it is necessary to propose a method for measuring
FBG temperature and strain simultaneously. Specifically, two FBGs (i.e., FBG-1 and FBG-2) are inscribed
in an optical fiber. FBG-1 is affected by temperature and strain, whose wavelength shift can be described
as Equation (3). In contrast, FBG-2 is packaged by a designed housing that is not affected by strain.
Thus, the wavelength shift of FBG-2 can be described as Equation (4).

∆λB1 = (KB1,T∆T + KB1,εε1) (3)

∆λB2 = KB2,T∆T (4)

Therefore, the wavelength shift of FBG-1 caused by strain can be described as:

∆λcompensation = ∆λB1 −
KB1,T

KB2,T
∆λB2 (5)

3. Experiments

3.1. Fiber Bragg Grating

In this paper, FBGs with different reflection wavelengths have been inscribed in single mode
optical fibers with polyimide coating using phase mask technology. The diameter, effective length and
reflectivity of each FBG are about 250 µm, 10 mm and 90%, respectively. The initial wavelengths of
FBGs in room temperature are within a range of 1510 to 1590 nm. The strain measurement of FBG
ranges from −2500 to 2500 µε, and the accuracy rate is 1%� F.S. Moreover, the operating temperature
ranges from −40 to 120 ◦C. More specifically, three optical fibers were embedded into a composite
insulator and labeled as 1#, 2#, and 3#, respectively.

In order to measure icicle loads and temperature simultaneously, the FBG temperature
compensation sensor was packed in a ceramic tube, which is cylindrical, with a length of 30 mm and a
diameter of about 2 mm (Figure 1). Besides, epoxy resin adhesive was injected into the ceramic tube
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for insulation. The FBG temperature compensation sensors are not affected by icicle loads due to the
high elasticity modulus of the ceramic tube.

Sensors 2020, 20, x 4 of 14 

 

ranges from −2500 to 2500 με, and the accuracy rate is 1‰ F.S. Moreover, the operating temperature 
ranges from −40 to 120 °C. More specifically, three optical fibers were embedded into a composite 
insulator and labeled as 1#, 2#, and 3#, respectively. 

In order to measure icicle loads and temperature simultaneously, the FBG temperature 
compensation sensor was packed in a ceramic tube, which is cylindrical, with a length of 30 mm and 
a diameter of about 2 mm (Figure 1). Besides, epoxy resin adhesive was injected into the ceramic 
tube for insulation. The FBG temperature compensation sensors are not affected by icicle loads due 
to the high elasticity modulus of the ceramic tube. 

 
Figure 1. Fiber Bragg Grating (FBG) strain sensor and FBG temperature compensation sensor in an 
optical fiber. 

3.2. A 110 kV Composite Insulator with Embedded FBGs 

The type of 110 kV composite insulator is FXBW-110/100, whose parameters are listed in Table 1. 
The insulator has 13 big sheds, which are projected from the insulator trunk, and is intended to 
increase the creepage distance [31], as shown in Figure 2a. 

Three optical fibers, 1#, 2#, and 3#, were embedded vertically into the composite insulator 
during silicone rubber injection process. Besides, the optical fibers were at a 120° interval around the 
central axis of the composite insulator (Figure 2). Fourteen FBGs were inscribed in 1# and 2# optical 
fiber respectively, and thirteen FBGs were inscribed in 3# optical fiber. The FBGs were labeled as 
FBG-mn, where m was the label of the optical fibers (i.e., 1, 2, and 3), and n was the label of the FBGs 
(i.e., 1, 2… and 14). For example, the fourteen FBGs in the 1# optical fiber were separately labeled as 
FBG101 - FBG114. Specifically, FBG101 - FBG113 were all FBG strain sensors, which were designed 
above each big shed root in silicone rubber housing (Figure 2b), and FBG114 was an FBG 
temperature compensation sensor. Similarly, FBG201 - FBG213 in 2# optical fiber and FBG301 - 
FBG313 in 3# optical fiber were all FBG strain sensors. In addition, FBG214 was also an FBG 
temperature compensation sensor. 

After proper preparation of the core rod surface, three optical fibers with FBGs were put on the 
core rod surface according to the arrangement in Figure 2c. Then, two ends of optical fibers were 
fixed, and midpoints between two FBGs were adhered on the core rod using room temperature 
vulcanized silicone rubber (RTV) until curing. The core rod and end fittings were joined by a 
pressing process. Finally, the core rod and optical fibers were placed in a vacuum injection machine, 
and the pressure remained constant during the process of injecting silicone rubber and curing.  

Table 1. Parameters of a composite insulator FXBW-110/100. 

Description Values 
Structural height 1240 mm 
Insulation height 1036 mm 
Leakage distance 4953 mm 

Diameter of the core rod 18 mm 

The big insulator shed 
Shed overhang 61 mm 
Shed spacing 75 mm 

Number 13 

The small insulator shed 
Shed overhang 37 mm 
Shed spacing 25 mm 

Number 26 

Figure 1. Fiber Bragg Grating (FBG) strain sensor and FBG temperature compensation sensor in an
optical fiber.

3.2. A 110 kV Composite Insulator with Embedded FBGs

The type of 110 kV composite insulator is FXBW-110/100, whose parameters are listed in Table 1.
The insulator has 13 big sheds, which are projected from the insulator trunk, and is intended to increase
the creepage distance [31], as shown in Figure 2a.

Table 1. Parameters of a composite insulator FXBW-110/100.

Description Values

Structural height 1240 mm
Insulation height 1036 mm
Leakage distance 4953 mm

Diameter of the core rod 18 mm

The big insulator shed
Shed overhang 61 mm
Shed spacing 75 mm

Number 13

The small insulator shed
Shed overhang 37 mm
Shed spacing 25 mm

Number 26

Three optical fibers, 1#, 2#, and 3#, were embedded vertically into the composite insulator during
silicone rubber injection process. Besides, the optical fibers were at a 120◦ interval around the central
axis of the composite insulator (Figure 2). Fourteen FBGs were inscribed in 1# and 2# optical fiber
respectively, and thirteen FBGs were inscribed in 3# optical fiber. The FBGs were labeled as FBG-mn,
where m was the label of the optical fibers (i.e., 1, 2, and 3), and n was the label of the FBGs (i.e., 1, 2 . . .
and 14). For example, the fourteen FBGs in the 1# optical fiber were separately labeled as FBG101 -
FBG114. Specifically, FBG101 - FBG113 were all FBG strain sensors, which were designed above each big
shed root in silicone rubber housing (Figure 2b), and FBG114 was an FBG temperature compensation
sensor. Similarly, FBG201 - FBG213 in 2# optical fiber and FBG301 - FBG313 in 3# optical fiber were all
FBG strain sensors. In addition, FBG214 was also an FBG temperature compensation sensor.

After proper preparation of the core rod surface, three optical fibers with FBGs were put on the
core rod surface according to the arrangement in Figure 2c. Then, two ends of optical fibers were fixed,
and midpoints between two FBGs were adhered on the core rod using room temperature vulcanized
silicone rubber (RTV) until curing. The core rod and end fittings were joined by a pressing process.
Finally, the core rod and optical fibers were placed in a vacuum injection machine, and the pressure
remained constant during the process of injecting silicone rubber and curing.
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Figure 2. Diagram of a 110 kV composite insulator with embedded FBGs. (a) The parts of a composite
insulator with embedded FBGs; (b) Relative positions between FBGs and insulator sheds; (c) Distribution
diagram of three optical fibers with FBGs.

3.3. The Sensing System

The sensing system was made up of three parts, i.e., the 110 kV composite insulator with
embedded FBGs, an FBG interrogation system, and an artificial climate chamber, as depicted in
Figure 3. The type of interrogation system is JEME-iFBG produced by Shenzhen JEMETECH Company
in China. Specifically, the interrogation system can acquire signals of 6 channels simultaneously based
on a high-power wavelength scanning laser, and each channel can detect 48 FBGs at most. With a
wavelength range of 1510 to 1590 nm and a wavelength accuracy of 1 pm, the interrogation system can
satisfy the requirement for detecting glaze icing on composite insulators.

The artificial climate chamber was used to simulate the low-temperature environment during glaze
ice accretion on composite insulators. Specifically, the artificial climate chamber offered a temperature
change from −15 ◦C to room temperature (20 ◦C) with an accuracy of 1 ◦C. In experiments, three optical
fibers were pulled out from the chamber, and the interrogation system was linked to the computer
using the USB port for data recording, analysis, and transfer.
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3.4. Temperature Calibration Experiments

Previous studies have demonstrated that glaze ice is easy to accrete on insulator sheds when the
temperature is between −8 and 0 ◦C in the field [32]. Besides, according to IEEE Standard 1783-2009,
the air temperature should remain between −15 and −5 ◦C for depositing artificial ice on insulator
sheds in a climate chamber [33]. Thus, in the temperature calibration experiments, the air temperature
in the climate chamber was set between −15 and +15 ◦C. The process was as follows:

(1) The 110 kV composite insulator with embedded FBGs was put into the artificial climate chamber.
Three optical fibers were pulled out from the chamber, and connected with the demodulator and
computer through outlet fibers. The wavelengths of all FBGs were recorded as initial wavelengths
when the temperature was 0 ◦C.

(2) The temperature range of the artificial climate chamber was set from −15 to +15 ◦C, and the
wavelength shifts were recorded at intervals of 3 ◦C. A previous research has indicated that the
temperature of FBG in the composite insulator was equal to the temperature in the chamber
after 8 hours [18]. Therefore, after being placed into the chamber for 8 h, the temperature of the
composite insulator could be considered as a constant and recorded if a wavelength rate was
less than 3 pm/min [18]. After averaging 10 sets of data, the results of temperature calibration
experiments were created.

3.5. Simulated Icicle Load Experiments

Many studies have indicated that the common glaze ice accretion on insulators causes the highest
probability of ice flashover occurrence [34,35]. Therefore, in order to find the relationship between
glaze ice and wavelength shifts, weights were hung on the edge of a big shed for simulating glaze ice
loads generated by icicles [36] (Figure 4).

In order to describe icing conditions of composite insulators quantitatively, icicle length and icicle
bridged degree were proposed, which can be described as [37–39]:

η =
S− d

S
× 100% =

L
S
× 100% (6)

where η denotes the bridged degree of a big shed spacing, S is the big shed spacing, d is the air gap
distance, and L is the icicle length.

In order to describe positions of simulated loads and FBGs on insulator sheds quantitatively, a polar
coordinate system was proposed, where the midpoint of the core rod was the original point (Figure 5).
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The position was considered as (r, θ, n), where r denoted the radius (mm), θdenoted the polar angle
(◦), and n denoted the number of big sheds in the insulator. For example, the coordinates of FBG101,
FBG201, and FBG301 were (9, 0◦, 1), (9, 120◦, 1), and (9, −120◦, 1), respectively. When the simulated load
was on the edge of the 1st big shed facing the 1# optical fiber, its coordinate was (61, 0◦, 1). In this paper,
the r of simulated loads were all 61 mm, so the coordinates of simulated loads could be simplified to
P(θ, n).

The process was as follows:

(1) The 110 kV composite insulator with embedded FBG was placed in the artificial climate chamber,
and the air temperature was set as -10 ◦C during the experiments. The optical fibers were pulled
out from the chamber, and connected with the demodulator and computer.

(2) Geometric characteristics of an icicle on insulators were proposed in [37]. In this paper, the weights
were set as 0.5, 1.0, 1.5, 2.0, and 2.5 N, corresponding to icicle lengths and bridged degrees, as
shown in Table 2. The icicle lengths and bridged degrees are common parameters in icicle growth
experiments [38,39].

(3) Weights were hung on insulator big sheds. The wavelength shifts were continuously recorded
when wavelength rates were stable (< 3 pm/min) [18]. After averaging 10 sets of data, the results
were created.
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Table 2. Icicle load corresponds to the icicle length and icicle bridged degree with density of 0.9 g/cm3

[36,37].

Weights Corresponding to the Icicle Length L Corresponding to the Icicle Bridged Degree η

0.5 N 11 mm 15%
1.0 N 22 mm 29%
1.5 N 33 mm 44%
2.0 N 44 mm 59%
2.5 N 55 mm 73%

4. Results and Discussion

4.1. The Relationship between Wavelength Shifts of FBGs and Temperature

The wavelength shift mean deviation (WSMD) was proposed to discuss the temperature
characteristics of FBG strain sensors in an optical fiber. For example, the WSMD of 13 FBG strain
sensors in 1# optical fiber, i.e., FBG101 - FBG113, was expressed as f 1, which can be defined as:

f1 =

∑13
n=1

∣∣∣λn − λ
∣∣∣

13
(7)

where n denotes the label of FBG strain sensor in 1# optical fiber, λn denotes the wavelength shift of
FBG1n at a temperature, and λ denotes the average value of wavelength shifts of 13 FBG strain sensors
in 1# optical fiber at the temperature.

Similarly, f 2 and f 3 represent the WSMD of FBG strain sensors in 2# and 3# optical fiber, respectively.
As shown in the right Y axis of Figure 6, the mean deviations were all within 8 pm, which showed that
wavelength shifts of FBG strain sensors in an optical fiber were seen as the same at a temperature.Sensors 2020, 20, x 9 of 14 
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Therefore, wavelength shifts dependent on temperatures of FBG101 - FBG113, FBG201 - FBG213,
and FBG301 - FBG313 were shown in red, black, and yellow solid lines, respectively (Figure 6).
The solid lines showed that wavelength shifts of all FBG strain sensors were linear with temperature,
and goodness of fit R2 were all greater than 0.997. Therefore, the temperature sensitivities of all FBG
strain sensors were approximately 18.16 pm/◦C.
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The green and blue lines showed that wavelength shifts of FBG114 and FBG214 were linear
with temperature, and goodness of fit R2 were approximately 0.997. The temperature sensitivities
of FBG temperature compensation sensors were 13.18 pm/◦C. Therefore, according to Equation (5),
the wavelength shift of an FBG strain sensor caused by strain was as follows:

∆λcompensation = ∆λS −
18.16
13.18 ∆λT

≈ ∆λS − 1.38∆λT
(8)

where ∆λS denoted the wavelength shift of an FBG strain sensor, and ∆λT denoted the wavelength
shift of an FBG temperature compensation sensor.

4.2. A Simulated Load of an Icicle on a Big Shed

The wavelength shift of FBG102 changed with the simulated load of one weight at P1(0◦, 2), as the
red line in Figure 7. When a simulated load on the edge of the 2nd big shed moved at a 30◦ interval,
the wavelength shifts of the FBG102 were shown in Figure 7.Sensors 2020, 20, x 10 of 14 
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different positions.

It was found that the wavelength shifts of FBG102 were linearly related to the simulated load of
one weight at P1(0◦, 2), P2(30◦, 2), P3(60◦, 2), P10(−60◦, 2), and P11(−30◦, 2), respectively, corresponding
to a polar angle range of -60◦ to 60◦. The linear fitting formulas were described as:

∆λ1 = −34.6F1 − 8.9, R2 = 0.990 (9)

∆λ2 = −33F2 − 4.7, R2 = 0.984 (10)

∆λ3 = −28.8F3 + 7.8, R2 = 0.997 (11)

∆λ10 = −28.4F10 + 7, R2 = 0.998 (12)

∆λ11 = −33.2F11 − 3.6, R2 = 0.978 (13)
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where Fi|i = 1,2,3,10,11 were the simulated load generated at Pi|i = 1,2,3,10,11, ∆λi|i = 1,2,3,10,11 were the
wavelength shifts of the FBG102, respectively.

According to the above formulas, the absolute value of the load coefficient in Equation (9) was
the largest (i.e., 34.6 pm/N). Therefore, the load coefficient of FBG facing the load was the highest.
Besides, with the increase of the polar angle of the load, the absolute value of the load coefficient
gradually decreased.

Comparing the Equation (10) with Equation (13), Equation (11) with Equation (12), the load
coefficients of FBG102 were approximate when the loads were symmetrical about the polar angle of 0◦.
It can be concluded that the wavelength shifts of FBG were equal when two loads were symmetrical
about the extension line from the original point to the FBG.

In contrast, when the polar angles of icicle load were from 90◦ to −90◦, with the increase of the
icicle load, the wavelength shifts appeared to remain stable. The reason for this was that FBG102 was
located 86.27 mm away from P4 and P9, even 140 mm away from P6. The strain transferring to FBG102
was so small that the wavelength shifts were all less than 12 pm.

4.3. Several Simulated Loads of Several Icicles on A Big Shed

In order to simulate several icicles accretion on different positions of an insulator shed,
three simulated loads were hung on a big shed in the insulator. It is clear from Section 4.2 that
wavelength shifts were easily affected by the icicle load with polar angle ranges of −60◦ to 60◦.
Therefore, a simulated load Fa of 1 N was at Pa(0◦, 3), and the other two simulated loads Fb and Fc of
0.5 N were at (θ◦, 3) where θ changed in a polar angle range of -60◦ to 60◦. The relationship between
the wavelength shifts and the changing polar angles (θb, θc) were shown in Figure 8.
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It was found that the absolute value of wavelength shift decreases with the distance from Pa(0◦, 3)
to load point (e.g., Fb and Fc). In addition, when the polar angle of Fb and Fc were between -15◦ and
15◦, the wavelength shifts of FBG103 were between 67 and 79 pm. In contrast, the wavelength shift
generated by the sum of Fa, Fb, and Fc at 0◦ was 79 pm. The deviations of the wavelength shifts were
within 12 pm. In view of the experimental error, it can be found that when the polar angle of Fb and Fc

were between −15◦ to 15◦, the wavelength shifts were similar to that generated by the sum of Fa, Fb,
and Fc in 0◦.
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In conclusion, when the polar angles are between −15◦ and 15◦, the wavelength shift generated
by several icicles was equal to the sum of wavelength shifts generated by each icicle. In contrast, when
the polar angles are between ±15◦ and ±60◦, the absolute values of wavelength shifts would decrease
with the distance from icicle positions to Pa.

4.4. Wavelength Shifts of All FBGs in an Optical Fiber

To analyze wavelength shifts of all FBGs in an optical fiber when an icicle was generated on a big
shed, a simulated load of 2 N was generated at (0◦, 1), (120◦, 1), and (−120◦, 1), respectively.

It was found from Figure 9 that the wavelength shifts of the FBGm01 were -80 pm, those of the
FBGm02 were less than −10 pm, while those of FBGmn (3 ≤ n ≤ 11) were almost 0 pm. The reason for
this is that the silicone rubber is soft material, whose elasticity modulus is 2.6 MPa. The deformation
of the 1st big shed was large under high loads, meanwhile, the strain transferring to FBGm02 was
large enough to detect the wavelength shifts. As for FBGmn (3 ≤ n ≤ 11), the transferred strain was too
small to change the wavelength shifts. In conclusion, icicle loads can cause wavelength shifts of the
FBGs within one big shed spacing.
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5. Conclusions

In this paper, a detection method for glaze icing of 110 kV composite insulators has been proposed.
The 110 kV composite insulator with embedded FBGs is helpful to sense glaze icing conditions in
all weather, offering much better versatility than conventional approaches. Three optical fibers with
FBGs were embedded symmetrically into a 110 kV composite insulator. Besides, the FBG temperature
compensation sensors were packaged in ceramic tubes so as to solve the problem of icicle loads and
temperature cross-sensitivity. Then, temperature calibration experiments and simulated icicle load
experiments were performed.

The results showed that temperature sensitivities of FBG strain sensors and FBG temperature
compensation sensors were 18.16 pm/◦C, and 13.18 pm/◦C, respectively. FBG wavelength shifts were
linearly related to the icicle loads within the polar angle range of −60◦ to 60◦. In particular, the load
coefficient of FBG facing the icicle was −34.6 pm/N. Moreover, within the polar angle range of −15◦

to 15◦, the wavelength shift generated by several icicles was equal to the sum of wavelength shifts
generated by each icicle. Finally, icicle loads can cause wavelength shifts of the FBGs within one
big-shed spacing. Therefore, the icicle loads of composite insulators can be detected using FBGs in
the laboratory.
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In further research, a mathematical model and a location algorithm will be proposed for
monitoring multiple icicle loads and positions simultaneously on the composite insulator. In addition,
uncontrollable outdoor factors (e.g., sunlight, wind, rain, etc.) should be taken into considerations
as well.
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