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More than 95% of Alzheimer’s disease (AD) belongs to sporadic AD (sAD), and related

animal models are the important research tools for investigating the pathogenesis and

developing new drugs for sAD. An intracerebroventricular infusion of streptozotocin

(ICV-STZ) is commonly employed to generate sporadic AD animal model. Moreover, the

potential impact of sex on brain function is now emphasized in the field of AD. However,

whether sex differences exist in AD animal models remains unknown. Here we reported

that ICV-STZ remarkably resulted in learning and memory impairment in the Sprague-

Dawley male rats, but not in the female rats. We also found tau hyperphosphorylation,

an increase of Aβ40/42 as well as increase in both GSK-3β and BACE1 activities, while a

loss of dendritic and synaptic plasticity was observed in the male STZ rats. However, STZ

did not induce above alterations in the female rats. Furthermore, estradiol levels of serum

and hippocampus of female rats were much higher than that of male rats. In conclusion,

sex differences exist in this sporadic AD animal model (Sprague-Dawley rats induced by

STZ), and this should be considered in future AD research.

Keywords: Alzheimer’s disease (AD), animal model, Streptozotocin (STZ), sex differences, learning and memory

INTRODUCTION

Alzheimer’s disease (AD) is one of themost common neurodegenerative diseases, affecting about 35
million people all over the world. And its prevalence is expected to reach 115million by 2050 due to
aggravating trend of aging population, unless there are available treatments that can prevent or cure
this disease (Mangialasche et al., 2010). Therefore, an appropriate animal model is an important
research tool for finding valid AD treatments. Yet, over the last 20 years, many of the potential
drugs that target tau and Aβ, the two hallmarks of AD, failed in clinical trials, though some of
treatments were effective in AD animal models (Zahs and Ashe, 2010; Shineman et al., 2011; Hall
and Roberson, 2012). Thus, it is crucial to re-evaluate the existing animal models of AD.

AD exists mainly in two forms: familial (fAD) and sporadic (sAD). More than 95% of cases
belong to sAD, for which aging and metabolic disorders are the main non-genetic risk factors
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(Kloppenborg et al., 2008). Intracerebroventricular
streptozotocin (ICV-STZ) injection produces cognitive
deficits in rats, as well as cholinergic dysfunction, tau
hyperphosphorylation, insulin receptor dysfunction, impaired
energy metabolism, and oxidative stress (Hong and Lee, 1997;
Prickaerts et al., 1999; Salkovic-Petrisic and Hoyer, 2007; Deng
et al., 2009). These changes are similar to those observed in
the brain of patients with sporadic AD. Therefore, ICV-STZ
treated rats have been proposed as a research model of sAD
(Lannert and Hoyer, 1998; Mehla et al., 2013). Meanwhile,
ICV-STZ animal model has been used to evaluate the therapeutic
potential of numerous old and novel drugs and compounds,
as well as other non-drug therapies (Jee et al., 2008; Rodrigues
et al., 2010; Salkovic-Petrisic et al., 2013). Nevertheless, although
effectiveness of the therapeutic strategies has been proved
in ICV-STZ model, the therapies failed to achieve similar
therapeutic effects on learning and memory deficits in sAD
clinical trials, like those with NSAIDs and PPAR agonists or
vitamin E and Ginkgo biloba (Woo, 2000; Salkovic-Petrisic et al.,
2013; Dysken et al., 2014; Malkki, 2016; Prasad, 2017; Wightman,
2017). Thus, it is necessary to characterize and re-evaluate the
ICV-STZ animal model.

Accumulating evidence indicates that there are some
differences in structure, development, enzyme activity, and
chemistry of the central nervous system (CNS) between female
and male mammals (Becker et al., 2005; Cahill, 2006; McCarthy,
2009; Raznahan et al., 2010; Ruigrok et al., 2014; Forger et al.,
2016). AD is one of major chronic neurodegenerative disorders
that is histopathologically characterized by the intracellular
neurofibrillary tangles (NFTs) that are composed of abnormally
hyperphosphorylated tau and extracellular senile plaques that
are accumulated of insoluble β-amyloid (Aβ), which result in a
progressive cognitive impairment (Grundke-Iqbal et al., 1986;
Alafuzoff et al., 1987). Although, it has been reported that ICV-
STZ induces AD-like pathological changes, however, whether
ICV STZ-induced sporadic AD in animal model is stable and
universal in different sexes has not been reported. Here, we found
that ICV-STZ remarkably induced AD-like pathological changes,
including impaired learning and memory capacities; loss of
dendritic and synaptic plasticity; tau hyperphosphorylation;
increase in Aβ40/42 and increase in both GSK-3β and BACE1
activities in the male but not female STZ treated rats. Our
study implies that sex difference should be taken into account
during experiments design, results interpretation and drawing
conclusions in AD research.

MATERIALS AND METHODS

Chemicals and Antibodies
STZ was from Sigma (Sigma, St. Louis, MO, USA). Antibodies
employed in this study are listed in Supplementary Table 1.

Animal Experiments
Two-month-old male (n = 24) and female (n = 24) Sprague-
Dawley (SD) rats were provided by the Experiment Animal
Center of Tongji Medical College, Huazhong University of
Science and Technology. All animal experiments were performed
according to the “Policies on the Use of Animals and Humans

in Neuroscience Research” approved by Society for Neuroscience
in 1995 and approved by the Experiment Animal Center of
Tongji Medical College, Huazhong University of Science and
Technology. The animals were individually housed in cages
(house temperature 24◦C, controlled humidity 40% and 12/12 h
inverted light cycle) with free access to water and food.

STZ, soluble in artificial cerebrospinal fluid (aCSF), was
injected slowly (1 µl/min) into the ventriculus lateralis cerebri
of rats (10 µl, 3 mg/kg). Control animals were identically treated
with the same volume of aCSF. After 30 days, morris water maze
was employed to train and test spatial learning and memory.
After this procedure which lasted for 7 days, mice were sacrificed
and other tests were proceeded (Supplementary Figure 1).

Morris Water Maze Assay
The water maze used was a circular, steel pool (1.6m in diameter)
that was filled with black water (temperature 25◦C) that was non-
toxic and contrast to rat. A black-colored, circular platform (12
cm in diameter) was placed below the water surface at a specific
location. Distinctive visual cues were stuck to the wall. For spatial
training, rats were subjected to 4 trials each day from 2:00 to 5:00
p.m. The training was lasted 6 days and 24 trials were given to
every rat. For each trial, the rat was placed at different starting
position spaced equally around the perimeter of the pool. Rats
were allowed to find the submerged platformwithin 60 s. If the rat
could not find the hidden platform, it was then gently guided to
the platform and allowed to stay there for 30 s. The time that each
rat took to reach the platform was recorded as the escape latency.
For the probe trial test, rats were submitted to the same pool with
the platform removed and a probe trial of 60 s was given. The
number of crossings and the time in the target quadrant were
recorded.

Western Blotting
The protocol was performed as previously described (Xu et al.,
2014). Four left hippocampus per group for Western blotting.
Hippocampi were rapidly dissected out and homogenized in
a buffer containing NaF 50mM, Tris-Cl (pH 7.6) 10mM,
1mM EDTA, 1mM Na3VO4, 1mM benzamidine, and 1mM
phenylmethylsulfonylfluoride (PMSF), 10 g/ml leupeptin, and 2
g/ml each of pepstatin A and aprotinin. The homogenates were
added to one-third of sample buffer containing 200mMTris-HCl
(pH 7.6), 8% sodium dodecyl sulfate, and 40% glycerol, boiled in a
water bath for 10min, and then centrifuged at 14,510 r for 10min.
Protein concentration of the supernatants were measured by the
bicinchoninic acid Protein Assay Kit (Pierce, Rockford, IL, USA).
Ten micrograms of protein for DMIA and pS396 antibodies,
20 µg protein for other antibodies, were loaded and separated
by SDS-polyacrylamide gel electrophoresis (10% gel), and then
transferred to a nitrocellulose membrane. After blocking in
3% non-fat milk for 1 h, the nitrocellulose membranes were
incubated with primary antibodies at 4◦C overnight. The
membranes were then incubated with secondary antibodies
conjugated to IRDye (800CW) for 1–2 h and visualized using the
Odyssey Infrared Imaging System (LI-Cor Biosciences, Lincoln,
NE, USA). Image J software was employed for the quantitative
analysis of the western blots.
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Golgi Staining
The Golgi staining protocol was performed as previously
described (Morest, 1960). Three per group were used for Golgi
Staining. The rats were anesthetized with 6% chloral hydrate
and perfused with 300ml of normal saline containing 0.5%
sodium nitrite, followed by 400ml of 4% formaldehyde solution
and further by ∼400ml dying solution (4% formaldehyde, 5%
potassium dichromate, and 5% chloral hydrate) for 5 h in the
dark. The brains were removed and incubated in the same fixative
in the dark. After 3 days, the brains were transferred to a solution
containing 1% silver nitrate for 3 days in the dark. The silver
solution was changed each day. Thirty-five micrometers of thick
coronal brain sections were cut using a vibrating microtome
(Leica, VT1000S, Germany).

Immunofluorescence
Three per group were used for Immunofluorescence Staining.
The anesthetized rats were immediately perfused through the
aorta with 300ml normal saline, followed by a 300ml solution
containing 4% paraformaldehyde. The brains were dissected and
post-fixed in 4% paraformaldehyde for another 48 h. Coronal
sections (30µm thick) were cut using a vibrating microtome.
After incubation in 0.3% Triton-X100-PBS for 30min at room
temperature, free floating sections were blocked with 5% goat
serum in PBS for 45min at room temperature. Sections were then
incubated overnight at 4◦C with primary antibodies: polyclonal
anti-MAP2 antibodies obtained from Abcam, (dilution 1:200,
Cambridge, MA, USA). This was followed by incubation with
secondary antibodies for 2 h at room temperature. The antibody
staining was semi-quantitated by mean fluorescence intensities
(MFIs) with Image J software.

BACE1 Enzymatic Assay
The protocol was performed as previously described (Qi et al.,
2016). Five right hippocampus per group for the assay. Beta-
secretase activity was monitored using a commercial kit, from
Abnova (Neihu District, Taipei City 114 Taiwan) according to the
manufacturer instructions and using a multi-well fluorescence
plate reader capable of Ex= 335–355 nm and Em= 495–510 nm.
In briefly, 50 µl of 4 µg/µl hippocampus lysate was added to a
96-well plate. Fifty microliters of 2×reaction buffer were added,
followed by 2 µl of β-secretase substrate. The reaction mixtures
were incubating for 1 h in the dark. Fluorescence was monitored
at excitation wave (wavelength = 334–355 nm) and emission
wave (emission wavelength = 490–510 nm). β-secretase activity
can be expressed as the Relative Fluorescence Units (RFU) per
µg of protein sample.

ELISA Quantification of Aβ
The protocol was performed as previously described (Zhang
et al., 2015). Five right hippocampus per group for the Elisa
assay. To detect the concentration of Aβ in hippocampi lysates,
the rat hippocampi were homogenized in buffer (PBS with
5% BSA and 0.03% Tween-20, supplemented with protease
inhibitor cocktail), and centrifuged at 16,000 g for 20min. Aβ1-
40 or Aβ1-42 was quantified using the rats Aβ1-40 or Aβ1-
42 ELISA Kit (Elabscience, Wuhan, China) in accordance with

the manufacturer’s instructions. The Aβ concentrations were
determined by comparison with the standard curve.

ELISA Quantification of Estradiol
Three right hippocampus per group for the assay. To measure
the levels of estradiol in hippocampi lysates and serum, the rat
hippocampi were homogenized in 1× PBS and blood is obtained
from the orbital vessels, then centrifuged at 1,500 r for 20min.
Estradiol was quantified using the rat estradiol ELISA Kit (CZVV,
Nanjing, China). The results were expressed in ng/L.

Statistical Analysis
Data are descriptively presented as means ± SD and analyzed
by SPSS 17.0. Statistical analysis was performed using either
Student’s t-test (two-group comparison) for behavior test,
dendritic plasticity, Western blot, enzymatic activity. For the
levels of estradiol in serum and hippocampus, we firstly
performed a descriptive analysis in Supplementary Tables 2, 3,
and then a Shapiro–wilk test for a normal distribution of the
samples from four group, finally a general linear model to be
used for two-way ANOVA followed by post-hoc comparison, and
differences with P < 0.05 were considered significant.

RESULTS

Sex Influences Spatial Learning and
Memory Deficits in Sporadic AD Animal
Model Induced by ICV-STZ
A study showed that a significant cognitive impairment was
evoked at the 2nd week onwards, which persisted up to the
14th week with ICV-STZ (3 mg/kg) in rats (Mehla et al., 2013).
To investigate whether sex differences exist in cognitive deficits
induced by STZ, in the present study, we performed morris water
maze to evaluate the memory and learning abilities of rats 30
days after ICV-STZ treatment. For male rats, we found that the
escape latency to find a hidden platform dramatically increased
while the traversing times and the time in the target quadrant
were significantly decreased at the 7th day in ICV-STZ rats when
compared to vehicle control (Figures 1A–C). This confirmed that
ICV-STZ induced learning and memory deficits in male rats. For
female rats, to our surprise, we failed to observe any learning
and/or memory deficits. The latency to find the hidden platform,
the crossing numbers and time spent in the target quadrant
also did not change in female rats (Figures 1E–G). Both groups
in male or female rats exhibited comparable swimming speed
(Figures 1D,H), indicating that motor function was not affected.
Altogether, the findings suggest that ICV-STZ injection induces
cognitive impairments in male but not female rats.

Sex Influences Loss of Dendritic and
Synaptic Plasticity in the Sporadic AD
Animal Model Induced by ICV-STZ
Dendrite complexity (Li et al., 2008) and synaptic plasticity (Kasai
et al., 2010) are neurobiological basis for learning and memory.
We determined the effect of ICV-STZ on neuronal integrity,
by examining levels of the dendritic marker MAP2. For male
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FIGURE 1 | Sex influences spatial learning and memory deficits in sporadic AD animal model induced by ICV-STZ. (A,E) Escape latencies to find the hidden platform

for male or female rats. (B,F) The time spent in the target quadrant and (C,G) the crossed times after removing the platform. (D,H) The speed of male or female rats.

Males are top figures (A–D), females bottom figures (E–H). The data were expressed as mean ± SD (n = 12). ***P < 0.001 vs. the vehicle control. Data were analyzed

using t-test. *P < 0.05 vs. the vehicle control.

rats, the semi quantitative results showed a strongly reduced
mean fluorescence intensities (MFIs) of MAP2 immunoreactivity
in the pyramidal neurons of CA1 region of the hippocampus
in ICV-STZ rats compared to vehicle control (Figures 2A,B).
However, in female rats, MAP2 immunoreactivity showed that
ICV-STZ had no effect on dendritic number compared to control
(Figures 2A,C). We also examined alterations in dendritic spines
using Golgi staining. Mushroom-type spines in the CA1 of ICV-
STZ treated male rats decreased remarkably compared to control
(Figures 2D,E), but the number of mushroom-type dendritic
spines were not altered in the ICV-STZ treated female rats
compared to control (Figures 2D,F).

Normal synaptic function is contingent upon the stable
expression of synaptic proteins. Therefore, we evaluated several
key synapse-associated proteins using Western blotting. ICV-
STZ treatment remarkably suppressed the expressions of
presynaptic synapsin I, synaptagmin and postsynaptic PSD95,
PSD93, NR2A, and NR2B in male rats (Figures 3A,B).
Nonetheless, there is no any significant difference between
vehicle and ICV-STZ treated female rats (Figures 3C,D). These
data demonstrate that ICV-STZ induces loss of dendritic and
synaptic plasticity in male, but not in female rats.

Sex Influences Tau Hyperphosphorylation
and GSK-3β Activity in the Sporadic AD
Animal Model Induced by ICV-STZ
Abnormal hyperphosphorylation and accumulation of Tau
play a key role in AD pathology (Wang and Liu, 2008),
and hyperphosphorylated tau causes dendritic loss and
neurodegeneration (Wang et al., 2010). In addition, ICV-STZ
treatment induces tau hyperphosphorylation in rats (Zhou et al.,
2013). In this study, we also explored whether ICV-STZ induces
tau hyperphosphorylation in male or female rats, respectively.

We detected a significantly increasing tau phosphorylation
at the Ser199/202(AT8), Ser262, Ser396, and Ser404 sites in
ICV-STZ treated male rats (Figures 4A,B). Conversely, in the
female rats, ICV-STZ did not induce tau hyperphosphorylation
(Figures 4C,D).

GSK-3β is the first identified and critical tau kinase (Singh
et al., 1995), therefore we evaluated the total level and the
activity-dependent phosphorylation of GSK-3β. In male rats, we
found that the p-GSK-3β (Ser9) (the inactive form) level was
remarkably decreased, while the level of total GSK-3β and p-
GSK-3β (Tyr216) (the active form) didn’t change (Figures 5A,B).
In female rats, no significant difference was observed between
ICV-STZ treated and vehicle control (Figures 5C,D). Taken
together, these findings suggest that ICV-STZ activates GSK-3β
and consequently leads to hyperphosphorylation of tau protein
in male rats, but does not elicit these demonstrable pathological
alterations in female rats.

Sex Influences the Activity of BACE1 and
Aβ Production in the Sporadic AD Animal
Model Induced by ICV-STZ
Another characterized histology of AD is extracellular senile
plaques, which are composed of aggregated protein Aβ initiated
by β-secretase (BACE1) (Alafuzoff et al., 1987; Vassar et al., 2009).
We employed β-secretase Activity Assay Kit and Aβ40/42 Elisa
Kit to detect BACE1 activity and Aβ levels of hippocampus.
In ICV-STZ treated male rats, both BACE1 activity and Aβ40
level were significantly increased compared to control rats, while
Aβ42 showed ascendant trend without significant difference
(Figures 6A,C,D). However, in female rats, BACE1 activity
and Aβ40/42 levels were not altered in both ICV-STZ and
vehicle treated rats (Figures 6B,E,F). Thus, these data strongly
support that ICV-STZ increases BACE1 activity and augments Aβ
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FIGURE 2 | Sex influences loss of dendritic plasticity in sporadic AD animal model. (A) MAP2 and DAPI co-staining in the hippocampal CA1 region for male or female

rats. Scale bar = 100µm. (B,C) Quantification of MAP2 immunofluorescence. The data were expressed as mean ± SD (n = 3). (D) Representative photomicrographs

of dendritic spines in the hippocampal CA1 region. Scale bar = 5µm. (E,F) Quantification of mushroom-type dendritic spines. The data were expressed as mean ±

SD (n = 3). ***P < 0.001 vs. the vehicle control. Data were analyzed using t-test.

production in male rats, while did not exhibit these toxic effects
in female rats.

Estradiol Levels in Serum and
Hippocampus of ICV-STZ Treated Male and
Female Rats
Previous studies have shown that estradiol reduces Aβ

production via reducing total BACE1 activity, and decreases
tau hyperphosphorylation by mediated GSK-3β activity (Singh

et al., 1999; Zhang et al., 2008). To investigate whether estradiol
influences the generation of the sporadic AD animal model
induced by ICV-STZ, we measured estradiol levels in serum
and hippocampus of ICV-STZ treated male and female rats.
Shapiro–wilk test showed that all of the p-values were > 0.05,
indicating estradiol levels in serum (Supplementary Table 4)
and hippocampus (Supplementary Table 5) according with
normal distribution from each group. And then, a general linear
model was used for two-way ANOVA (Supplementary Tables
6, 7) followed by post-hoc comparison. We found that estradiol
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FIGURE 3 | Sex influences synaptic plasticity in the sporadic AD animal model. (A,C) Western blot analysis of the protein levels of synapsin-1, synaptagmin, psd95,

psd93, NR2A, and NR2B and (B,D) their quantitative analysis for male or female rats. DM1A was used as a loading control. The data were expressed as mean ± SD

(n = 4). ***P < 0.001 vs. the vehicle control. Data were analyzed using t-test.

levels of serum (Figure 7A) and hippocampus (Figure 7B) of
female rats were much higher than that of male rats, while no
difference was observed between the groups with same sex. The
data suggest that high estradiol might protect from STZ induced
neurotoxic effects in female rats.

DISCUSSION

Nowadays, AD is a major public health problem, which has
been considered as a multifactorial disease associated with
several etiopathogenic mechanisms (Iqbal and Grundke-Iqbal,
2010). The first step for a rational drug design is to study
etiopathogenic mechanisms and to develop animal models based

on these mechanisms. The late-onset sporadic form of AD, which
mechanisms still remain unclear due to its multi-etiopathological
factors, accounts for over 95% of all cases. However, few
experimental animal model of sporadic AD badly limit the
studies on its pathogenesis and drug development (Agrawal et al.,
2011; Iqbal et al., 2013).

The majority of current animal models of AD are generated
as familial one, which express human genes mutations, such as
Aβ and tau related genemanipulation. However, animal model of
familial AD cannot sufficiently exhibit all pathological alterations
and processes (Chen et al., 2013). Therefore, experimental
models that faithfully mimic the pathology of sAD are essential
to study its mechanism and assess the effectiveness of the
therapeutic strategies. Previous research has showed that sAD
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FIGURE 4 | Sex influences tau hyperphosphorylation in the sporadic AD animal model. (A,C) Western blot analysis of the protein levels of AT8, PS262, PS396,

PS404, and Tau5 and (B,D) their quantitative analysis for male or female rats. The data were expressed as mean ± SD (n = 4). The phosphorylation level of tau was

normalized to total tau level probed by tau5. The total level of tau was normalized DM1A. ***P < 0.001 vs. the vehicle control. Data were analyzed using t-test.

**P < 0.01 vs. the vehicle control.

is being recognized as an insulin resistant brains state (Valente
et al., 2010; Bitel et al., 2012; Kamat et al., 2016). Therefore, a
non-transgenic animal model generated by ICV-STZ has been
proposed as a representative model of sAD. The ICV-STZ rats
develop insulin resistant brains state associated with sAD like
neuropathological changes and memory impairment (Carro and
Torres-Aleman, 2004; Valente et al., 2010; Agrawal et al., 2011;
Bitel et al., 2012; Chen et al., 2013; Iqbal et al., 2013; Kamat et al.,
2016). Although, the mechanisms underlying ICV-STZ evoked
AD pathology remain unknown, ICV-STZ rats have been used
in many labs as an experimental model of sAD. For more than
20 years, although some of therapeutic strategies displayed very
good effectiveness for AD in ICV-STZ animal models, the same
therapies were hard to be reproduced on memory deficits in
clinical trials with sAD patients (Salkovic-Petrisic et al., 2013).
Thus, it is necessary to re-evaluate the ICV-STZ animal model
once again.

Sex has a regulatory effect on brain functions (Brinton, 2009;
Cui et al., 2013).We here investigated sex differences on cognitive

deficits in the sporadic AD animal model induced by ICV-
STZ. Similar to previous studies, the ICV administration of STZ
induced cognitive deficits and loss of synaptic plasticity in male
rats, but these neurotoxic effects were not observed in female rats.
Thus, the ICV-STZ is only for generating animal model of sAD in
male, but not in female rats. Consequently sex differences should
be considered in AD researches in the future.

Estrogen reduces Aβ level by down-regulating total β

secretase activity through MARK/ERK pathway, and modulates
Aβ degradation (Pike, 1999; Singh et al., 1999; Vassar et al.,
2009). In the present study, we found that ICV-STZ increased
BACE1 activities and Aβ40/42 production in male rats, but
these alterations were not observed in female rats. The studies
have demonstrated that the number of NFTs consisting of
hyperphosphorylated tau is positively correlated with the
degree of clinical dementia (Iqbal and Grundke-Iqbal, 1991;
Iqbal et al., 2008; Luo et al., 2014). Estrogens attenuate tau
hperphosphorylation through kinases and phosphatases, such as
the GSK-3β, Wnt, and PKA pathways (Zhang et al., 2008). The
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FIGURE 5 | Sex influences activity of GSK-3β in the sporadic AD animal model. (A,C) The total GSK-3β, GSK-3β (Ser9), GSK-3β (Tyr216) levels in whole hippocampus

extracts were measured using Western blotting and (B,D) quantitative analysis. The phosphorylation level of GSK-3β was normalized to total GSK-3β level. The total

level of GSK-3β was normalized DM1A. The data were expressed as mean ± SD (n = 4). ***P < 0.001 vs. the vehicle control. Data were analyzed using t-test.

ICV-STZ model in male rats shows hyperphosphorylation of tau
and an increase of GSK-3β activity, but these tau pathologies
are not observed in female rats. Together, sex hormones might
account for functional discrepancy of ICV-STZ in the two sexes.

A large body of evidence shows that women have a higher
incidence of AD than men happening after menopause, which
suggest that estrogen might protect against AD pathology.
Hormones have long been known to play key roles in regulating
learning and memory and ample evidence has demonstrated
that estradiol affects hippocampal morphology, plasticity, and
memory (Packard, 1998; Brinton, 2009; Foster, 2012; Cui et al.,
2013). Studies in the aromatase knock-out mouse suggest
that estradiol induced spine and spine synapse formation in
hippocampus, not in the cortex or the cerebellum (Zhou et al.,
2014). Previous studies point to a role of hippocampus-derived
estradiol in synaptic plasticity in cultured slices and in vivo,
not just the role of gonads-derived estradiol (Zhou et al.,
2010; Vierk et al., 2012). In addition, dendritic spines of CA1
pyramidal neurons vary during estrus cyclicity, which likely
results from cycle of estradiol synthesis in the hippocampus, since
gonadotropin releasing hormone regulates estradiol synthesis in
the hippocampus in a dose-dependent manner (Woolley et al.,
1990; Prange-Kiel et al., 2008, 2013). In the present study, 10

rats employed in each group is a small sample size. Therefore,
we performed Shapiro–wilk test which showed that samples from
each group was in accord with normal distribution. Relatively we
found that hippocampal estradiol level of female rats is almost
four times higher than that of male rats in both vehicle and ICV-
STZ treated groups, which is in accordance with previous studies
by using mass spectrometry (Fester et al., 2012). This implies
that high estradiol levels in female rats might protect them from
the ICV-STZ induced cognitive deficits and neurodegenerative
pathologies, including synaptic damage, Aβ deposition, and tau
hyperphosphorylation in hippocampus.

In reported literature, optimal female performance occurred
during the phase of estrus on the spatial learning and memory,
and the least efficient performance occurred during proestrus
(Vina and Lloret, 2010). Since we did not determine the estrus
stage of the control animals and cognitive ability and synaptic
density are optimal during proestrus, the estradiol protective
effects on hippocampal plasticity and memory would very likely
have been greater if we had had exclusively taken proestrus
female rats.

Although, the mouse- and monkey ICV-STZ models have
also been developed, ICV-STZ rats are still widely used and
employed to evaluate the therapeutic potential of drugs and

Frontiers in Aging Neuroscience | www.frontiersin.org 8 October 2017 | Volume 9 | Article 347

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Bao et al. Sex Differences in AD Model

FIGURE 6 | Sex influences activity of BACE1 and Aβ production in the sporadic AD animal model. (A,B) BACE1 activity was determined using β-Secretase Activity

Assay Kit. (C–F) Aβ40/42 levels were quantified through ELISA. The data were expressed as mean ± SD (n = 5). *P < 0.05 vs. the vehicle group. Data were analyzed

using t-test.

FIGURE 7 | Estradiol levels in serum and hippocampus. The Estradiol levels in the serum (A) and hippocampus (B) were measured. Estradiol levels of female rats

were much higher than that of male rats, while no difference was observed between the groups with same sex. Data were presented as means ± SD (n = 3). ***P <

0.001 vs. male rats. Data were analyzed using a general linear model was used for two-way ANOVA followed by post-hoc comparison.

non-drug therapies in numerous laboratories. Cognitive deficits
and AD-like pathology, such as neuroinflammation, brain insulin
resistance, tau hyperphosphorylation, Aβ overproduction, have
been found both in female mice and monkeys (Chen et al., 2014;
Park et al., 2015). Liu et al. have reported that STZ inhibits the
Ras/ERK signaling cascade and decreased the phosphorylation
of CREB, and induces cognitive impairment in rats (Liu et al.,
2013). However, the study from Diao et al. shows the gender-
and EC-dependent levels of proteins from the protein synthetic,
chaperoning, and degradation machinery (Diao et al., 2007).
Accordingly, it is necessary to re-evaluate the STZ-induced

cognitive alterations between male and female rats. In the
present study, we found that ICV-STZ remarkably results in
cognitive impairments and AD like pathological alterations in
the Sprague-Dawley male rats, but not in the female rats. It
may conceivably be related with the gender- and EC-dependent
levels of proteins from the protein synthetic, chaperoning,
and degradation machinery, and consequently regulates tau
related kinases and APP cleavage. Its molecular mechanism is
worth further discussing. Our findings provide novel insights
suggesting that sex differences exist in ICV-STZ rats which
have been used as sporadic AD animal model for about 20

Frontiers in Aging Neuroscience | www.frontiersin.org 9 October 2017 | Volume 9 | Article 347

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Bao et al. Sex Differences in AD Model

years. Therefore, our study encourages investigators to comply
with National Institutes of Health policies to include females in
biomedical research and to be aware that adding females to a
study is not as simple as adding just another group.
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