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Abstract. Chromophobe renal cell carcinoma (chRCC), the 
third most common histological subtype of RCC, comprises 
5-7% of all RCC cases. The aim of the present study was to 
identify potential biomarkers for chRCC and to examine 
the underlying mechanisms. A total of 4 profile datasets 
were downloaded from the Gene Expression Omnibus 
database to identify differentially expressed genes (DEGs). 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses of DEGs were performed 
with the Database for Annotation, Visualization and 
Integrated Discovery. A protein-protein interaction (PPI) 
network was constructed to predict hub genes. Hub gene 
expression within chRCC across multiple datasets, as 
well as overall survival, were investigated by utilizing the 
Oncomine platform and UALCAN dataset, separately. A 
total of 266 DEGs (88 upregulated genes and 168 down-
regulated genes) were identified from 4 profile datasets. 
Integrating the results from the PPI network, Oncomine 
platform and survival analysis, CFTR was screened as 
a key factor in the prognosis of chRCC. GO and KEGG 
analysis revealed that 266 DEGs were mainly enriched 
in 17 terms and 9 pathways. The present study identified 
key genes and potential molecular mechanisms underlying 
the development of chRCC, and CFTR may be a poten-
tial prognostic biomarker and novel therapeutic target for 
chRCC.

Introduction

Renal cell carcinoma (RCC) is globally the most prevalent 
cancer affecting the kidney in adults (1). It was reported 
that ~64,000 new cases were diagnosed in 2017 in the 

USA (1), and this value has risen by 2-4% each year (2). 
Chromophobe RCC (chRCC) is the third most common 
histological subtype of RCC (3), comprising 5-7% of all 
RCC cases (4). Due to advances in technology for the diag-
nosis and treatment of chRCC, the 5-year survival rate of 
chRCC is >75% (5) and the outcome is typically favorable 
when compared with that of other subtypes (6). However, 
patients with this disease still have a 5-10% probability 
of eventually developing progression and metastasis (7). 
Therefore, it is essential to identify tumor-specific 
biomarkers and the underlying molecular mechanisms of 
chRCC, which may be conducive to improved risk assess-
ment of the disease, guiding clinical decision-making, 
and developing novel diagnostic and therapeutic strategies 
for chRCC.

The molecular pathogenesis of cancer is complex, 
involving the inactivation and mutation of tumor suppressor 
genes and the activation of oncogenes (8). Recently, bioin-
formatics analysis using high-throughput platforms has 
emerged as an efficacious approach to identifying new 
targets and comprehending the underlying molecular mech-
anisms of carcinoma (9). For instance, Cao et al (10) reported 
that five genes, COL1A2, COL1A1, COL4A1, THBS2 and 
ITGA5, which they determined to be significantly overex-
pressed in gastric cancer (GC), were associated with the 
prognosis of GC and were potential biomarkers and thera-
peutic targets for GC. In addition, Wang et al (11) identified 
227 differentially expressed genes (DEGs) between breast 
cancer and normal breast tissues, and found that the hub 
gene NDC80 may be a key prognostic factor and potential 
target.

In the present study, three raw gene chips [GSE6280 (12), 
GSE11151 (13) and GSE15641 (14)] were downloaded from 
the NCBI-Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/) in order to detect the 
DEGs between chRCC tissues and normal renal tissues. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis (15) and Gene Ontology 
(GO) functional annotation analysis (16) was applied. A 
protein-protein interaction (PPI) network was subsequently 
generated to identify hub genes associated with chRCC. 
To further confirm the association between the hub genes 
and chRCC, Oncomine dataset (https://www.oncomine.org) 
and UALCAN (http://ualcan.path.uab.edu) analyses were 
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performed to examine the expression of the hub genes and 
associated patient survival rates.

Materials and methods

Microarray data. A total of 3 profile datasets (GSE6280, 
GSE11151 and GSE15641) were downloaded from the GEO 
database, a public functional genomics dataset. The platform 
for GSE6280 and GSE15641 was GPL96, (HG-U133A) 
Affymetrix Human Genome U133A Array, and the platform 
for GSE11151 was GPL570, (HG-U133_Plus_2) Affymetrix 
Human Genome U133 Plus 2.0 Array. The raw data consisted 
of 11 chRCC tissues (1 in GSE6280, 4 in GSE11151 and 6 in 
GSE15641) and 32 matched normal tissues (6 in GSE6280, 
3 in GSE11151 and 23 in GSE15641).

Expression analysis of DEGs. All raw data were processed with 
the R version 3.5.1 software package (https://www.r-project.
org/). The ‘limma’ package (http://www.bioconductor.
org/pack-ages/release/bioc/html/limma.html) in R was 
utilized for data normalization. The Affy package (http://www. 
bioconductor.org/packages/release/bioc/html/affy.html) was 
utilized for gene differential expression analysis. Genes with 
|log fold-change (FC)|>1 and P<0.05 were considered to be 
DEGs.

GO enrichment analysis. The Database for Annotation, 
Visualization and Integrated Discovery (DAVID) (15) 
(https://david-d.ncifcrf.gov; version 6.8) provides a compre-
hensive set of functional annotation tools for investigators to 
better understand the biological significance of certain genes. 
Based on DAVID, GO analysis, including analysis of cellular 
component (CC), molecular function (MF) and biological 
process (BP) terms, was performed. P-values of <0.01 and 
gene counts of >10 were considered significant thresholds.

KEGG analysis. KOBAS (16) (http://kobas.cbi.pku.edu.cn; 
ver. 3.0), a web server for gene or protein functional annota-
tion and functional gene set enrichment, was used for pathway 
enrichment analysis. Pathways with P-values of <0.01 were 
screened as statistically significant.

PPI network. With the confidence level >0.7 and ‘Homo 
sapiens’ as a limit, a PPI of DEGs was gathered from the 
Search Tool for the Retrieval of Interacting Genes/Proteins (17) 
(https://string-db.org; ver.10.5). The network visualization 
software CytoScape version 3.6 (https://cytoscape.org) was 
utilized to generate PPI networks. The top 10 genes were 
subsequently selected and considered to be hub genes using 
the plug-in unit CytoHubba.

Expression and survival analysis of hub genes. The Oncomine 
platform featuring scalability, high quality, consistency and 
standardized analysis was utilized to investigate hub gene 
expression within chRCC across multiple datasets. Patients 
were divided into low- and high-expression groups according 
to the median gene expression. UALCAN (18), a user-friendly, 
interactive web resource for analyzing cancer transcriptome 
data based on The Cancer Genome Atlas dataset, was utilized 
to construct an overall survival analysis for the hub genes.

Results

Identification of DEGs in chRCC. After normalization, a total 
of 266 overlapping DEGs (Fig. 1 and Table SI) were identified 
from 3 profile datasets (GSE6280, GSE11151 and GSE15641), 
including 88 upregulated genes and 178 downregulated genes 
(|logFC|>1 and P<0.05). The heatmaps of the top 20 DEGs and 
the results of the normalization of each dataset are presented 
in Fig. 2.

GO enrichment analysis. All DEGs were input into the online 
tool DAVID to perform GO analysis. The results demonstrated 
that, for CC, DEGs of chRCC were mainly enriched in 10 
terms, including ‘extracellular exosome’, ‘plasma membrane’, 
‘extracellular region’ and ‘extracellular matrix’. For MF, DEGs 
were mainly enriched in 2 terms, namely ‘calcium ion binding’ 
and ‘heparin binding’, while for BP, DEGs were mainly 
enriched in 5 terms, namely ‘cell adhesion’, ‘extracellular 
matrix organization’, ‘skeletal system development’, ‘aging’ 
and ‘angiogenesis’ (Fig. 3).

KEGG analysis. After gene ID conversion, all DEGs were 
uploaded to KOBAS to analyze the pathways at the functional 
level. There were 9 KEGG pathways associated with enriched 
DEGs, comprising ‘pathways in cancer’ and ‘metabolic 
pathways’, among others (Fig. 4).

PPI network. In the PPI network (Fig. 5), red, green and violet 
nodes represent upregulated genes, downregulated genes and 
other human proteins interacting with DEGs, respectively. 
Using the plug-in unit cytoHubba, 10 hub genes with the 
highest degree of interaction were screened (Fig. 6), including 
3 upregulated genes (KIT, CFTR and ALDOA) and 7 down-
regulated genes (DCN, COL3A1, CXCL12, CTGF, LUM, TNC 
and THBS2). The heatmap of the 10 hub genes is presented in 
Fig. 7.

Comparison of hub genes across multiple analyses. The results 
of hub gene expression level analysis in chRCC revealed that 
the expression of KIT, CFTR and ALDOA had differences 
among different analysis datasets (Fig. 8; Fig. S1).

Survival analysis. The overall survival analysis of the 10 hub 
genes demonstrated that only high expression levels of CFTR 

Figure 1. A total of 266 differentially expressed genes were identified in 3 
profile datasets, including GSE6280, GSE11151 and GSE15641. A total of 
(A) 88 upregulated genes and (B) 178 downregulated genes were identified. 
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Figure 2. Normalization and cluster heatmaps of the top 20 DEGs in each dataset. (A) Normalization and cluster heatmaps of the top 20 DEGs in GSE6280. 
(B) Normalization and cluster heatmaps of the top 20 DEGs in GSE11151. (C) Normalization and cluster heatmaps of the top 20 DEGs in GSE15641. DEGs, 
differentially expressed genes.
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were associated with a worse survival rate in patients with 
chRCC (Fig. 9; Fig. S2).

Discussion

chRCC is the third most common histological subtype of RCC, 
behind clear cell RCC and papillary RCC (3); it accounts for 
5-7% of all RCC cases (4). Although patients with chRCC 
have a better prognosis compared with other subtypes, the 
long-term outcomes are highly variable and there is a 5-10% 
probability of eventually developing metastasis (7). Therefore, 
it is essential to identify the tumor‑specific biomarkers and the 
underlying molecular mechanisms of chRCC, which may be 
conducive to developing novel diagnostic and therapeutic strat-
egies for chRCC. Microarray analyses with high-throughput 
sequencing technologies have been widely used to determine 
potential diagnostic and therapeutic targets in the progression 
of cancer (19,20).

In the present study, a total of 266 overlapping DEGs, 
including 88 upregulated genes and 178 downregulated genes, 
were identified from 3 profile datasets. GO analysis revealed 

Figure 3. GO enrichment analysis of differentially expressed genes in chromophobe renal cell carcinoma. GO, Gene Ontology; CC, cellular component; 
MF, molecular function; BP, biological process.

Figure 4. Pathways enriched for differentially expressed genes in chromo-
phobe renal cell carcinoma. Rich factor, degree of enrichment.
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that 266 DEGs were mainly enriched in 17 terms, including 
‘extracellular exosome’, ‘plasma membrane’, ‘extracellular 
region’, ‘extracellular matrix’, ‘cell adhesion’ and ‘extracel-
lular matrix organization’. In addition, 266 DEGs underwent 
KEGG analysis and were shown to be enriched mainly in 9 
pathways. In the PPI network, 10 genes with a high degree of 
interaction were chosen as hub genes, including 3 upregulated 
genes (KIT, CFTR and ALDOA) and 7 downregulated genes 
(DCN, COL3A1, CXCL12, CTGF, LUM, TNC and THBS2).

KIT, a receptor tyrosine kinase, can activate several signaling 
pathways, including the PI3K-Akt signaling pathway (21). 
Mutations of KIT are associated with gastrointestinal stromal 
tumors, lung cancer and other tumor types (22). ALDOA, a 
member of the class I fructose- bisphosphate aldolase protein 
family, may contribute to tumorigenesis and the progression 
of pancreatic and lung cancer (23). DCN plays a vital role in 

tumor suppression, including a stimulatory effect on autophagy 
and inflammation, and an inhibitory effect on angiogenesis 
and tumorigenesis, after binding to multiple cell surface recep-
tors (24). CXCL12 is associated with diverse cellular functions, 
including immune surveillance, tumor growth and metastasis, 
and the inflammatory response (25). Tang et al (26) reported 
that high expression of tenascin C, an extracellular matrix 
protein, was significantly associated with poor disease‑free 
survival in patients with lung cancer. Thrombospondin 2, as 
a potent inhibitor of tumor growth and angiogenesis, may be 
involved in cell adhesion and migration (27).

In order to further verify the association between the 
10 hub genes and chRCC, the present study compared the 
expression of 10 hub genes across multiple datasets using the 
Oncomine platform; 3 genes (KIT, CFTR and ALDOA) were 
indicated to have differences among the datasets. Furthermore, 
the overall survival analysis based on UALCAN revealed that 
high expression levels of CFTR were associated with a worse 
survival rate in patients with chRCC. In summary, CFTR may 
be a potential prognostic biomarker and novel therapeutic 
target for chRCC.

CFTR, a cAMP-activated chloride channel widely distrib-
uted in the epithelial cells of various tissues (28), plays an 
important role in maintaining cell homeostasis and is associ-
ated with metabolism (29). Mutations in CFTR are responsible 
for regulation of epithelial ion and water transport and fluid 
homeostasis, which affects the epithelial tissue of various 
organ systems, including the urogenital, respiratory and gastro-
intestinal systems (30). In addition, CFTR mutation increases 
the risk of various types of cancer, including lung, breast and 
colon cancer (31). Xu et al (32) reported that CFTR could 
promote the aggression of ovarian cancer and that knockdown 
of CFTR suppressed the aggressive behavior of ovarian cancer. 
In addition, Peng et al (33) found that higher expression of 

Figure 6. Top 10 hub genes with the highest degree of interaction.

Figure 5. Protein-protein interaction network. Red, green and violet nodes represent upregulated genes, downregulated genes and other human proteins 
interacting with differentially expressed genes, respectively.
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CFTR was associated with aggressive behaviors, progression 
and a poor prognosis in cervical cancer, suggesting that CFTR 

may be a novel therapeutic target and prognostic indicator for 
cervical cancer. A number of studies have reported that the 

Figure 8. Gene expression of KIT, CFTR and ALDOA among the different analysis datasets.

Figure 7. Heatmap of 10 hub genes. Red and green represents up and downregulated genes, respectively.
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downregulation of CFTR promotes invasion and proliferation 
and is associated with poor prognosis in several types of cancer, 
including lung (34), intestinal (35) and esophageal cancer (36). 
To date, to the best of our knowledge, there have been no studies 
on the association between CFTR and RCC. Therefore, further 
experimental investigation is required to examine the influence 
of CFTR mutations on RCC, both in vivo and in vitro.

In conclusion, based on integrated bioinformatics analysis, 
the present study identified 266 DEGs. It was indicated that 
CFTR may be involved in the progression and poor prognosis 
of chRCC, and that it may function as a novel therapeutic target 
and prognostic biomarker for chRCC. These results improve our 
understanding of chRCC at the molecular level. However, further 
investigation of CFTR both in vivo and in vitro are required to 
confirm the findings of this study, in order to verify the func-
tions and elucidate the underlying mechanisms of chRCC.
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