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Abstract: A canonical quantization procedure is applied to the interaction of elastic waves—phonons—with
infinitely long dislocations that can oscillate about an equilibrium, straight line, configuration.
The interaction is implemented through the well-known Peach–Koehler force. For small dislocation
excursions away from the equilibrium position, the quantum theory can be solved to all orders in
the coupling constant. We study in detail the quantum excitations of the dislocation line and its
interactions with phonons. The consequences for the drag on a dislocation caused by the phonon
wind are pointed out. We compute the cross-section for phonons incident on the dislocation lines for
an arbitrary angle of incidence. The consequences for thermal transport are explored, and we compare
our results, involving a dynamic dislocation, with those of Klemens and Carruthers, involving a static
dislocation. In our case, the relaxation time is inversely proportional to frequency, rather than
directly proportional to frequency. As a consequence, the thermal transport anisotropy generated on
a material by the presence of a highly-oriented array of dislocations is considerably more sensitive to
the frequency of each propagating mode, and, therefore, to the temperature of the material.

Keywords: thermal transport; dislocations; quantum field theory

1. Introduction

The search for efficient ways to transform waste heat into usable power has spurred research,
both basic and applied, into thermoelectric materials wherein, for example, a temperature gradient
generates an electric current. These phenomena involve the transport of energy and of electric
charge, and are dominated by electrons and lattice vibrations: electrons carry both electric charge
and energy, while phonons carry energy. The desire is then to optimize electron mobility (to obtain
an “electron crystal”) while hampering as much as possible the motion of phonons (a “phonon
glass”) [1]. In other words, obstacles should be put in the way of phonons that impede as little as
possible the passage of electrons.

Within a polycrystal, obstacles to phonon motion include point defects—vacancies,
interstitials, impurities—line defects such as dislocations, surface defects such as grain boundaries,
interfaces, and free surfaces, and what could be termed three-dimensional defects such as precipitates.
Recently, the role of dislocations has become the focus of much attention. For example, Shuai et al. [2]
have reported high thermoelectric performance of Bi-based Zintl phases (Eu0.5Yb0.5)1−xCaxMg2Bi2,
and have correlated this performance with an increase in the dislocation density of the material.
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In a similar vein, Wu et al. [3] have added small amounts of Na, Eu, and Sn to PbTe to obtain
NayEu0.03Sn0.02Pb0.95−y Te. They have shown that, when y = 0.03, there is a significant increase
of dislocation density, together with a significant decrease in thermal conductivity. You et al. [4]
have studied the behavior of a PbSe-Cu system in which the presence of dislocations leads to
a significantly decreased lattice thermal conductivity. Xin et al. [5] have studied the thermal behavior
of Mg2Si1−xSbx and have concluded that an increase in dislocation density leads to a decrease in
thermal conductivity. This strategy of introducing an extra alloying element into a given thermoelectric
material has been followed by a number of researchers: Zhou et al. [6] have introduced Sb and Te
into PbSe, while Yu et al. [7] introduced Ag into PbTe. In both cases, there was a decrease in the
thermal conductivity that could be related to the presence of dislocations. A numerical experiment,
using molecular dynamics, has been carried out by Giaremis et al. [8] in order to investigate the effect
of decorated dislocations on the thermal conductivity of GaN. They have concluded that decorated
dislocation engineering can lead to interesting fabrication strategies for themoelectric devices.

The theory tool used by the research mentioned in the previous paragraph is the classical analysis
of Klemens [9]. In this work, dislocations are considered as static, straight line, defects of infinite
length. That is, they are point defects in a two-dimensional lattice that extend themselves into the
third dimension to plus and minus infinity by a homogeneous translation. Now, dislocations in any
material have a finite length, a typical magnitude (except in especially designed materials, see below)
being ∼100 nm or less. In addition, dislocations are by no means static. They respond to an incoming
elastic wave, i.e., to a phonon, by bowing out, and this response has been well-known and widely
documented over decades [10–12]. Admittedly, there is no denying that the data mentioned in
the previous paragraph can be fit with a contribution to the phonon inverse relaxation time that is
a linear combination of terms linear in frequency and cubic in frequency, as explained by Klemens.
However, there does not appear to be a clear relation between the parameters needed to obtain a fit
to the data and the parameters characterizing each specific material. From a different perpective,
Wang et al. have performed ab initio numerical calculations of the scattering of phonons by dipole
dislocations in GaN [13] and in Si [14] concluding that, while said scattering is significant, it is
not quantitatively accounted for by the model of Klemens [9]. Clearly, a better modeling of the
phonon-dislocation interaction is needed. In this paper, we address this concern.

A rather significant development has been reported by Sun et al. [15], who have fabricated
a micron thick InN single crystal with a highly oriented dislocation array that pierces through the
film across, and have measured the thermal conductivity both parallel and perpendicular to the film
thickness. There is a factor as high as ten between the two, which is far larger than what would be
expected from the single crystal anisotropy. Of course, free boundaries and point defects are the
same for both directions. This anisotropy has been measured as a function of temperature and of
dislocation density. The model of Klemens [9] can reproduce, roughly, the temperature dependence
of the cross-plane thermal conductivity, but cannot reproduce its dependence on dislocation density;
its prediction is also quite far away from the observed values for the in-plane thermal conductivity.

A modification of the model of Klemens [9] was worked out by Carruthers [16] in order to
provide a theoretical basis for a larger phonon-dislocation scattering cross section. While the theory
of Carruthers [16] provides a crude estimate of the results of Sun et al. [15], it does not appear to
accurately capture the temperature dependence, or the dislocation dependence, of the complete thermal
conductivity tensor (involving both in- and cross-plane conductivities). In any case, the calculation of
Carruthers [16] is based on an anharmonic interaction between atoms that does not appear to have
received independent validation.

An additional feature of the experiment of Sun et al. [15] is that most heat-carrying phonons
appear to have wavelengths shorter than 5 nm, which is much smaller than the apparent typical
length of a dislocation in their setup, L ∼ 1µm. Therefore, understanding the interaction between
phonons and dislocations where the wavelength of the former is much smaller than the spatial extent
of the latter should prove to be essential in describing and explaining thermal transport anisotropies
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mediated by dislocations. In a previous publication [17], we have developed a quantum theory of
phonons in interaction with dislocation segments of finite length. Here, we extend that formalism
to infinitely long dislocations, and explore the consequences for the thermal transport properties of
a material threaded with such many parallel dislocations.

The dynamic response of an infinitely long dislocation to an incoming phonon was considered by
Ninomiya [18,19], who introduced a phonon–dislocation coupling through the kinetic energy terms
in the system Hamiltonian, while not retaining a potential energy coupling. This interaction has
been recently quantized by Li et al. [20–22]. In this paper, we shall quantize the dislocation–phonon
interaction (DPI) when the dislocation is an infinitely long elastic string, but the coupling, as explained
in more detail in the next section, is through the potential energy term and is chosen to reproduce
well-established classical results, as encapsulated by the Peach–Koehler force [12,23].

The possibility that oscillating—as opposed to static—dislocations should contribute to thermal
transport was considered by Granato [24] soon after the work of Klemens [9]. However, no satisfactory
agreement with experimental measurements could be found. In retrospect, it would appear that
one difficulty with the theory, as gleaned from the 1982 review by Kneezel and Granato [25],
was that the phonon scattering rate induced by the moving dislocations was calculated to be
proportional to a damping term in the dislocation dynamics, itself proportional to dislocation
velocity, with an uncontrolled proportionality constant. In the present paper, we introduce no such
phenomenological parameters. On the contrary, our theoretical framework sets the stage for the
calculation of velocity-dependent damping of long wavelength phonons by their interaction with short
wavelength dislocation oscillations. We shall briefly touch on this issue below.

This paper is organized as follows: Section 2 recalls the classical theory that will be quantized.
Section 3 introduces the canonical quantization of the free phonons and free dislocation modes which,
following Li et al. [20], we shall call “dislons”. Section 4 introduces the interaction between phonons
and dislons and presents a number of consequences of this interaction, calculated to lowest order
(classically, this means for small strains). The basic tools are described, and the T matrix for the
scattering of a phonon by a dislocation is calculated in Section 4.1, while Section 4.2 discusses how
the particle-like properties of dislons are modified by their interaction with phonons. An interesting
result is the computation of the phonon contribution to the phenomenological damping (the so-called
“B” term) that is introduced in classical descriptions of dislocation dynamics as elastic strings [10,26].
A number of computations are presented in two Appendices. The consequences of the aforementioned
interaction for thermal transport are worked out in Section 5, with special attention to the case of
a solid threaded by a large number of parallel dislocations. Phonon scattering cross sections and
lifetimes are discussed in Sections 5.1 and 5.2, respectively. Section 5.3 compares the consequences
with the classical results of Klemens and Carruthers. One striking difference is that, while in the
Klemens/Carruthers approach, the phonon lifetime is proportional to frequency and, if the contribution
of the dislocation core is considered, to frequency cubed, our approach leads to a phonon lifetime
that is inversely proportional to frequency, as discussed in Section 5.3. A quantitative comparison of the
resulting anisotropy in thermal transport is given in Section 5.4. Finally, Section 6 has a discussion,
outlook, and concluding remarks.

2. Classical Action

In this work, we work out the quantum theory of oscillating dislocation segments, of infinite
length, in interaction with elastic waves in three dimensions. The quantum theory to be constructed is
based on a well-established classical theory, whose principal aspects we recap here.

We consider a homogeneous, solid, elastic continuum of density ρ, possibly anisotropic along one
axis ê3, and elastic constants cpqmr (p, q = 1, 2, 3). Within the solid, there is a string-like dislocation line.
The variables describing the solid are the displacements u(x, t), at time t, of a point whose equilibrium
position is x. The string is described by a vector X(s, t), where −∞ < s < ∞ is the coordinate along
the string equilibrium axis, whose endpoints are fixed at spatial infinity. The motion of this string is
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one of small amplitude away from an equilibrium position that is a static straight line parametrized
by X0(s) = s ê3. The fact that the string is a dislocation is implemented by the displacements u(x, t)
being multivalued functions: they have a discontinuity equal to the Burgers vector b when crossing
a surface whose boundary is the string. In addition to this geometrical fact, the coupling between
elastic displacements and elastic string is given by standard conservation of energy and momentum
arguments [27]. When dislocation velocities are small compared to the speed of sound, an assumption
we shall make throughout this work, this leads to the well-known Peach–Koehler force [23]. In the
time-dependent case, and for string velocities small compared to the speed of sound, the dynamics are
described by the following classical action:

S = Sph + Sstring + Sint + S0 (1)

where

Sph =
1
2

∫
dt
∫

d3x
(

ρu̇2 − cpqmr
∂um

∂xq

∂up

∂xr

)
+ · · · (2)

Sstring =
1
2

∫
dt
∫ ∞

−∞
ds
(

mẊ2 − ΓX′2
)
+ · · · (3)

Sint = −bi

∫
dt
∫

δS
dSjσij. (4)

where the ellipses “· · · ” refer to higher order terms in the phonon or string actions in the sense
that they involve higher powers of the dynamic fields u and X. In addition, bi is the i-th
component of the Burgers vector, σij is the elastic stress tensor, evaluated at the current position of the
dislocation line, and the surface δS describes the region bounded by the string and its equilibrium
position. Finally, S0 involves the interaction of the elastic displacements with a static dislocation,
whose boundary is the straight line X0. It does not contribute to the dynamics and shall be ignored in
the sequel.

Let us start by describing the phonon action Sph. Clearly, Sph describes elastic waves in an elastic
continuum, wherein the quadratic terms will lead to free phonons and the higher order terms will lead
to phonon–phonon interactions. In the isotropic case, cpqmr = λδpqδmr + µ(δpmδqr + δprδmq) where λ

and µ are the Lamé constants. However, in the axially anisotropic case, for a medium with hexagonal
or transverse isotropic symmetry, there are five independent elastic constants.

In the absence of the interaction term, the free phonon theory has simple solutions in terms
of plane waves for the elastic displacement (phonons) and normal modes for the elastic string-like
dislocation. In the case of phonons, they are in general characterized by three different modes of
propagation, determined by the wave equation

ρüp = cpqmr
∂2um

∂xr∂xq
. (5)

In the completely isotropic case, we have only two distinct modes: transversal waves of speed
cT =

√
µ/ρ with two allowed polarizations, and longitudinal waves of speed cL =

√
(λ + 2µ)/ρ with

one polarization.
On the other hand, we have a string described by a vector field X(s, t), where −∞ < s < ∞ is

a position parameter along said string. We consider small deviations from a straight equilibrium
position X0, the ends of which are pinned to their positions at infinity. Sstring describes oscillations
(normal modes) of an elastic string of infinite length with fixed ends; higher order terms describe
anharmonic effects on these oscillations, which we will not address in this work. The parameters m
(mass per unit length) and Γ (line tension) characterize the dislocation segment.
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In previous work [17], considering only the completely isotropic case, we have assumed segments
of edge dislocations only, in which case they may be written in terms of the Burgers vector b and
γ ≡ cL/cT as

misotropic =
ρb2

4π
(1 + γ−4) ln(δ/δ0) (6)

where δ, δ0 are long- and short-distance cutoff lengths, and

Γisotropic =
µb2

2π
(1− γ−2) ln(δ/δ0). (7)

For an anisotropic solid, one can expect that the factors (1 + γ−4) and (1− γ−2) in m and Γ will
be modified to reflect the specific geometry of the solid, but should otherwise remain unchanged.

Classically, phonons have plane wave solutions. Similarly, the string term Sstring of the action

leads to oscillatory solutions that may be expanded in Fourier series Re
{∫ dκ

2π a(κ)e−iωκ te−iκs
}

,

where ωκ = κ
√

Γ
m is the frequency of each normal mode. We take the string to have one degree

of freedom (i.e., one direction orthogonal to its equilibrium position over which to oscillate) defined
by the direction of the Burgers vector b, thus defining the glide plane. For most of our results,
the generalization to more directions of oscillation is straightforward.

Finally, Sint describes the interaction between these two sectors. It is straightforward to check that

δSint

δXk
= −biεjkmX′mσij (8)

reproduces the well known Peach–Koehler force [12,23]. This DPI coupling has been successfully used
for decades [10,11]. In recent years, it has been used to compute the scattering cross section of elastic
waves by dislocation segments in a first Born approximation, a result that has been further employed to
compute the change in propagation velocity and attenuation for said waves by many such dislocation
segments [28–30]. These results, in turn, have led to novel ways of acoustically characterizing the
plasticity of metals and alloys [31–34].

Having reviewed the classical theory, we now turn to its quantization by introducing canonical
commutation relations. We note that the theoretical setup just described includes anisotropic media.
Even though we shall work out specific quantitative consequences only in the isotropic case, we shall
keep the notation, as far as possible, compatible with anisotropy.

3. Canonical Quantization of the Free Fields

We commence this section by implementing the correspondence of Poisson brackets to
commutators {·, ·} → − i

h̄ [·, ·]. According to standard practice [35,36], the mode coefficients of the
classical solutions are promoted to creation and annihilation operators, in terms of which we may
write the displacement field as

u(x, t) =

√
h̄
ρ

∫ d3k
(2π)3 ∑

ι∈{pol.}

[
ε∗ι (k)aι(k)eik·x−iωι(k)t√

2ωι(k)
+

ει(k)a†
ι (k)e−ik·x+iωι(k)t√

2ωι(k)

]
, (9)

where the sum over ι represents the sum over phonon polarizations. On the other hand, we may write
the string displacement as

X(s, t) =

√
h̄
m

∫ dκ

2π

(
α(κ)e−iωκ te−iκs
√

2ωκ
+

α†(κ)eiωκ teiκs
√

2ωκ

)
. (10)
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Now, we proceed to impose canonical commutation relations:

[ui(x, t), ρu̇j(y, t)] = ih̄δijδ
(3)(x− y), (11)

[X(s, t), mẊ(s′, t)] = ih̄δ(s− s′), (12)

[ui(x, t), uj(y, t)] = 0, [X(s, t), X(s′, t)] = 0, (13)

which fully define the quantum theory in the non-interacting case. These relations in turn require

[aι(k), aι′(k
′)] = [a†

ι (k), a†
ι′(k
′)] = 0, (14)

[aι(k), a†
ι′(k)] = (2π)3δ(3)(k− k′)διι′ , (15)

[α(κ), α(κ′)] = [α†(κ), α†(κ′)] = 0, (16)

[α(κ), α†(κ′)] = (2π)δ(1)(κ − κ′). (17)

In the preceding expressions, ι is an index that runs over the possible polarizations for the
phonons, which in the isotropic case goes over two transverse polarizations that we will denote by
ι = T1, T2, and one longitudinal polarization that we will denote by ι = L. In the anisotropic case,
there would be three inequivalent polarizations: transverse polarization with displacements within
the ê1 − ê2 plane, transverse polarization within the ê3 − k̂ plane, and longitudinal polarization inside
the ê3 − k̂ plane. ει(k) represents the polarization vector associated with each mode of propagation.
The corresponding eigenfrequencies satisfy ωι(k) = cι(k̂ · ê3)k, with two phase velocities cT , cL in the
isotropic case, and three phase velocities that depend on the angle between the wave-vector and the
anisotropy axis in the anisotropic case. Finally, ωκ = κ

√
Γ/m is the frequency for the mode of the

string with wavenumber κ.
To complete the description of the theory, we need to specify its dynamics, which are generated

by the time-evolution implied by a Hamiltonian operator. In the case of the “free” theory, where no
interactions between phonons and “dislons” (the excitations on the string) take place, the Hamiltonian,
obtained from the action (1) by the usual canonical transformation, is

H = Hph + Hstring (18)

with phonon and string terms given, respectively, by

Hph =
∫ d3k

(2π)3 ∑
ι∈{pol.}

h̄ωι(k)a†
ι (k)aι(k), (19)

Hstring =
∫ dκ

2π
h̄ωκα†(κ)α(κ). (20)

In characterizing the free theory, a fundamental object is the two-point function, more commonly
known as the propagator. Let T be the time-ordering symbol, instructing operators evaluated at a later
time to be placed at the left, and let |0〉 be the vacuum state of the quantum mechanical system, with no
excitations of the elastic displacements nor the string. For the dislocation, it reads

∆(s− s′, t− t′) ≡〈0|TX(s, t)X(s′, t′)|0〉

=
h̄
m

∫ dκ

2π

e−iωκ |t−t′ |

2ωκ
eiκ(s−s′).

(21)
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Even though we can do the same for the elastic displacement field, it turns out to be more useful
for subsequent computations to write down the propagator for its spatial derivative:

∆iji′ j′(x− x′, t− t′) ≡ 〈0|T ∂ui
∂xj

(x, t)
∂ui′

∂xj′
(x′, t′)|0〉

=
h̄
ρ

∫ d3k
(2π)3 ∑

ι∈{pol.}
k jk j′ει(k̂)iε

∗
ι (k̂)i′

e−iωι(k)|t−t′ |

2ωι(k)
eik·(x−x′)

=
h̄
ρ

∫ d3k
(2π)3

∫ dω

2πi ∑
ι∈{pol.}

k jk j′ει(k̂)iε
∗
ι (k̂)i′

−ω2 + ωι(k)2 − iε
eik·(x−x′)e−iω(t−t′),

(22)

where ε is a positive infinitesimal.
The reason behind writing down time-ordered quantities is that, when we compute scattering

amplitudes in the interacting theory, we will be interested in the S-matrix, given by [35,36]

〈Ψout|T exp
[
− i

h̄

∫ ∞

−∞
HI(t)dt

]
|Ψin〉 (23)

where HI is the quantum mechanical interaction picture Hamiltonian operator. Therefore, if we expand
the exponential in (23) in a power series of HI , all terms in the series will be time-ordered, thus giving
the computation of time-ordered quantities a central role.

In what follows, we will denote by uI and X I the operator fields associated with lattice
displacements and to the oscillations of the string-like dislocation, respectively, in the interaction
picture of quantum mechanics, which evolve as free fields. As a reminder to the reader, the passage
between the interaction picture and the Heisenberg picture is implemented through

u(x, t) = U†(t, t0)uI(x, t)U(t, t0) (24)

with

U(t, t0) = T exp
[
−i
∫ t

t0

HI(t′)dt′
]

(25)

where t0 is the time at which both operators coincide (typically in a scattering context, it is taken to
be −∞).

Having set up the formalism, we can now dive into the interaction Hamiltonian HI of interest
and explore the dynamics it generates for the constituents of our theory: phonons and dislons.

4. The Quadratic Interactions with a Single String

The interaction term Sint (4) is an infinite series in increasing order of gradients of the particle
displacement. The lowest order interaction, which classically means to consider small strains and
small string excursions away from the equilibrium position, is given by

S(2)
int = −Nb

∫
dt
∫ ∞

−∞
ds Mkl

∂uk
∂xl

(x0 + (0, 0, s), t)X(s, t) (26)

which is quadratic in the fluctuations. In this expression, we have defined N ≡ c1212. We will take
the string to have its equilibrium position along the ê3 axis, and the Burgers vector to be written as
b = bê1. With this choice of coordinates, Mkl = (ê1)k(ê2)l + (ê2)k(ê1)l . This interaction will give rise to
the scattering of phonons by the string, which is described by

〈 f |i〉 = 〈0|aι′(k
′)T exp

[
− i

h̄

∫ ∞

−∞
HI(t)dt

]
a†

ι (k)|0〉, (27)
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where

HI(t) = Nb
∫ ∞

−∞
ds Mkl

∂uI
k

∂xl
(x0 + (0, 0, s), t)X I(s, t), (28)

and a†
ι (k), aι′(k′) are creation and annihilation operators that define the initial (one phonon

with wavenumber k and polarization ι) and final (one phonon with wavenumber k′ and
polarization ι′) states.

For completeness, we also write down the Hamiltonian in the Heisenberg picture (where it is
naturally constant) in terms of creation and annihilation operators:

Hint = h̄
∫ d3k

(2π)3 ∑
ι∈{pol.}

(
iE(k; ι)aι(k)√

2ωk3

(α(−k3) + α†(k3)) + h.c.

)
(29)

where h.c. stands for Hermitian conjugate. Note that this is a quadratic interaction. Furthermore,
following previous work [17], we have defined

E(k; ι) ≡ Nb√
2ρmωι(k)

klMklε
∗
ι (k)keix0·k, (30)

and we will denote its complex conjugate by E∗. Here, we have denoted kl = (k · êl) and
ε ι(k)k = (ει(k) · êk).

We now turn to the main question of interest in this article: how does a (comparatively) short
wavelength phonon with wavenumber k and polarization ι propagating through the elastic continuum
interact with a long (approximately infinite) dislocation segment with length L? To answer this question,
we proceed as follows: In Section 4.1, we organize and solve the theory in terms of Feynman diagrams,
to then study the properties of dislons as particles and scatterers in Section 4.2. Finally, in Section 4.3,
we explore the full phonon propagator in the presence of a single dislocation line and comment on its
relevant features, before moving on to the implications of this interaction on thermal transport in the
subsequent section. For completeness, we briefly discuss how the DPI makes both excitations reach
thermal equilibrium in Appendix B.

4.1. Phonon by Dislocation Scattering: Amplitudes and Feynman Diagrams

In this section, we describe how to obtain the scattering amplitude of a phonon by a dislocation,
to all orders in the interaction Hamiltonian (28). That is, we explicitly perform the computation of
all terms in the power series development of the exponential in (27). Since we have a quantum field
theory in our hands, it is natural to carry out the computation in terms of Feynman diagrams. This is
a powerful method to organize the various terms that appear in scattering processes.

In the quadratic theory, the basic diagrammatic elements are those shown in Figure 1,
each representing a specific contribution that gives form to the scattering processes. They are:

• Phonon “bare” propagator: the phonon Green’s function. In particular, we will be more interested
in its derivatives, or the earlier defined ∆iji′ j′(x− x′, t− t′) whose value in momentum–frequency
space is given by

∆iji′ j′(k, ω) = ∑
ι

−ih̄k jk j′ ε ι(k̂)iε
∗
ι (k̂)i′

−ρω2 + ρc2
ι (k̂)k2 − iε

, (31)

where we have omitted an overall Dirac delta imposing momentum–frequency conservation
(2π)4δ(ω−ω′)δ3(k− k′).

• Dislon “bare” propagator: the dislon Green’s function. It is given in momentum–frequency
space by

∆(κ, ω) =
−ih̄

−mω2 + Γκ2 − iε
, (32)
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where we have also omitted an overall Dirac delta imposing momentum–frequency conservation
(2π)2δ(ω−ω′)δ(κ − κ′).

• 1-dislon 1-phonon “bare” vertex: diagrammatical representation of the quadratic interaction
between phonons and dislons. In position space, it instructs to operate over the coincident
position coordinate of both adjacent propagators as

iV2 =
−ibc1212Mi′ j′

h̄

∫ ∞

−∞
ds∆iji′ j′(x−(0, 0, s), t−t′)∆(s−s′, t′−t′′). (33)

This coupling will have important consequences when we examine the exact propagator for the
dislocation excitations. Moreover, it enforces momentum (wavenumber) conservation along the
direction of the dislocation line, through a factor (2π)δ(κ− k′3) that appears after integrating over
the string coordinate s.

Figure 1. The basic diagrammatic expressions to be used in solving the quadratic theory. The upper
two diagrams describe the basic propagator (Green’s function) for each type of excitation in the solid,
with a continuous line for phonons and a dashed line for dislons. The third diagram represents the
quadratic phonon–dislon interaction, allowing for quantum of excitations of one type to be converted
into the other.

With these tools, we want to evaluate (27), which corresponds to having one ingoing phonon
and one outgoing phonon as external states, which in the diagrams that represent our scattering
process are depicted by the “external” lines (i.e., those that have one of their ends not attached to
another diagrammatic piece). In essence, we want to compute a “dressed” propagator for the elastic
displacement field, which determines the probability of measuring a phonon with wave-vector k′ as
a result of having sent in a phonon with momentum k into the elastic medium. This is schematically
represented in Figure 2.

Figure 2. “Dressed” phonon propagator. This is the main composite object that appears in the quadratic
theory calculations, and it does so as a consequence of incorporating the consequences of the interaction
to all orders in perturbation theory.

The computation can now be organized by the number of vertices (i.e., insertions of the
interaction-picture Hamiltonian as a result of expanding the time evolution operator in a power
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series) present in each diagrammatic piece of Figure 2. By the means of Wick’s theorem [35,36], one can
then evaluate the expectation value corresponding to the transition amplitude (27), which essentially
contracts all interaction-picture fields in pairs in all possible ways amongst themselves.

This contraction in all possible ways effectively gives an n! factor that cancels the 1/n! in
the Taylor expansion of the exponential because the time-ordering symbol makes all contractions
equivalent at a fixed order in the perturbative series. Furthermore, phonon propagators conserve
3-momentum (the wavenumber k) and frequency/energy ω, whereas dislon propagators only conserve
momentum along the dislocation axis k3 ≡ k · ê3 and energy ω. Then, since the integrals in the
interaction-picture time evolution operator (one over time and one over the longitudinal extent of the
dislocation s) propagate the conservation of k3 and ω, all one needs to do is work out the pieces in
the diagram in Figure 2 where modes with k1 and k2 components appear as “virtual” intermediate
states. This essentially amounts to calculating the self-energy Π(κ, ω) of the dislon propagator, as is
depicted in Figure 3. After evaluating this quantity, the remainder of the computation will be given by
summing over the number of intermediate dislon propagators to construct the exact dislon propagator,

S(κ, ω) ≡ ∆(κ, ω)
∞

∑
n=1

(
i
h̄

Π(κ, ω)∆(κ, ω)

)n−1

=
1

∆−1(κ, ω)− i
h̄ Π(κ, ω)

,
(34)

which includes the effect of all the intermediate phonon states in a scattering process.

Figure 3. Diagrammatic representation of the dislon self-energy Π, where the dashed “external” lines
carry ingoing and outgoing momenta κ and frequency ω.

Using the diagrammatic elements we defined earlier, and letting (κ, ω), (κ′, ω′) label the ingoing
and outgoing states respectively, we obtain the following expression for the dislon self-energy

(2π)δ(ω−ω′)(2π)δ(κ − κ′)
i
h̄

Π(κ, ω)

=
(−i)2N2b2

h̄2 MklMk′ l′

∫ ∞

−∞
dt
∫ ∞

−∞
dt′
∫ ∞

−∞
ds
∫ ∞

−∞
ds′
∫ d3k
(2π)3

∫ dω′′

2πi

× ∆klk′ l′(k, ω)ei(s−s′)k3 e−iω′′(t−t′)eiωt−iω′t′ e−iκs+iκ′s′ .

(35)

The integrals over time and ω′′ are straightforward and give energy conservation. Some algebra
allows one for computing the integral over the azimuthal angle and obtain

(2π)δ(κ − κ′)Π(κ, ω)

=
N2b2

16π2ρ

∫ ∞

−∞
ds
∫ ∞

−∞
ds′
∫ ∞

−∞
dk
∫ 1

−1
dueiku(s−s′)e−iκs+iκ′s′k4(1− u2)∑

ι

|εxy
ι (u)|2

c2
ι (u)k2 −ω2 − iε

,
(36)

where u ≡ cos θ and we have extended the radial integral over k to −∞ as the integrand is symmetric
under k→ −k and u→ −u. In this equation, we have introduced the quantity |εxy

ι (u)|, which stands
for the magnitude of the projection of the polarization vector ει into the ê1 − ê2 plane.
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From here, one proceeds to evaluate the integral over k by contour integration, closing on the
upper-half plane if u(s− s′) > 0, and on the lower-half plane otherwise. After a straightforward,
but tedious calculation, one arrives at

Π(κ, ω) = mω2F(κ/ω), (37)

where the function F is given by

F(x) =
N2b2

8πρm ∑
ι∈{pol.}

∫ 1

0
du
|εxy

ι (u)|2
c4

ι (u)
2u(1− u2)

x2c2
ι (u)− u2 − iε

. (38)

This integral can be cast as the function in the integrand evaluated at a given point plus a principal
part, but, since in evaluating Cauchy principal values, it is typical to include a small parameter, we stick
to the complex representation given by (38), which already gives both the imaginary and real parts of
the result.

For concreteness, we note that in the isotropic case this function can be calculated easily in terms
of relatively simple functions. In terms of its real and imaginary parts, it would read:

Re {F(x)} = µ2b2

8πρmc4
T

[
1
2
+

3
2γ4 +

(
1− 1

γ2

)
c2

Tx2

−(1− c4
Tx4) ln

(
|1− c2

Tx2|
|c2

Tx2|

)
−

(1− γ2c2
Tx2)2

γ4 ln

(
|1− γ2c2

Tx2|
|γ2c2

Tx2|

)] (39)

Im {F(x)} = µ2b2

8ρmc4
T

[
(1− c4

Tx4)Θ(1− |cTx|) +
(1− γ2c2

Tx2)2

γ4 Θ(1− |γcTx|)
]
, (40)

where Θ(x) is the Heaviside step function. Note that both the real and imaginary parts of F are
nontrivial. This means that we will have anomalous dispersion with contributions to both the effective
speed of propagation of the dislons and to their decay rate.

Once we have the self-energy, we can sum over all possible insertions of phonon propagators
(see Figure 4) to write the exact dislon propagator as

S(κ, ω) =
−ih̄

−mω2 + Γκ2 −Π(κ, ω)
, (41)

which is, apart from the contractions with external phonons in the amplitude (27), all we needed to
compute. With this in hand, we can now write the final result for the amplitude in a closed form.
Specifically, if we define the T matrix through

〈 f |i〉 ≡ i(2π)2 δ(ωι(k)−ωι′(k
′)) δ(1)(k3 − k′3) T , (42)

then we obtain

T =
E∗(k; ι)E(k′; ι′)

−
(

1 + F
(

k3
ω

))
ω2 + Γ

m k2
3

, (43)

where we have omitted the free theory result, i.e., a pure phonon propagator, as it does not represent
a scattering process. Having established the form of the phonon-to-phonon scattering amplitude,
we can now compute the scattering cross-section of phonons due to the presence of a dislocation line.
However, before doing that, we will explore some aspects of this result to build some intuition on the
physics behind it.
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Figure 4. “Dressed” dislon propagator. This is the counterpart of the “dressed” phonon propagator
in terms of the dislon field. This object has the advantage that it explicitly conserves energy and
momentum along all dimensions in which the string is extended, whereas the exact phonon propagator
only conserves energy and momentum along the dimensions that are shared with the string (time and
the ê3 axis).

4.2. A Look at the Dislon Dispersion Relation

The exact dislon propagator (41), besides its relevance for computing phonon scattering
amplitudes, also gives us the possibility to study the dispersion relation of the modes that propagate
along the dislocation line directly. Indeed, the physical “asymptotic” states in a scattering picture,
which are made of a superposition of “on-shell” states, are usually characterized by a dispersion relation
ω(κ) determined by the (possibly complex) poles of the propagator. In the absence of a medium with
which to interact, the dislon dispersion relation is defined by

−mω2 + Γκ2 = 0 =⇒ ω2(κ) =
Γ
m

κ2. (44)

This means, for example, that perturbations with frequency ω will propagate along the dislocation
line with a wavenumber given by κ = ±

√
mω2/Γ, corresponding to the usual picture of wave

propagation on a string.
However, the presence of a non-trivial self-energy Π(κ, ω) complicates this picture

(see Figure 5 for a typical plot of the function F). Even more so, the explicit expressions for the
isotropic case (39), (40) are not analytic because of a branch cut on the real x2 axis that may be
seen from (38), which, although it introduces a singularity, does not give a straightforward pole
structure wherein to identify “particles”. Indeed, the branch cut singularity is a reflection that the
intermediate dislon states can decay to (physical) on-shell phonons, and thus we do not expect those
states to be able to survive for arbitrarily long times.

-2 -1 1 2
xcT

-3

-2

-1

1

2

3

4π F(x)
g

Re(F) Im(F)

Figure 5. Real and Imaginary parts of the function F, which determines the self-energy of the dislons
through Π = mω2F in the isotropic case. They do not vanish simultaneously. The plots were generated
setting γ = 2.
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It is therefore useful to distinguish the role of dislons as physically-propagating objects from their
role as scatterers. While both are determined by the same exact propagator (41), the values of x in (38)
that become relevant to observables are starkly different: in the former, x is fixed by the dispersion
relation, whereas, in the latter, x is a function of the angle at which the scattering phonon is incident on
the dislocation.

We study dislons as physically-propagating objects in detail in Appendix A.1, finding that unless
the coupling constant

g ≡ 4π

2(1 + γ−4) ln(δ/δ0)
(45)

is greater than some critical value gc (which is a function of γ), the poles of the propagator S (41),
represented by a dispersion relation ω(κ), are entirely imaginary and therefore represent purely
decaying solutions, or evanescent waves.

If g were greater than this critical value gc, propagating solutions re-appear because on-shell
dislons can no longer decay to on-shell phonons because of energy and momentum conservation.
That is to say, dislons are stable excitations (particles) in this regime. Note, however, that a typical
value for gc ≈ 3.44, obtained by taking γ = 2, corresponds to short- and long-distance cutoffs obeying
δ ≈ 5.6δ0. Therefore, in a typical situation where we assume that these cutoffs are separated by
an order of magnitude, we do not expect to see g > gc, and expect mostly decaying dislon modes.

On the other hand, as we previously mentioned, one can also interpret the result for the exact
dislon propagator (41) from the point of view of the scattering amplitude (43). Indeed, we can write

T = mE∗(k; ι)E(k′, ι′)
i
h̄

S(k3, ω), (46)

where S is fully determined by the dislon dispersion relation; in fact, it is basically the inverse of the
operator that determines the exact equation of motion (in Fourier space) for dislons propagating along
the dislocation line after integrating out the other degrees of freedom in the system (phonons).

This is a natural point to make contact with previous studies on phonon scattering by dislocations.
It has long been recognized [37–39] that a classically described (i.e., non-quantum) moving dislocation
will experience a drag force because of the DPI (a “phonon wind”). Within the description that we
have adopted in the present paper, this amounts to supplementing the string dynamics that follow
from the action (3,4) with a phenomenological term to obtain

mẌ(s, t) + BẊ(s, t)− ΓX′′(s, t) = F(s, t), (47)

where B is a phenomenological drag parameter and F is the Peach–Koehler force. In particular, in the
context of [30], a first-order computation of phonon scattering in perturbation theory was carried
out to determine the observable effects of this damping parameter B, leaving it as an adjustable
quantity. Since it is a first-order computation, the dislon propagator connecting the “external” phonons
(in a diagrammatic sense) is correspondingly given by

S(κ, ω) =
−ih̄

−mω2 − iBω + Γκ2 . (48)

Note that we have written this last dislon propagator in its quantum version (including h̄ in the
numerator) because ultimately whatever dissipative mechanism that one observes in a macroscopic,
classical limit must emerge from a quantum-mechanical description of how dislocations interact with
their surroundings. Furthermore, as long as anharmonicities are small compared to the quadratic DPI,
the Heisenberg equation of motion for the dislon field operator can be put in direct correspondence
with the classical equation of motion for the dislon field through the identification of Poisson brackets
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and commutators with each other, enabling us to write (48) as a propagator for the quantum excitations
associated with the LHS of Equation (47).

It is then natural to try and obtain a quantitative estimate for B from our explicit results for Π,
the dislon self-energy. If we interpret the real part of F as a term that renormalizes the speed at which
dislons propagate through the dislocation line at different wavelengths, then we may simply read off

− iBω = −iIm{Π(κ, ω)}. (49)

Because of the optical theorem, the imaginary part of Π will be nonzero only for values of
x = κ/ω that allow for a decay to phonon states conserving momentum along the ê3 direction,
as well as frequency/energy ω. This means that we can focus on the region where |x| < c−1

T . To get
an order-of-magnitude estimate, we may take x = 0, where we have, in the isotropic case,

Im{Π} = ω2 µ2b2

8ρc4
T

(
1 + γ−4

)
, (50)

implying

B .
1 + γ−4

8
ρb2 ×ω, (51)

where . means that the phenomenological value of B should be less than the RHS of (51), depending on
the angle of incidence of the phonon with respect to the dislocation line, but of the same order
of magnitude.

While, on the one hand, this means that B depends on the frequency of the incident phonon
scattering off the dislocation line, this also provides a quantitative estimate that can be tested by
comparing with experiments that intend to probe and characterize the equation of motion for
dislocations phenomenologically, as with (47).

Finally, it is important to note that this estimate relied on using the exact dissipation rate computed
from dislons propagating on an infinite string. However, experiments testing this result may be
sensitive to the length of the dislocation line L, which undoubtedly yields a different notion of dislon
self-energy because momentum along the ê3 axis is no longer conserved [17] as the exact equation of
motion becomes infinitely coupled between the different modes of the string, and the identification of
B with the imaginary part of the inverse propagator needs to be revisited. In this case, one possibility
for a direct identification would be to simply identify B with the decay rate of a given dislon mode,
probably corresponding to the first normal mode of the string. Additional effects to consider in order
to make contact with experimental results should include a non-vanishing mean dislocation velocity,
the effect of cubic and higher order terms in the phonon–dislon interaction and the effect of a finite
temperature. Although it should be possible to tackle these phenomena within the formalism we
present, doing so is outside the scope of the present work.

The preceding discussion, that is, the identification of a decay rate from the imaginary part of the
self-energy Π, is tantamount to quantifying the width of the resonance peak when a phonon scatters
off a dislocation, as long as the coupling g is “weak” (g� 1), and so the “free” kinetic terms dominate.
On the other hand, at large coupling g� 1, the self-energy Π becomes large and there is no obvious
notion of a “resonance”, since the virtual dislons in the amplitude will never be close to being “on-shell”
in the sense of the free theory. In this situation, it wouldn’t be possible to infer B from a “resonance”
peak in the phonon-to-phonon amplitude. We present a more detailed discussion on these resonances
of the dislon propagator in Appendix A.2.

4.3. The Phonon Propagator in the Presence of a Single Dislocation

Just as we derived the exact dislon propagator (41), we can similarly derive the exact (or “dressed”)
time-ordered phonon propagator by computing the sum of diagrams in Figure 2. This is most easily
done by taking the expression for the exact dislon propagator and using it to compute the phonon
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propagator, as is shown in Figure 6. Alternatively, one could take the scattering amplitude (43) and
“restore” the external propagators that would be in the place of the creation and annihilation operators
in the original amplitude of interest (27), in the way that the LSZ reduction formula connects correlation
functions and scattering amplitudes.

Figure 6. “Dressed” phonon propagator in terms of the exact dislon propagator.

Either way, one obtains that the time-ordered phonon propagator is given by

i
h̄

Gij(k, ω; k′, ω′) = (2π)4δ(ω−ω′)δ3(k− k′)∑
ι

ε ι(k̂)iε
∗
ι (k̂)j

−ρω2 + ρc2
ι k2 − iε

+ (2π)2δ(ω−ω′)δ(k3 − k′3)∑
ι

ε ι(k̂)iε
∗
ι (k̂)i′Mi′ lkl

−ρω2 + ρc2
ι k2 − iε

× b2N2

−mω2 + Γk2
3 −Π(k3, ω)

∑
ι′

k′l′Mj′ l′ ε ι′(k̂′)j′ ε
∗
ι′(k̂
′)j

−ρω′2 + ρc2
ι′k
′2 − iε

(52)

where we have included the energy-momentum conservation Dirac deltas explicitly because the DPI
does not conserve momentum in the plane orthogonal to the dislocation line.

In principle, one could diagonalize the continuous matrix Gij(k, ω; k′, ω′) (with “rows” and
“columns” given by (k, ω) and (k′, ω′)) to obtain “renormalized quasi-phonons” [21] that define the
eigenstates of the system after integrating out the dislon degrees of freedom, and then compute
thermal transport properties by using linear response theory on this new basis. In this picture,
“quasi-phonons” reproduce the “free” phonon spectrum in the limit where the DPI becomes negligible,
whereas, for arbitrary non-zero strength of the DPI, these “quasi-phonons” will exhibit a renormalized
dispersion relation that depends on the DPI dynamics.

While this is certainly an interesting and ultimately necessary direction to explore if one wants to
have a full understanding of what the spectrum of extended excitations inside the solid is, our goals
for the remainder of this work will be limited to establishing how a macroscopic thermal transport
anisotropy will be generated because of the presence of dislocations in a framework that is easy to
extend and apply to the quantitative analysis of thermal conductivity measurements for different
distributions of dislocations. In this latter sense, the reason why we do not presently study the
phonon spectrum from Equation (52) is because that expression for the propagator is still insufficient
to describe a solid threaded by many dislocation lines, where we should include contributions coming
from the dislon excitations on every dislocation line threading the solid, located at arbitrary positions
{(xn, yn, s)}n extended along the ê3 axis. An adequate diagonalization to obtain the vibrational
eigenstates of the system should thus incorporate all of these contributions. Therefore, unless additional
assumptions regarding the distribution of dislocation positions are provided, it seems comparatively
unwieldy to engage in this computation using the “quasi-phonon” approach when compared to using
the original phonon basis for the excitations in the solid. We emphasize that, since the degrees of
freedom of the system are the same regardless of the basis of states chosen to study it (phonons or
“quasi-phonons”), we can choose either of them to compute the thermal transport properties of
the system.

Instead, we will follow a more old-fashioned approach to compute thermal transport properties in
a solid threaded by many dislocations, where we transition from a quantum-mechanical amplitude to
a macroscopic thermal conductivity by studying phonon transport in a relaxation time approximation
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(RTA) by calculating the 1-to-1 phonon transition rates that the phonon propagator (52) implies,
and then using this lifetime to write down a thermal conductivity as is done in kinetic theory [40].
Concretely, these transition rates are captured by the second term in (52), or, equivalently, through the
scattering amplitude (43).

Our approach notwithstanding, we consider that the propagator (52), and its real-time thermal
field theory counterparts deserve special attention in a separate study devoted to establishing the
impact of this theory of DPI on thermal conductivity through a Kubo formula in linear response theory,
which the authors hope to undertake in the near future.

5. Implications on Thermal Transport

We now turn to examining how the scattering mechanism provided by dislocations affects energy
transport in a solid. In particular, we focus on thermal transport through phonons, and set the
groundwork for the computation of thermal conductivities in a solid threaded by highly-oriented
dislocations. In this section, we start by discussing conventional cross-sections in a scattering
picture, and then move on to consider the lifetime of phonons participating in thermal transport.
Finally, we compare with the original work of Klemens [9] and Carruthers [16] and study the
anisotropy in thermal transport that arises due to a large number of long dislocations threading
the solid.

5.1. The Scattering of a Phonon by a Dislocation: Cross Sections

From (43), the differential scattering cross section from mode (k, ι) to mode (k′, ι′) is given directly
by taking the absolute value squared of the scattering amplitude T , integrating over the length of the
wave-vector k = |k|, and dividing by the incident flux vg

ι (k̂)/V times the norm of the incident state V
(where V is the volume of the elastic continuum, and vg

ι (k̂) = |dωι/dk| is the group velocity of sound
waves in the elastic medium). One obtains

dσιι′

dΩ
=

Lδ(k3 − k′3)
2πc5

ι′(k̂
′)c2

ι (k̂)v
g
ι (k̂)

(
N2b2

2ρm

)2 |k̂lMklε ι(k)k|2|k̂′l′Mk′ l′ ε ι′(k′)k′ |2∣∣∣∣ Γk2
3

mω2 −
(

1 + F
(

k3
ω

))∣∣∣∣2
, (53)

where L is the length of the dislocation, which we take to be large so that the approximation
L ∼ (2π)δ(κ − κ) = (2π)δ(0) is justified.

Integrating over the possible outgoing states, i.e., over the relative angle dΩ between k and k′,
the total cross section for the mode (k, ι) may be written as

σι(k) =
L

2c2
ι (k̂)v

g
ι (k̂)

(
N2b2

2ρm

)2 |k̂lMklε ι(k)k|2∣∣∣ Γk2
3

mω2 −
(

1 + F
(

k3
ω

))∣∣∣2 ∑
ι′

∫ 1

−1
du(1− u2)

|εxy
ι′ (u)|

2

c5
ι′ (u)

δ

(
k3 −

ωu
cι′ (u)

)
, (54)

and, averaging over dislocation orientations (Burgers vector) in the ê1 − ê2 plane, one obtains

σ̄ι(k) =
L

4ωι(k)c2
ι (k̂)v

g
ι (k̂)

(
N2b2

2ρm

)2 |εxy
ι (cos θ)|2 sin2 θ∣∣∣∣ Γk2

3
mω2 −

(
1 + F

(
k3
ω

))∣∣∣∣2
×∑

ι′

∫ 1

−1
du(1− u2)

|εxy
ι′ (u)|

2

c5
ι′(u)

∣∣∣∣∣ c2
ι′(u)

cι′(u)− uc′ι′(u)

∣∣∣∣∣ δ(u− uι′(k3/ω)) ,

(55)

where cos θ = k̂ · ê3, uι(x) is defined as the solution to the equation u = xcι(u), and c′ι(u) ≡ dcι(u)/du.
We can proceed further without overcomplicating the expressions if we assume an isotropic elastic

continuum because here we only have two sound speeds, cT (×2) and cL, corresponding to transverse
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and longitudinal polarizations that do not depend on the direction of propagation θ. Moreover, the sum
over transverse polarizations can be evaluated (for an isotropic medium) to

∑
ι=T1,T2

|εxy
ι (u)|2 = 1 + u2, (56)

whereas, for longitudinal polarization, we have

|εxy
L (u)|2 = 1− u2. (57)

The integral over u is now straightforward, as the Dirac delta becomes δ(u− cι′k3/ω). It gives
(in a strictly isotropic elastic continuum)

∑
ι′

∫ 1

−1
du(1− u2)

|εxy
ι′ (u)|

2

c5
ι′(u)

∣∣∣∣∣ c2
ι′(u)

cι′(u)− uc′ι′(u)

∣∣∣∣∣
× δ(u− uι′(k3/ω))

=
1
c4

T

(
1−

(
cTk3

ω

)4
)

Θ
(

1−
∣∣∣∣ cTk3

ω

∣∣∣∣)+
1
c4

L

(
1−

(
cLk3

ω

)2
)2

Θ
(

1−
∣∣∣∣ cLk3

ω

∣∣∣∣)
≡ 1

c4
T

I(k3/ω).

(58)

For physical phonons, the first Heaviside function is always one because ω = cιk =⇒
|cTk3/ω| < 1. To cast everything in terms of dimensionless functions, we can define

A(k3/ω) ≡
∣∣∣∣∣ Γk2

3
mω2 −

(
1 + F

(
k3

ω

))∣∣∣∣∣
2

, (59)

which captures the polarization-independent contribution that depends on k3/ω. We can also
work through the N2b2/(2ρm) factor in the isotropic limit, where N = µ and m = ρb2(1 +

γ−4) ln(δ/δ0)/(4π), giving

(
N2b2

2ρm

)2

= c8
T

(
2π

(1 + γ−4) ln(δ/δ0)

)2
≡ c8

T g2, (60)

where, as before, we have introduced the dimensionless coupling constant g for notational simplicity.
In this form, the cross-sections of a phonon scattering by a single dislocation read

σT(k) =
LcT g2

8ωT(k)
(1− cos4(θ))

I(k3/ωT(k))
A(k3/ωT(k))

(61)

and

σL(k) =
LcT g2

4γ3ωL(k)
sin4(θ)

I(k3/ωL(k))
A(k3/ωL(k))

, (62)

where we have averaged over the two polarizations in the transverse case.

5.2. The Scattering of a Phonon by a Dislocation: Lifetimes

We now turn to the task of estimating the phonon lifetime in thermal transport due to scattering by
dislocations. For simplicity, we shall assume that the elastic continuum is isotropic, and will consider
Λd parallel dislocations per unit area. This is a slightly different calculation to that of the cross-section
because in writing down an equation for the evolution of the expected occupancy of mode (k; ι),
we need to include transition probabilities both from and to any other mode in the theory. Our goal will
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be to calculate the single-mode phonon decay rates τ−1
ι (k), so that they may later be used to compute

the thermal conductivity tensor using the relation [40]

Kij = ∑
ι

∫ d3k
(2π)3

eh̄ωι(k)/kBT(
eh̄ωι(k)/kBT − 1

)2

(
h̄ωι(k)

kBT

)2

kBτι(k)[vι(k)]i[vι(k)]j, (63)

where vι(k) is the phonon velocity of propagation for the mode (k; ι). In a sense, this is a relaxation
time approximation because Equation (63) assumes that all transport phenomena can be described
through a single phonon lifetime τι(k) for each mode separately.

The scattering processes that contribute to this phonon lifetime may be illustrated as in Figure 7:
one of the phonons of mode (k; ι) scatters off the dislocation line, and goes into the mode (k′, ι′). Out of
these individual processes, we want to first determine the rates of transition between the different
modes, and then write down the full lifetime of mode (k; ι) by subtracting the rate at which phonons
are created in this mode with the rate at which they decay.

Figure 7. Diagrammatic illustration of the process that gives the rate at which phonons populating the
mode (k; ι) transition to (k′; ι′).

The derivation of the lifetimes proceeds as follows: since the interaction under consideration
couples an ingoing (k, ι) mode with an outgoing (k′, ι′), the relevant amplitude admits the following
schematic representation in terms of harmonic oscillator ladder operators (a and a′ for the modes (k; ι)

and (k′; ι′), respectively)
〈 f |T1−1a(a′)†|i〉 (64)

with

|i〉 = (a†)N

N!
((a′)†)N′

N′!
|0〉 = |N, N′〉 (65)

and

| f 〉 = (a†)N−1

(N − 1)!
((a′)†)N′+1

(N′ + 1)!
|0〉 = |N − 1, N′ + 1〉, (66)

where T1−1 represents the one-to-one particle transition amplitude: it is essentially a placeholder
for the phonon-to-phonon scattering amplitude in (43). Standard algebra in quantum mechanics
then gives

〈 f |T1−1a(a′)†|i〉 = T1−1

√
N(N′ + 1), (67)

implying that the transition rate is proportional to |T1−1|2N(N′ + 1). Conversely, the rate of transition
from mode (k′, ι′) to (k; ι) is proportional to |T1−1|2N′(N + 1).

Let us stress that, in the above discussion, we have assumed that the transitions of interest involve
only one scattering process at the same time, but, as opposed to what one would do in leading-order
perturbation theory, we keep the full one-to-one phonon interaction amplitude, which accounts for all
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the scattering dynamics of a single phonon. Including simultaneous transition processes is feasible
within the framework presented in this work, but it falls outside the scope of the present approximation,
in which only single-mode lifetimes are considered.

If we now assume the number distribution N can be written as an equilibrium distribution N0

plus a deviation n, i.e., N = N0 + n, then the time derivative of the occupancy of mode (k; ι) is
proportional to

∑
(k′ ;ι′)

|T |2
(
(N + 1)N′ − N(N′ + 1)

)
= |T |2(N′ − N)

= |T |2(n′ − n),
(68)

where we have assumed that the equilibrium distribution N0 is the same for all phonon modes.
This is indeed the case if said equilibrium distribution is the Bose–Einstein distribution. In particular,
if we have Λd parallel dislocations per unit area, this means that the relaxation time for mode (k, ι),
which can be written as τι(k)−1 = −ṅι,k/nι,k, is given by

τι(k)−1 =
Λdvg

ι (k̂)
L ∑

ι′

∫
dΩ

dσιι′

dΩ

(
1− nι′

nι

)
, (69)

where dσιι′/dΩ is given by (53), the differential cross section in vacuum.
In the presence of a temperature gradient, the out-of-equilibrium occupation numbers nι, nι′

should reflect the fact that heat is being transported along a fixed direction. Following the works of
Klemens [9] and Carruthers [16], we use the estimate

nι,k ∝ k̂ · ∇T, (70)

in the spirit that the out-of-equilibrium distribution will imply a heat current in the direction defined by
∇T. We leave the examination of this assumption from a more modern perspective of thermal transport
using linear response coefficients [41] in thermal quantum field theory (as recently suggested [22]) for
future work.

There are two main cases of interest: thermal transport parallel to the dislocation lines and
perpendicular to them. The first case is a direct extension of the cross-sections we computed in the
previous section, as

∇T ‖ ê3 =⇒ nι′

nι
= dι′ ι

cos(θout)

cos(θin)
, (71)

where dιι′ is unity if ι = ι′ (because the proportionality constant in (70) is the same), and a number
to be determined if ι 6= ι′, satisfying dιι′ = (dι′ ι)

−1. Because both k3 and ω are conserved for
transverse-to-transverse as well as for longitudinal-to-longitudinal scattering, in these situations,
this factor is equal to one, and therefore these processes do not contribute to the phonon lifetime.

In principle, transverse to longitudinal and vice versa processes could contribute. Note that,
because both ingoing and outgoing scattering angles satisfy cos θ = k3/|k| = cιk3/ω, the conservation
of k3/ω implies that c−1

ι cos(θ) is also conserved amongst ingoing and outgoing modes. Therefore,

cos θT
cT

=
cos θL

cL
=⇒ γ cos θT = cos θL, (72)

meaning that longitudinal polarization can always scatter to transverse polarization, but for some
angles transversely polarized phonons cannot scatter onto longitudinal modes.

Now comes a crucial observation: since we expect a steady current to be held in place,
a condition which is part of the definition of nι,k, all phonon lifetimes must be positive (if they
were negative, it means that one particular mode continues to receive phonons from another mode
perpetually). Since the kinematics of the phonon-to-phonon scattering process fix the angle of the
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outgoing phonon relative to the dislocation line θ, the quotient cos(θout)/ cos(θin) can be either γ

or 1/γ, and therefore the sign of τι(k)−1 is fixed by 1− nι′/nι. However, because τ−1
ι is positive,

we must have
nT
nL

=
dTL
γ
≤ 1, (73)

for the longitudinal-to-transverse transition ratio, and

nL
nT

= dLTγ ≤ 1 (74)

for the transverse-to-longitudinal ratio. This implies that dTL = γ = d−1
LT because otherwise the

kinematically allowed processes would drive the thermal current out of its steady state.
Therefore, we have that

τ
‖
T(k)

−1 = 0, (75)

τ
‖
L (k)

−1 = 0. (76)

Therefore, thermal transport in the direction parallel to the dislocation can only be impeded by
scattering mechanisms that are not due to dislocations, at least directly.

The other case of interest is to take the temperature gradient perpendicular to the dislocation line.
For definiteness, we take the temperature gradient to be oriented along a line on the ê1 − ê2 plane,
defined by an angle φ∇

∇T ‖ cos(φ∇)ê1 + sin(φ∇)ê2, (77)

so that
k̂′ · ∇T ∝ sin(θ′)

(
cos(φ′) cos(φ∇) + sin(φ′) sin(φ∇)

)
. (78)

with φ′ the azimuthal angle of the outgoing phonon. Now, note that the φ′-dependent piece in (53)
is given entirely by |k̂′lMklε ι′(k′)k|2, which, after a brief inspection, can be shown to involve an even
number of trigonometric functions sin(φ′), cos(φ)′ as factors in the integrand. Since the integral over
a full period of an odd power of trigonometric functions vanishes, we conclude that the nι′/nι term
does not contribute to the phonon lifetime. Therefore, the phonon lifetime for a temperature gradient
perpendicular to the dislocation line is given by τ⊥ι (k)−1 = vg

ι (k̂)Λdσι(k)/L. Explicitly,

τ⊥T (k)−1 =
Λdc2

T g2

8ωT(k)
(1− cos4(θ))

I(cos(θ)/cT)

A(cos(θ)/cT)
, (79)

and

τ⊥L (k)−1 =
Λdc2

T g2

4γ2ωL(k)
sin4(θ)

I(cos(θ)/cL)

A(cos(θ)/cL)
. (80)

Equations (75), (76), (79), and (80) constitute our results for the phonon lifetimes in an isotropic
solid threaded by infinitely long dislocations along the ê3 axis.

This model has one free parameter, given by the short- and long-distance cutoff lengths through
ln(δ/δ0) that appear in the theory when we idealize the dislocation as a string. Equivalently, we can
take g to be the free parameter in this description. All other quantities can be determined from
macroscopic measurements of the elastic continuum, which makes the theory rather appealing in the
sense that it is not overly sensitive to the microscopic constituents of the dislocation line.

5.3. A Comparison with Klemens’ and Carruthers’ Models

At this point, it becomes paramount to compare these results with previous models for phonon
scattering by dislocations. The Carruthers model [16], after several approximations including
considering a simple cubic lattice, and only considering incident phonons perpendicular to the
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dislocation (which is the incident direction of maximum scattering in that model), gives a relaxation
time of

τCarruthers(k)−1 =
1
3
|k|Λdb2G2cs

[
ln
(

b
√

Λd

)]2
, (81)

where G is the Grüneisen parameter, and cs is the average sound speed in the material.
Klemens’ model [9], which historically was introduced earlier, gives

τKlemens
ι (k)−1

strain field ∝ ωι(k)Λdb2G2 (82)

where the proportionality constant is an O(1) number that depends on the ratio of edge and screw
dislocation densities, as well as on the Poisson ratio. This model also provides a phonon-dislocation
scattering contribution from the cores of dislocations, which may be approximated as

τKlemens
ι (k)−1

core = ΛdV4/3
a ωι(k)3/c2

s , (83)

where Va is the volume per atom in the solid. We can now compare these results with our expressions
for the phonon lifetimes, in the case where Λd/L is the number of dislocations per unit of volume
in a highly oriented array (assuming the long dislocations thread the elastic continuum from side to
side).

Let us start by examining the strength of the scattering. Quick inspection of our results (79)–(80)
shows that in our model the phonon lifetime scales as

τ−1 ∝ Λdc2
s ω−1 (84)

at fixed θ, with the other factors being of O(1). The fact that the scattering cross section for phonon
scattering by a dynamically responding, infinitely long, dislocation scales like the inverse of the phonon
frequency goes back to early results of Eshelby and Nabarro [42–44]. The similarities and differences
with Klemens’ and Carruthers’ models are evident at this point:

1. All models (even though Klemens’ and Caurruthers’ results we have shown here do not make
this explicit) have a vanishing phonon decay rate at θ = 0, π, i.e., when the phonon is incident
parallel to the dislocation line, favoring thermal transport in this direction over the others.

2. All models have a linear dependence on the dislocation density, with the observation that
Carruthers’ model has an additional logarithmic sensitivity to the dislocation density because
of how the strain field is modeled. This makes the interaction strength of Carruthers’ model
generically stronger than Klemens’.

3. The other parameters that control the magnitude of the phonon lifetime are cs, the sound speed in
the material, and b, the dislocation’s Burgers vector. Incidentally, our model is insensitive to the
value of the Burgers vector, being only dependent on the macroscopic parameters cs and γ.

4. In stark contrast to what both Klemens’ and Carruthers’ models predict, the phonon lifetime in
our model is larger at smaller frequencies, depending on the phonon energy as ω−1 over the
range of frequencies where the infinite dislocation line approximation holds kL� 1. In particular,
this means that the thermal transport anisotropy induced by dislocations will become stronger at
lower temperatures relative to Carruthers’ and Klemens’ models.

This last point may prove to be crucial in explaining the low-temperature dependence of the
thermal conductivity in a material threaded by dislocations from side to side, as has been recently
observed by Sun et al. in thin InN films [15], an effect that is not captured by earlier models. This will
be explored quantitatively in upcoming work.

5.4. Thermal Transport Anisotropy

Note that one clear advantage of our result is that the angular dependence of the phonon lifetime
on the polar angle θ is explicit, and therefore we can compute estimates for the anisotropy in thermal
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conductivity quantitatively. We proceed in the isotropic case, where we have explicit expressions
for the scattering cross-sections and lifetimes. At each fixed frequency ω, the differential thermal
conductivity tensor dKij, i.e., the contributions that the full thermal conductivity tensor Kij receives
from modes with single-phonon energies of h̄ω, may be used to study the generation of thermal
transport anisotropy at each energy scale. In particular, we can write

dKij ∝ dω ∑
ι

∫
dΩ c2

ι k̂i k̂ jτι(k), (85)

where we have omitted other temperature- and energy-dependent factors. Furthermore, if we use
that τ only depends on the direction of propagation through the angle θ, one gets (now in matricial
notation, where the first two rows/columns correspond to the ê1, ê2 directions and the third to ê3)

dK ∝ dω ∑
ι

c2
ι

∫ π

0
dθ sin(θ)


sin2(θ)

2 τ⊥ι (ω, θ)
sin2(θ)

2 τ⊥ι (ω, θ)

cos2(θ)τ
‖
ι (ω, θ)

 , (86)

in which we have made explicit that the decay rate τ−1 depends only on the phonon energy and on
the angle between the direction of propagation with the dislocation line axis.

With these definitions in hand, we can now calculate the anisotropy ratio rι between differential
thermal conductivities (per unit frequency/energy ω and per polarization mode ι) parallel and
perpendicular to the dislocation line by writing

rι ≡
2
∫ π

0 dθ sin(θ) cos2(θ)τ
‖
ι (ω, θ)∫ π

0 dθ sin3(θ)τ⊥ι (ω, θ)
, (87)

which we shall call a differential anisotropy ratio—DAR, as an estimate of how large is the anisotropy
in heat transport at each energy scale h̄ω. As an alternative definition, the DAR represents the ratio
between the angular-averaged mean free paths for phonon transport parallel to the dislocation line
and perpendicular to the dislocation line, at a fixed single-phonon energy h̄ω and temperature T.
In particular, this DAR can reach arbitrarily large values if thermal transport is unimpeded along the
direction parallel to the dislocation line.

This estimate is most relevant at low temperatures, where intrinsic phonon scattering due
to anharmonicities of the elastic continuum becomes subdominant, and lends itself to carry out
a quantitative comparison between the predictions of our dynamical approach to dislocations and the
static approach of Klemens and Carruthers.

The first thing to notice is that, in our expressions due to scattering by dislocations, τ⊥T and τ⊥L
diverge as∼ 1/θ4 at small polar angles (θ � 1), whereas τ

‖
T and τ

‖
L are formally infinite. This is explicit

when the temperature gradient is parallel to the dislocations, as both (75) and (76) give vanishing
inverse lifetimes. When the temperature gradient is perpendicular to the dislocation lines, one can
see from (80) that τ⊥L ∝ 1/ sin4(θ), and in τ⊥T one needs to inspect the function I(cos(θ)/cT) to see
that an additional factor of (1− cos4 θ) appears in Equation (79). This means that, in the absence of
other scattering mechanisms, both integrals in (87) are infinite because of the kinematic region where
the incident phonon becomes parallel to the dislocation line. Roughly speaking, the cross-section
for phonon scattering along the dislocation line vanishes. Thus, these phonons proceed unimpeded
by dislocations and have an infinite relaxation time. In reality, there are mechanisms, additional to
dislocation scattering, that hamper the motion of phonons along the dislocation lines and they must be
considered for a realistic assessment.

These mechanisms effectively regulate the aforementioned divergence, and leave the result under
quantitative control. Among these mechanisms, we highlight that:
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1. there is always “intrinsic” phonon scattering due to anharmonicities in the elastic continuum,
2. the dislocation lines will usually not be perfectly aligned in a real material,
3. the consideration of finite size effects in the material introduces a boundary scattering contribution.

In what follows, we will assume that we have a perfectly aligned array of dislocations and we
will neglect boundary scattering. Thus, we will only consider intrinsic phonon scattering as the
dominant scattering mechanism, besides the scattering by the dislocations themselves. As noted earlier,
this means that, because intrinsic phonon scattering becomes small at low temperatures, the DAR
that we compute will become arbitrarily large as we decrease the temperature. In this situation,
other impurity scattering mechanisms and boundary scattering will render the DAR finite at all
temperatures in a real material. Nonetheless, the DAR will still become arbitrarily large as a function
of frequency ω when we go to lower and lower phonon energies provided that ω > ω1, with ω1 the
lowest eigenfrequency of the dislon excitations (This behavior breaks down when ω drops below
ω1 = πcdislon/L [17], where L is the length of the dislocation line and cdislon the speed at which “free”
dislons propagate on the dislocation line. As we decrease the frequency of the incident phonon further,
the dislocation line will become a point-like defect from the perspective of the scattering phonons,
giving a vanishing cross-section as ω → 0.) because τ−1

⊥ will be dominated by dynamic dislocation
scattering ∝ 1/ω and therefore in this regime we have τ⊥ ∝ ω.

To combine the different decay rates, we use Matthiessen’s rule, which in our case means that

τtotal
ι (k)−1 = τι(ω, θ)−1 + τintr

ι (ω, T)−1, (88)

which is justified as long as the physical processes controlling each lifetime are independent.
Geometrically, this corresponds to adding the cross-sections of the relevant scattering processes.

Now, we need estimates for the intrinsic phonon lifetime due to elastic anharmonicities. To get
an order of magnitude estimate, we use the following parametrizations [45]:

τintr
T (ω, T)−1 = BT ×ωT4 + BTU ×ω2Te−CT/T , (89)

τintr
L (ω, T)−1 = BL ×ω2T3 + BLU ×ω2Te−CL/T . (90)

As a working example, we use the values reported by Asen-Palmer et al. [45] for Germanium
crystals: BT = 2× 10−13 K−4, BL = 2× 10−21 s ·K−3, BTU = 1× 10−19 s, BLU = 5× 10−19 s, CT = 55 K,
and CL = 180 K. In addition, we use cT = 3000 m/s.

We present results for the differential anisotropy ratios rT and rL at various frequencies ω as
a function of temperature T in Figure 8 (upper panels), and at various dislocation densities Λd in
Figure 9. We chose γ = 2 and g = 3 as representative values for the plots. Overall, the anisotropy
ratios grow as the temperature of the medium or the frequency of the incident phonons are lowered,
and also grow when the dislocation density is increased, as one would qualitatively expect from the
form of our phonon lifetimes. We note that the anisotropy ratio is greater for the transverse modes of
phonons than for longitudinal polarization; this can be attributed to (i) that longitudinally-polarized
phonons can scatter with the dislocation even if their angle of incidence is arbitrarily close to being
parallel to the dislocation (with the cross section vanishing only in the strict case θ = 0), making the
anisotropy relatively smaller, and (ii) that their decay rate from intrinsic phonon scattering processes is
larger, thus needing a larger phonon-dislocation cross-section for this process to be relevant.

To compare with Klemens’ and Carruthers’ models, we note that the inverse phonon lifetimes
of both models are linear on the incident phonon energy, and therefore, qualitatively (up to a factor
independent of ω), they exhibit the same behavior in the anisotropy ratios. Thus, we take Klemens’
model as a point of comparison, taking τ−1 = ωΛdb2G2 for both polarizations. For simplicity,
we will also assume that the phonon lifetimes in the presence of a temperature gradient parallel to
the dislocation line in this model are negligible. This should provide a conservative benchmark with
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which to decide whether the model developed herein can explain large anisotropy ratios in thermal
conductivities convincingly.
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Figure 8. Differential anisotropy ratio rι as a function of temperature T for different frequencies ω.
Upper panels: Present work, based on a dynamical response of dislocations to phonons. Lower panels:
Klemens model, based on a static response of dislocations to phonons. Left-hand-side panels:
Transverse polarization. Right-hand-side panels: Longitudinal polarization. The plots were calculated
for γ = 2, g = 3, G = 2, b = 3.5× 10−10 m, a dislocation density of Λd = 1014 m−2, and the intrinsic
phonon lifetimes parametrizations of Ge [45]. There is a significantly different anisotropy as a function
of frequency between the dynamic and static cases, particularly for transverse polarization.

We present plots for rT , rL in Klemens’ model for phonon scattering in Figure 8 (lower panels).
Comparing with their homologous plots in the upper panels of Figure 8, we see that, while the curves
are similar for ω ∼ 1 THz, the curves of the anisotropy ratios for other frequencies are much closer
to each other in Klemens’ model than in ours. This is so precisely because of the different frequency
dependence in Klemens’ model than in ours: since the phonon decay rate in Carruthers’ and Klemens’
models is linear in frequency, the anisotropy, which is generated by the difference in relative size
between τ−1

dislocation and τ−1
intrinsic, is less sensitive to changes in the incident phonon frequency than

in our model because both decay rates grow with ω. In contrast to this linear growth in frequency,
in our model, the phonon lifetime due to scattering by dislocations decreases as ω−1 with increasing
frequency. Consequently, this makes the differential anisotropy ratio more sensitive to variations in
the frequency than in Carruthers’ or Klemens’ models.

Figure 9 displays the same differential anisotropy ratios rT and rL, but this time at fixed frequency
and varying dislocation density. Unlike the frequency dependence of the anisotropies, which was
bound to be different because of the distinct form of the phonon lifetimes in ours and Klemens’ models,
their dependence on the dislocation density, illustrated by the distance between the different lines in
each plot in Figure 9 for the two models, is not so different because all of the lifetimes depend linearly
on the dislocation density Λd; only the overall strength of the scattering differs.

The above considerations make our model particularly promising in future attempts to explain
large thermal conductivity anisotropies as the temperature is lowered from room temperature to∼50 K
because, at lower temperatures, the phonon frequencies/wavenumbers that mainly contribute to the
bulk thermal conductivity of an elastic continuum are also smaller. Correspondingly, the differential
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anisotropy ratios rι will grow faster in the presently considered model than in Carruthers’ or Klemens’
models, precisely because the phonon decay rate due to dislocations goes as an inverse power of the
frequency instead of linearly.
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Figure 9. Differential anisotropy ratio rι as a function of temperature T for different dislocation
densities Λd. Upper panels: Present work, based on a dynamical response of dislocations to phonons.
Lower panels: Klemens model, based on a static response of dislocations to phonons. Left panels:
Transverse polarization at ω = 4 THz. Right panels: Longitudinal polarization at ω = 1 THz. The plots
were calculated for γ = 2, g = 3, G = 2, b = 3.5 × 10−10 m, and the intrinsic phonon lifetime
parametrizations of Ge [45]. There is no significant difference between the behavior of the static and
dynamic dislocations other than the overall strength of the scattering.

Finally, we wish to stress that the effects of scattering by long, dynamic dislocations can be of
great relevance for thermal transport at low temperatures, where they provide the dominant scattering
mechanism for phonons that propagate perpendicularly to the dislocation lines. Given that other
imperfection scattering mechanisms (such as point-like defects, or possibly static dislocations as
in Klemens’ or Carruthers’ models) will usually give contributions to the phonon decay rate that
are increasing functions of frequency ω that vanish at ω = 0, and as long as the dislocations are
sufficiently elongated so that the typical incident phonon energy is larger than the lowest dislon
eigenfrequency ω1 [17], and therefore that the phonon decay rate scales as 1/ω, the thermal transport
anisotropy will be controlled purely by the ratio between scattering by dislocations and boundary
scattering, of which the latter depends only on the phonon speed of propagation and the spatial
extent of the material. Therefore, experimental studies of thermal conductivity in materials with long,
highly-oriented dislocation arrays at low temperatures should provide a decisive test of the dynamic
theory of the DPI.

6. Conclusions

We have considered a quantum theory of the dynamical modes of an infinitely long dislocation
line, modeled as an elastic string, in interaction with phonons, which are the relevant quantum degrees
of freedom at small deformations, in a continuous, homogeneous, elastic medium. The formalism
holds for anisotropic media, and we have presented specific results when the medium is homogeneous.
The interaction is through the well-known Peach–Koehler force exerted by a stress on a dislocation
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line. The quantum interaction depends on a dimensionless coupling constant that depends itself
on a short-distance cutoff length at which the continuum theory ceases to be valid, and the theory
is solved to all orders in said constant. Only small excursions of the dislocation line away from its
equilibrium position are, however, allowed so that the interaction is quadratic. The behavior of the
quanta of dislocation motion (“dislons”) is obtained, and it is revealed that there can be both unstable
as well as stable dislons, depending on the strength of the coupling constant. From this information,
it is possible to estimate the phonon contribution to the internal damping of dislocation motion when
they are treated as classical (i.e., non quantum) strings, revealing a linear-in-frequency dependence for
said damping. Equivalently, this dissipative term could be interpreted as a complex contribution to the
“dislon” sound speed for the modes propagating on the string. The scattering cross-section for phonons
by dislocations is obtained as an explicit function of phonon polarization, angle of incidence and
frequency. In the infinite length approximation, we have considered that its dependence on frequency
ω becomes rather simple: it behaves as ω−1.

The contribution to the scattering of phonons by dynamic dislocations is considered, especially in
comparison with the classical models of phonon scattering by static dislocations of Klemens and
Carruthers. In the case of a solid threaded by many parallel dislocations, we consider the ratio
between the thermal conductivity per unit frequency for each polarization, in a direction parallel
and perpendicular to the dislocation orientation (“differential anisotropy ratio”—DAR), as a function
of temperature. Dynamic dislocations yield a DAR that is considerably more sensitive to frequency
than static dislocations, raising the possibility of a quantitative understanding of recent experimental
results on dislocation-induced thermal transport anisotropy because low-energy phonons are more
susceptible to scattering than in previous models [9,16], and therefore it is possible to have a larger
anisotropy at low temperatures.

We have used a continuum approximation. For the measurements of Sun et al. [15], where the
dislocations are one micron in length, this seems a very good approximation. More generally,
dislocations typically have lengths in the ten to one hundred nanometer range, where a continuum
approach should provide a useful approximation as well. As mentioned in the body of the paper,
and implemented explicitly through Equations (6) and (7), the theory has only one undetermined
dimensionless parameter, the ratio of a long-distance to a short-distance cutoff length. Thus, it should
be applicable to any crystalline material, irrespective of its microscopic structure, down to length
scales of a few interatomic spacings. The other parameters that appear in the formulation we have
employed are the mass density and elastic constants, and they are determined from the bulk properties.
The Burgers vector, while it appears in the parameters characterizing a dislocation, cancels out in the
phonon–dislon interaction, as a consequence of this interaction being completely determined by the
elastic properties of the material. To repeat, while dislocations have historically played a dominant
role in the plasticity properties of metal and alloys, the continuum approach we have employed in this
paper should apply to other materials as well.

We have set up the description of quantum dislocation segments in a quantum field theory
framework, which is well suited to include more particles and interactions (such as electrons) in a more
complete description of a solid with a large dislocation density. Even though some of the results herein
do not depend explicitly on h̄, and therefore could be in principle obtained from an appropriate classical
field description, the fundamentally quantum nature of phonons and the length scales involved in
forming a dislocation beg for a low-energy quantum-mechanical description, which we have developed
through this and earlier work [17]. Some purely quantum effects, such as phonon-mediated energy
level transitions in a string-like dislocation line are more easily displayed when the dislocation segment
is finite and cubic phonon–dislon interactions are considered, although the same transitions are possible
in the presently discussed infinite dislocation segments. However, the experimental verification of such
features would require a remarkable feat of dislocation engineering in order to be able to isolate the
resulting signal and unequivocally attribute a discrete change in the energy of the probe to a specific
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transition inside the material. A theoretical derivation of a more robust signal that is unequivocally
due to the quantum nature of dislocations is also a concrete long-term goal of this description.

A number of possible generalizations of the results presented in this paper suggest themselves:
It should be possible to compute the effect of the third order phonon–dislon interactions, and bring
in three-phonon terms. Another direction would be to replace the continuum description with
a lattice. Describing phonons in a lattice is standard practice, but the description of dislons, and the
corresponding coupling to phonons, would need some care. In addition, the interaction with screw
dislocations, rather than edge dislocations as carried out in this work, should be straightforward.
A specialization, rather than a generalization, would be to consider a two-dimensional lattice,
where dislocations are point defects. This would make their description much simpler and would
probably be of relevance for the study of two-dimensional materials [46–48].

Finally, we wish to emphasize that the formalism that has been employed in this work,
in conjunction with recent previous results [17], is amenable to extensions to include anisotropy,
as well as boundary effects that should make the model suitable for quantitative comparison with
experimental data.
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Appendix A. Features of the Dislon Dispersion Relation

Appendix A.1. Dislons as Particles: Evanescent and Propagating Modes

To find the modes of propagation for dislons as point-like particles, we can use the “usual” on-shell
condition to find the physically-propagating modes S−1 = 0, even with the explicit non-analytic
expressions (39), (40), provided they are analytically-continued for arbitrary complex numbers x by
re-deriving the result from (38). For simplicity, we proceed in the isotropic case, although we note that
calculating the expressions from (38) numerically is straightforward in the general, anisotropic, case.

In the isotropic case, this continuation is given by

F(x) =
g

4π

[
1
2
+

3
2γ4 +

(
1− 1

γ2

)
c2

Tx2 − (1− c4
Tx4) ln

(
c2

Tx2 − 1− iε
c2

Tx2 − iε

)

−
(1− γ2c2

Tx2)2

γ4 ln

(
γ2c2

Tx2 − 1− iε
γ2c2

Tx2 − iε

)]
,

(A1)

where, for notational simplicity, we have introduced a dimensionless coupling constant g to replace
the role of the logarithm ln(δ/δ0):

g ≡ 4π

2(1 + γ−4) ln(δ/δ0)
. (A2)

We must now find solutions to

2(1− γ−2)

1 + γ−4 c2
Tx2 −

(
1 + F(x)

)
= 0, (A3)
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which can be searched for in terms of the dimensionless variable z ≡ cTx. Note that, in this setup,
z = cTκ/ω, and, consequently, we will have a dispersion relation given by

κ(ω) = z(g, γ)
ω

cT
, (A4)

meaning that the imaginary part of z will determine the “attenuation length” of dislons at a fixed
frequency as they propagate along the string. Conversely, one can define a dislon “lifetime” by writing
ω(κ) and looking at the imaginary part of z−1.

However, upon a closer look, one finds a surprise as one “turns on” g from zero: if one
examines the function F, one sees that its imaginary part is nonzero around the “free” dispersion
relation ω = ±κ

√
Γ/m, meaning the solution is no longer on the real z-axis. Moreover, the real z2

axis with 0 < z2 < 1 is precisely the branch cut of the logarithms in (A1), meaning its imaginary
part is discontinuous “above” and “below” this line (this is unambiguous if one refers to (38)).
Numerical analysis then shows that the propagating solution on the real z2 axis in fact disappears for
small (but nonzero) g, leaving the mentioned branch cut singularity in its place.

It turns out that the solutions to (A3) are found for negative z2 as we increase g from 0: this can
happen if F becomes more and more negative as z2 approaches zero from the negative real z2 axis.
This is indeed the case: for negative z2, F is a monotonously decreasing function of z2, starting from
F → 0 as z2 → −∞ until it diverges when z2 → 0. Therefore, for arbitrary positive g, there exists
a solution to S−1 = 0 with negative z2, which means that the proportionality constant between ω and
κ is a purely imaginary number. These are evanescent waves, meaning that the excitations of the string
(dislons) will always decay into phonons in a characteristic lifetime. The lifetime of these modes is
given by

tdislon(κ) = |zeva|(g)(cTκ)−1, (A5)

where |zeva|, the value of |z| associated with these evanescent waves, can be calculated numerically;
it can take any value between 0 and ∞ as a monotonously increasing function of g.

Nonetheless, if we increase the value of g sufficiently, then propagating solutions at real z2 > 1
do re-appear. These are no longer affected by the branch cut, as the logarithms are real functions
in this domain because these states can no longer decay directly into physical phonons due to
energy-momentum conservation. The critical value of g so that these solutions appear is defined by
the equation

g > gc ≡
4π

(
2(1− γ−2)

1 + γ−4 − 1
)

3
2
− 1

γ2 +
3

2γ4 −
(1− γ2)2

γ4 ln
(

γ2 − 1
γ2

) . (A6)

For instance, if γ = 2, one finds gc ≈ 3.44.
Above this value of g, we will find propagating solutions for dislons that travel with

a “renormalized” speed
cdislon = |zprop|−1(g)cT , (A7)

where |zprop| is the positive solution for z to (A3). As in the evanescent case, |zprop| is a monotonously
increasing function of g, and can become arbitrarily large as g→ ∞, meaning that the speed at which
these modes propagate can become arbitrarily small, and thus even relatively short-wavelength dislon
excitations become low-energy particles in the theory. Therefore, in the large g limit, there can be
a great number of excited dislon modes that cannot decay into physical phonons, and only serve as
intermediate states in the quantum-mechanical path integral that represents the scattering amplitude of
phonons. Indeed, unless additional couplings are introduced in the theory, these modes will effectively
be decoupled from the rest of the theory.
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We must note, however, that, from a microscopical perspective, g cannot be arbitrarily large, as it
is related to the logarithm of a division of cut-offs. At most, we could expect g ∼ 10 if the cutoffs are
related by δ ∼ 2δ0.

Appendix A.2. Resonances in the Dislon Propagator

While, as mentioned in the main text, resonances become ambiguous in the strong-coupled
limit g � 1, further discussion of resonances makes perfect sense in the small g2 limit. In this limit,
the dislon self-energy is negligible except for the (small) cut-off it provides to the on-shell divergence
of the free dislon propagator. The peak will be located at an incidence angle to the dislocation of
cos2 θp = (cιk3/ω)2 = c2

ι m/Γ. For transverse incident polarization, this corresponds to

cos2 θp,T =
1 + γ−4

2(1− γ−2)
>

1
2

, (A8)

which means that the cross-section will peak at a direction that is closer to ê3 than to either ê1 or ê2.
Presumably, this would give a larger thermal conductivity perpendicular to the dislocation line.

This is disfavored by experiments [15], and, moreover, it is physically suspect from the microscopic
point of view, where we would need a large value of ln(δ/δ0). This is not a sensible limit because it
requires δ to be many orders of magnitude greater than δ0, and, from the microscopic point of view,
we expect (at most) 2–3 orders of magnitude (corresponding to ln(δ/δ0) ∼ 8 as an upper bound).

For completeness, we note that, for longitudinal incident polarization, the peak would be at
angles corresponding to

cos2 θp,L = γ2 1 + γ−4

2(1− γ−2)
> 1, (A9)

which is geometrically impossible to attain. Only at the lowest possible value of γ, with λ � µ,
one might be able to observe a resonance in the limit where the incident phonon is collinear to the
dislocation line.

The other limit, g � 1, shows no resonances in the scattering cross-section, as the imaginary
and real parts of F never approach zero simultaneously (at least in the isotropic case; see Figure 5).
In contrast, this limit leads to a suppression of the scattering amplitude when the incident phonon
becomes perpendicular to the dislocation line because the function F(x) diverges logarithmically
as x → 0.

This last particularity is due to the fact that the dislocation segment under consideration is infinite,
but pinned in its endpoints. The infinity of its extension implies an extra symmetry, which then
gives momentum conservation. Then, scattering of phonons with k3 = 0 by the dislocation line
should excite the κ = 0 mode of the string, which would correspond to a uniform translation.
However, this excitation is not possible because the dislocation is pinned: the boundary conditions
of the theory forbid such a process. In contrast to this, a finite dislocation segment does not imply
a vanishing phonon cross-section at x = 0 because k3 need not be conserved, and, as such, other modes
(with nonzero wavenumber) can be excited on the string.

Appendix B. Thermal Equilibrium

As a check on the consistency of the formalism, we verify that the previous coupling automatically
provides a mechanism with which phonons and dislons, the excitations on the dislocation line,
reach thermal equilibrium.

Let us consider a single dislocation inside of a solid set in an environment at temperature T.
Far away from the dislocation, the expectation value for the number of phonons is given by the
Bose–Einstein distribution

〈nk,ι〉 =
1

eh̄ωι(k)/kBT − 1
, (A10)
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which in turn sources the states that will later scatter with the dislocation line. In thermal equilibrium,
therefore, we expect that the dislon distribution fd at wavenumber κ be such that the rate at which
a dislocation mode decays, denoted by Pd−decay(κ), is related to the probability per unit of time of
a phonon being “absorbed” into a dislocation excitation Pph→d by:

Pd−decay(κ) fd(κ, T) = ∑
ι

∫
k

Pph→d(k, ι; κ)

eh̄ωι(k)/kBT − 1
. (A11)

However, dislons decay precisely into phonons through rates Pd→ph that satisfy

Pd−decay(κ) = ∑
ι

∫
k

Pd→ph(κ; k, ι), (A12)

and, moreover, both processes (ph→ d and vice versa) must contain δ(ωι(k)−ωκ) as an overall factor.
This implies that (A11) is actually

fd(κ, T)∑
ι

∫
dΩPd→ph(κ; ωκ/cι(k̂), ι)

=
1

eh̄ωκ/kBT − 1 ∑
ι

∫
dΩPph→d(k̂ωκ/cι(k̂), ι; κ)

, (A13)

and therefore, because the amplitudes that give rise to both probabilities/rates of decay under the
angular integral sign (Pd→ph and Pph→d) have the same absolute value (they are mapped onto each
other by time reversal, which is a symmetry of this model), we find

fd(κ, T) =
1

eh̄ωκ/kBT − 1
. (A14)

This implies that, if the solid is in an environment with temperature T, then the modes of the
strings (dislocations) will also feel the same temperature.
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