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Breath-hold diving involves highly integrative physiology and extreme responses to both 
exercise and asphyxia during progressive elevations in hydrostatic pressure. With 
astonishing depth records exceeding 100 m, and up to 214 m on a single breath, the 
human capacity for deep breath-hold diving continues to refute expectations. The 
physiological challenges and responses occurring during a deep dive highlight the 
coordinated interplay of oxygen conservation, exercise economy, and hyperbaric 
management. In this review, the physiology of deep diving is portrayed as it occurs across 
the phases of a dive: the first 20 m; passive descent; maximal depth; ascent; last 10 m, 
and surfacing. The acute risks of diving (i.e., pulmonary barotrauma, nitrogen narcosis, 
and decompression sickness) and the potential long-term medical consequences to 
breath-hold diving are summarized, and an emphasis on future areas of research of this 
unique field of physiological adaptation are provided.
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INTRODUCTION

Breath-hold diving is a ubiquitous activity for recreation, sustenance, military, and sport; it 
involves highly integrative physiology and extreme responses to both exercise and asphyxia 
during progressive elevations in hydrostatic pressure (Ferretti, 2001; Bain et  al., 2018b; Fitz-
Clarke, 2018). Since the famous anecdote of Giorgios Statti diving to 70  m in 1913; the 
attainment of 100  m by Jacques Mayol in 1976; and, more recently, Herbert Nitsch reaching 
a staggering 214  m in 2007, the human capacity for deep breath-hold diving has continually 
extended the physiological limits and refuted expectations. However, physiological limits do 
exist and adverse consequences readily occur when these limits are exceeded. The purpose of 
this review is to outline the basic physics that govern apnea diving, discuss the challenges, 
physiological responses, and associated clinical consequences of diving to depth.

GAS LAWS

Humans live in a pressurized air environment, with the pressure at sea level standardized to 
760 mmHg or 1 absolute pressure in atmospheres (ATA). Upon diving, pressure increases proportionally 
with depth, due to the additive weight of the water column. Specifically, for every 10  m (33  ft) 
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of sea water, hydrostatic pressure increases by 1 ATA; therefore, 
as pressure doubles, the volume of the gas is halved (in accordance 
with Boyle’s Law which states, in a closed system where temperature 
remains constant, the volume is directly and inversely proportional 
to the pressure) and the solubility of all gases increase [in 
accordance with Henry’s Law which states that the amount of 
gas absorbed (at the same temperature in liquid) is proportional 
to the solubility coefficient of the particular gas and their partial 
pressure]. These concepts are illustrated in Figure 1, which outlines 
the role of Boyle’s and Henry’s Law on lung volume and circulating 
oxygen levels across a dive to 100  m.

PHASES OF A DIVE

To demonstrate the integrated nature of breath-hold diving to 
depth in humans, the physiological responses are presented 
as they occur during a dive and upon resurfacing.

The First ~20 Meters
Even before the dive, while floating at the surface, physiological 
changes are already occurring due to the partial state of 
immersion – consisting of fluid shifts, regional blood flow 
redistribution, altered cardiopulmonary hemodynamics, and 
autonomic activity (reviewed in; Pendergast et  al., 2015). 
During the final inspiration, many divers perform 
glossopharyngeal insufflation (also known as lung packing). 
Lung packing has been shown to increase lung volume by 
11–26% (up to +3  L; Lindholm and Nyrén, 2005; Loring 
et  al., 2007; Chung et  al., 2010; Walterspacher et  al., 2011; 
Mijacika et  al., 2017; Patrician et  al., 2021a); however, too 
much packing can increase the risk of lung barotrauma 
(Chung et al., 2010) or pre-dive syncope, as lung hyperinflation 
alters cardiac mechanics (decreases end-systolic and diastolic 
volumes), reduces cardiac output (Mijacika et  al., 2017; 
Kjeld et  al., 2021), and facilitates cerebral hypoperfusion 
(Van Lieshout et  al., 2003).

65.57

FIGURE 1 | The impact of hydrostatic pressure (also referred to as the absolute pressure in atmospheres; ATA) on lung volume and arterial hypoxia during a 
simulated dive to 100 m. The hyperbolic nature of lung volume across a dive is due to the nonlinear pressure-volume relationship (calculated in accordance with 
Boyle’s Law). The temporary increase in lung volume immediately before the start of the dive coincides with lung packing, a maneuver employed by divers to 
increase the volume of oxygen in the lungs. In this example, with a total dive time of 205 s, the dive speed was set at 1 m/s, with a 5 s bottom time. The arterial 
oxygen content (CaO2) and partial pressure of arterial oxygen (PaO2) at the start of the dive were 20.3 mlO2 dl−1 and 97 mmHg, respectively. Lung packing was 
performed prior to immersion, thereby increasing lung volume by 10% above TLC, and facilitating a 10 mmHg increase in PaO2. CaO2 was calculated to be the 
product of Hb × 1.36(SaO2/100) + 0.003(PaO2) – and consisted of the following considerations: (1) Hb was assumed to be 15 g dl−1, until the early portion of ascent 
(i.e., ~2 min into dive), when a 5% increase in oxygenated Hb occurred in the circulation (i.e., +0.75 g dl−1) via splenic contraction. As discussed in the Ascent 
section, splenic contraction is presumed to occur during the latter phase of the dive to coincide with the onset of exercise and growing hypercapnia; (2) SaO2 was 
98–100% until the last 15 s of the dive when PaO2 dropped below 100 mmHg, and SaO2 was estimated off a right-shifted O2 dissociation curve (Hall et al., 2011); 
(3) the solubility of O2 dl−1 of blood (i.e., 0.003) was assumed to remain constant and PaO2 was calculated using the following steps – first the partial pressure of 
alveolar oxygen (PAO2) was calculated using a modified alveolar gas equation to account for hydrostatic pressure = FETO2 (0.1444 during pre/post dive breathing and 
0.16 during the dive due to lung packing) multiplied by the product of ATA × (760–47) – (PaCO2/R). The partial pressure of arterial carbon dioxide (PaCO2) pre-dive 
was 40 mmHg, and calculated to increase at a rate of 0.06875 mmHg sec−1 (derived from PaCO2 data during a static apnea in an elite breath-hold diver; Willie 
et al., 2015 as reviewed in Bain et al., 2018b), resulting in an end-dive PaCO2 of 54 mmHg. R was assumed to remain constant at 0.9. ATA increases by 1 every 10 
m gain of depth (i.e., 1 ATA on the surface and 11 ATA at 100 m). Blood gases collected at 40 m in breath-hold divers support the notion of hydrostatic-induced 
hyperoxia – see section Maximum Depth; (Bosco et al., 2018). These data also align with predicted PAO2 across a simulated dive to 150 m (Ferretti, 2001). The 
metabolic uptake of oxygen during breath-holding was derived from data during static apneas (Willie et al., 2015; Bain et al., 2018b), and assumed to be steady 
across a dive, at a rate of 0.21205 mmHg sec−1. This oxygen uptake was subtracted from PAO2. PaO2 was assumed to mirror PAO2 until ascent, when an inefficiency 
of pulmonary gas exchange is expected to occur (Patrician et al., 2021b). In the latter portion of the dive, a widening of the a-A gradient was assumed to 
be 20 mmHg, which was based on measurements in divers diving beyond 100 m (Patrician et al., 2021a). PaO2 within 5 s of surfacing was estimated to 
be 29.7 mmHg which, in trained breath-hold divers, is slightly above the theoretic limit of consciousness. However, most experienced divers are always conscious of 
the risk of shallow water blackout (see section: The last 10 m).
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Mammalian Diving Response
To facilitate a reduction in oxygen consumption, the mammalian 
diving response initiates a vagally mediated increase in 
parasympathetic nerve activity that reduces heart rate (i.e., 
bradycardia; Olsen et  al., 1962b; Craig, 1963) and 
sympathetically mediated vasoconstriction of peripheral vascular 
beds (i.e., transient reduction in blood flow to non-essential 
organs; Brick, 1966; Heistad et  al., 1968). Both of these 
responses are augmented with facial immersion, especially 
with cool water (Hurwitz and Furedy, 1986; Schuitema and 
Holm, 1988; Schagatay and Holm, 1996). Even though there 
remains some ambiguity regarding quantifying the degree of 
bradycardia (i.e., when selecting the pre-dive baseline heart 
rate), heart rates have been reported to decrease to as low 
as 20–30 beats per minute (Ferrigno et al., 1997; Ferretti, 2001; 
Bain et  al., 2018b), or even lower (Arnold, 1985).

Cardiac Dyssynchrony
An interesting, albeit less common phenomenon exhibited by 
divers is the presentation of cardiac arrhythmias (or 
dyssynchrony) during a dive. Such dyssynchrony has been 
demonstrated in both freely diving humans equipped with 
waterproof electrocardiographic (ECG) units (Olsen et  al., 
1962b; Scholander et  al., 1962; Ferrigno et  al., 1991; Hansel 
et al., 2009; Patrician et al., 2021a), including the Ama (Sasamoto, 
1965; Hong and Rahn, 1967), and under experimental hyperbaric 
conditions (Ferrigno et  al., 1997). The implications of such 
dyssynchrony are not clear, especially whether they infer a 
malignant or benign disposition. The mechanisms driving these 
dyssynchronous ECG signals are also not established, but likely 
reflect marked “autonomic conflict” between parasympathetically 
mediated bradycardia (i.e., diving response) and sympathetically 
driven tachycardia (i.e., cold shock and/or exercise response; 
Shattock and Tipton, 2012). Whether phenotypic predisposition 
is required or simply contributory in its genesis, the hydrostatically 
induced centralization of blood volume from the legs to thorax 
(Miyamoto et  al., 2014), and concomitant mechanical release 
of hyperinflation-induced compression of the heart from lung 
packing (Mijacika et  al., 2017) could alter baroreflex control 
(Chen et  al., 2006) and chronotropic drive due to cardiac 
enlargement and activation of right atrial stretch receptors. 
Ultimately, further investigation and importantly the potential 
association with elevated myocardial infarction risk, has yet 
to be  elucidated.

Passive Descent
Within the first 20 or so meters, the diver reaches a point of 
neutral buoyancy. In reality, however, the exact depth of neutral 
buoyancy depends on a variety of factors (e.g., body composition, 
neck/hip weights, wetsuit composition/thickness, surface lung 
volume, water density/salinity). At this depth, the weight of 
the water column exerted upon the diver equals the buoyancy 
of the diver – meaning the diver will not float or sink. Beyond 
this point, however, the hydrostatic force overcomes the buoyancy 
of the diver, and the diver becomes negatively buoyant and 
enters a state of continuous free-fall. At this stage (or earlier), 

peripheral vasoconstriction is likely maximized via elevations 
in sympathetic nervous system activity, which limits distribution 
of blood to non-essential organs (e.g., kidney and skeletal muscles; 
Fagius and Sundlöf, 1986; Heusser et  al., 2009; Kyhl et  al., 
2016). This re-distribution has been well demonstrated in Weddell 
seals, where overwhelming vasoconstriction is evident in all 
organs, except in the brain (Zapol et  al., 1979). In humans 
performing dry or facial immersion static apnea, the combined 
influence of (1) sympathetic excitation and chemoreflex 
engagement from combined inputs of hypoxia, hypercapnia, lack 
of ventilatory inhibition (Heusser et  al., 2009; Steinback et  al., 
2010) and (2) peripheral vasoconstriction, likely drive the increases 
in mean arterial pressure; this has been measured to increase 
to 150  mmHg (Breskovic et  al., 2011; Bain et  al., 2015), and 
even reach 200  mmHg (during apnea at rest and with exercise; 
Bjertnaes et  al., 1984; Ferrigno et  al., 1997; Perini et  al., 2010). 
However, blood pressure data during underwater diving are 
scarce. In an innovative study by Ferrigno et  al. (1997), two 
participants with radial artery catheterization performed breath-
holds in a hyperbaric chamber to simulate the hydrostatic load 
of a dive to 50  m. While there were substantial elevations in 
mean arterial pressure during descent (with occasional systolic 
peaks in one diver reaching 345 mmHg), mean arterial pressure 
appeared to slightly subside or even decrease during the latter 
portion of the dive (Ferrigno et al., 1997). These blood pressure 
responses in humans contrast to those in marine mammals, 
who demonstrate relatively stable blood pressure across a dive 
(Irving et  al., 1942; Ponganis et  al., 2006) due to an enhanced 
mammalian diving response (e.g., extreme bradycardia to 
2–3  bpm; Williams et  al., 2017; Goldbogen et  al., 2019) and 
anatomical adaptations (e.g., hepatic sinus and venous vasculature; 
Harrison and Tomlinson, 1956; Ponganis, 2011).

Lung Compression
In accordance with Boyle’s Law, and illustrated in Figure  1, 
lung volume decreases with increasing depth. Assuming the 
diver fully inspires at the surface, the hydrostatic-induced 
reduction in lung volume would reduce lung volume to 
approximately residual volume (RV) by 40–50  m. The 
RV-equivalent depth has certainly been theorized to represent 
a hurdle in deep diving, but since at least the 1960s, divers 
have successfully attained progressively deeper records (Fitz-
Clarke, 2018). However, in studies of humans diving during 
both simulated and sea conditions, the RV-equivalent depth 
may still constitute a physiological threshold of lung injury 
risk (Lindholm and Lundgren, 2009; Patrician et  al., 2021b). 
The risk of lung injury could be  exaggerated when divers 
perform large thoracic movements at depth (e.g., an exaggerated 
swimming stroke), because the coincidingly elevated alveolar 
pressures proportionally dictate the degree of tissue strain 
(Hooke’s Law). If severe enough, this tissue strain could overcome 
the structural capacity of lung tissue and contribute to capillary 
stress failure and pulmonary edema (see section: Risk of lung 
squeeze). However, even in the absence of overt barotrauma, 
divers diving to – or below – RV-equivalent depths, have been 
shown to present with transient impairments in pulmonary 
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gas efficiency and subtle alterations in lung compliance at 
~2.5  h post-dive (Patrician et  al., 2021b).

The mechanics and geometry of hydrostatically induced lung 
compression are complex and likely determined by a number 
of factors. First, the compositional organization of collagen, 
elastin, and other lung tissue constituents in the lungs can 
dictate the mechanical behavior of tension and compression 
(Andrikakou et  al., 2016). Humans lack many of the thoracic 
and lung adaptations found in diving mammals, which are 
designed to manage lung compression/collapse and reopening 
(reviewed in; Ponganis et  al., 2003; Castellini, 2012). Second, 
airway modeling of head-up descent in humans (e.g., when 
using an underwater sled) suggests that airway collapse occurs 
early in descent (with basal segments collapsing as early as 
18  m), and collapse occurs in a heterogeneric pattern (Fitz-
Clarke, 2007). Third, there is evidence that the active 
centralization of blood into the thorax – referred to as the 
“blood shift” – alleviates the reduction in gas volume, and 
therefore provides some protection for the lungs against collapse. 
Using a non-invasive approach to estimate changes in regional 
blood volume (impedance plethysmograph), Schaefer and 
colleagues estimated that 850 ml of had translocated into the 
thorax in a diver diving to 40 m (Schaefer et al., 1968). Likewise, 
a 1.4–1.7 L increase in thoracoabdominal volume has also 
been reported in three divers performing simulated dives to 
45–55 m (via wet hyperbaric chamber; Ferrigno and Lundgren, 
2003). Given that head-out immersion induces translocation 
of blood to the thorax, such thoracic centralization during 
diving is not an unreasonable notion (reviewed in; Pendergast 
et  al., 2015), and has long since been postulated to contribute 
to divers being capable of diving beyond RV, without 
ill-consequence (Craig, 1968).

Despite the numerous dangers of extreme diving, a recent 
report of two world-champion breath-hold divers, diving to 
102 and 117  m, highlight the incredible tolerability of highly 
adapted individuals to extreme levels of hydrostatic-induced 
lung compression (Patrician et  al., 2021a). These observations 
are consistent with the accomplishments of many highly trained 
divers who have performed dives to extreme depths (100–214 m), 
despite profound reductions in lung volumes [between 9 and 
4.5% of surface volume (calculated in accordance with Boyle’s 
Law), with modeling suggesting 55–85% of total airway collapse, 
respectively Fitz-Clarke (2007)].

Maximum Depth
Upon reaching maximum depth, the elevated hydrostatic pressure 
facilitates a peak in the partial pressure of arterial oxygen 
(PaO2), due to the hyperbaric-induced increase in gas partial 
pressure and solubility (illustrated in Figure  1). In a recent 
study conducted at the “Y-40 THE DEEP JOY” pool in Italy, 
arterial blood gases were evaluated at a depth of 40  m in six 
breath-hold divers (Bosco et  al., 2018). In four of the six 
divers, PaO2 increased from 94  ±  6  mmHg on the surface to 
263  ±  32  mmHg at 40  m. Intriguingly, two of the divers 
did not demonstrate the expected hyperoxia at depth 
(PaO2 at 40  m was 68  ±  10  mmHg). The authors postulated 
that ventilation perfusion mismatching and right-left intrapulmonary 

shunt, due to atelectasis (i.e., airway closure) gave rise to these 
divergent findings in these two divers.

Nitrogen Narcosis
Depending on bottom depth and time at depth, the partial 
pressure of alveolar nitrogen (PAN2) will be inordinately elevated, 
and facilitate diffusion of nitrogen into the blood. Early work 
in diving mammals (Kooyman et  al., 1972) and humans 
(Radermacher et al., 1992) have demonstrated that the nitrogen 
tension in the blood rises during breath-hold diving. Even in 
the normal upright lung, nitrogen uptake has been demonstrated 
to occur during rest (Canfield and Rahn, 1957; West, 1962). 
In fact, nitrogen narcosis is not an uncommon feature in 
breath-hold dives exceeding ~70–90 m, with transient amnesia 
being a prevalent symptom. In a recent report by Patrician 
et  al. (2021a), two divers spent 26 and 42  s, respectively, 
beyond 90  m – with maximum depths of 102 and 117  m. 
As PAN2 (and therefore PaN2) increases with depth, the total 
time exposed at these extreme depths evidently appears to 
play a crucial role in both divers reporting narcosis. However, 
despite its prevalence being higher than reported (potentially 
due to amnesia; Ferrigno and Lundgren, 2003), there are only 
a few published examples in the literature (Lindholm and 
Lundgren, 2009; Fitz-Clarke, 2018; Patrician et  al., 2021a). 
Ultimately, the impact and physiological influence of nitrogen 
narcosis, and contributory role in pathogenesis of decompression 
sickness in breath-hold divers has not been thoroughly studied, 
and its awareness is important to reduce the risk for 
adverse incidents.

Ascent
To ascend, the diver must propel themselves toward the 
surface and overcome the negative buoyancy and exaggerated 
drag. With peripheral vasoconstriction already established, 
muscular contraction will likely rely heavily on anaerobic 
sources, and lead to an increase in lactate production. While 
early reports suggested that blood lactate only mildly increased 
following apneic exercise [i.e. foot-pedalling during apneas 
of 104 s in a hyperbaric chamber; Olsen et  al., 1962a)], 
more recent assessments in divers performing horizontal 
underwater swimming (to 173  ±  25 m and 135  ±  23 m, 
either with and without using fins, respectively) have reported 
blood lactate concentrations of 10  ±  2mmol L−1 within 
2–4  min of surfacing (Schagatay, 2010). Interestingly, from 
a comparative perspective, Weddell seals do not demonstrate 
a rise in lactate concentration until dives exceed 20  min 
(Kooyman et al., 1980); and lactate concentrations only reach 
comparable human values once dives exceed +40  min 
(Kooyman and Ponganis, 1998).

Depending on the dive duration, divers can experience 
involuntary breathing movements (IBMs). These IBMs are 
essentially diaphragmatic contractions, which signify the 
“physiologic break-point” and ensuing struggle phase (Schagatay, 
2009; Bain et  al., 2018b). The intensity of IBMs dramatically 
increase, coinciding with an amplifying drive to breathe, 
progressive hypoxemia, hypercapnia, and hypertension. 
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Interestingly, IBMs have been shown to help transiently alleviate 
the restrictions on cardiac output, especially at higher lung 
volumes (Palada et  al., 2008) and improve cerebral oxygenation 
(Dujic et  al., 2009). However, as lung compression alleviates 
with ascent, the onset of IBMs may conversely introduce 
exaggerated intrathoracic and transpulmonary pressure 
fluctuations. If such abrupt fluctuations in thoracic pressure 
were to occur below a diver’s RV-equivalent depth, and/or 
coincided with instances of abrupt alveolar reopening (postulated 
to occur during ascent), the associated tissue strain (in accordance 
with Hooke’s Law) could lead to pulmonary barotrauma/lung 
squeeze. In fact, hemoptysis following a dive, has been attributed 
to IBMs (Kiyan et  al., 2001). The notion of abrupt alveolar 
reopenening is derived from modeling work by Fitz-Clarke 
(2007). This work suggests, that during ascent, disproportionate 
coordination between transpulmonary pressure and regional 
airway surface tension can arise in alveolar units that have 
collapsed. When the airway surface tension of a collapsed segment 
is eventually overcome, the widened transpulmonary pressure 
gradient leads to an abrupt compensatory airway equalization 
[referred to as airway/alveolar “popping”; Fitz-Clarke (2007)]. 
Ultimately, the physiological implication(s) of IBMs or alveolar 
“popping” on pulmonary barotrauma has yet to be  elucidated.

Spleen Contraction
The spleen has for centuries been considered to act as a 
dynamic reservoir, capable of expelling blood into the 
circulation, with a hematocrit concentration higher than arterial 
blood (Barcroft and Poole, 1927) – intrasplenic hematocrit 
estimates of 64–78% in mice, 75% cats and 90% in dogs 
(Opdyke and Apostolico, 1966). In humans, a 18–35% decrease 
in spleen volume has led to an increase in hematocrit by 
2–6% during breath-holding (Schagatay et  al., 2001; Stewart 
and McKenzie, 2002; Baković et  al., 2003; Schagatay et  al., 
2012). Interestingly, the Ama (an indigenous diving population) 
have demonstrated an increase in hematocrit by 10.5% following 
1  h of repetitive diving to 5–7  m (Hurford et  al., 1990). 
Certainly, such a splenic contraction may coincide with 
peripheral vasoconstriction and sympathetic activation during 
descent, as splenic contraction has been demonstrated to 
occur rapidly (within 3  s of apnea onset; Palada et  al., 2007). 
However, the combined aspects of exertion and hypercapnia 
(Richardson et  al., 2012), or developing hypoxemia during 
the last part of ascent, splenic contraction would certainly 
be timely during this phase of the dive. Ultimately, irrespective 
of when splenic contraction occurs during a dive, based on 
the calculations in Figure 1, the hemoconcentration via splenic 
contraction would increase CaO2 (assuming all else remains 
equal) by ~5%, which may proffer a protective benefit 
immediately upon surfacing, to avoid hypoxic loss 
of consciousness.

The Last 10 Meters
The risk of shallow water blackout and hypoxic syncope is 
notoriously high within the last 10  m of ascent. Modeling 
conducted by Ferretti (2001) has estimated PAO2 of a diver 

returning from a dive at 150  m, to be  as low as 25  mmHg, 
which lies close to the theoretic limit of consciousness – 
postulated to be when PaO2 falls below 20 mmHg (Ernsting, 1963). 
This modeling aligns with Figure 1 (where PaO2 upon surfacing 
from a 100  m dive was estimated to be  29.7  mmHg), and 
is supported by static studies in trained breath-hold divers. 
For example, Lindholm and Lundgren (2006) showed that 
post-apnea PETO2 values of 20.3  mmHg (range: 19.6–
21.0  mmHg) coincided with loss of motor control, whereas 
PETO2 values of only ~3  mmHg higher (mean 23.0  mmHg; 
range 22.4–23.6  mmHg) did not (Lindholm and Lundgren, 
2006). Additionally, in elite apneists under “dry” laboratory 
conditions, a series of studies utilizing radial artery (Willie 
et  al., 2015) and jugular venous catheterizations (Bain et  al., 
2016, 2017, 2018a) have demonstrated end-apnea PO2’s of 
29.6  ±  6.6  mmHg and 25  ±  6  mmHg, respectively (including 
an extreme end-apnea PaO2 of 23  mmHg following a 435  s 
breath-hold; Bailey et al., 2017), without syncope. Comparatively, 
PaO2 in freely diving elephant seals has been measured as 
low as 12  mmHg (corresponding to an SaO2 of only 8%) 
just prior to surfacing (Meir et  al., 2009).

During severe hypoxemia, there is a reduction in oxidative 
metabolism of the brain (Bain et al., 2017), which complement 
the gradual rise in cerebral blood flow that occurs across an 
apnea, serving to sustain cerebral oxygen demands (Willie 
et al., 2015) – and ultimately prolong consciousness. It appears 
that diving (versus terrestrial) mammals have distinct neural 
adaptations (i.e., a different distribution of neuroglobins that 
are found in higher concentrations in glial cells/astrocytes than 
in neurons) which predispose tolerance to hypoxia and resistance 
to reactive oxygen species (Folkow et  al., 2008; Mitz et  al., 
2009), and also have been found to have an enhanced tolerance 
to lactate and changes to exogenous substrate availability (Czech-
Damal et al., 2014). For example, in early studies with restrained 
Weddell seals performing maximal effort apneas, surrogate 
indexes cerebral metabolism (i.e., abnormal electroencephalogram 
slow waves) suggest impairments only occur when arterial and 
cerebral venous PO2 drop to 10  mmHg and 2.6  mmHg 
(Elsner et  al., 1970; Kerem and Elsner, 1973).

Surface Protocol
If this was a competitive dive, the dive would only be considered 
successful by judges [from either the Association Internationale 
pour le Développement de l’Apnée (AIDA) or the World 
Confederation of Underwater Activities (CMAS)], if the diver 
demonstrated control upon surfacing. For example, AIDA 
requires divers to remove their facial equipment (i.e., goggles 
and nose clip), perform an “OK” hand-signal and verbally 
state “I am  OK,” in that order, all the while continuously 
maintaining airways above the water. Given risk of syncope 
(see section: Last 10 m), divers employ techniques upon surfacing 
to enhance cerebral perfusion (Fernández et al., 2019). However, 
we  cannot stress with enough strength, or more strongly 
recommend against extreme diving, given the profound risk 
of drowning. Even though competitions employ vast safety 
protocols (including safety divers, winch and video/sonar systems) 
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to ensure diver safety, recreational incidents are unfortunately 
on the rise – with 52 fatalities in 2017 and the most injuries 
since 2004 (DeWitt et  al., 2019).

Risk of Lung Squeeze
With a delicate pulmonary capillary interface (West et al., 1991), 
it is perhaps not surprising that lung injury can occur, due 
to the cumulative forces of hydrostatic-induced compression 
and decompression of both the lungs and thoracic cage, 
centralization of blood volume, hypertension, exertion, and 
hypercapnic hypoxia. Such an injury, commonly referred to 
as lung squeeze, is a form of pulmonary barotrauma that 
has been extensively reviewed (Ferrigno and Lundgren, 2003; 
Lindholm and Lundgren, 2009; Dujic and Breskovic, 2012; 
Mijacika and Dujic, 2016; Moon et  al., 2016; Kumar and 
Thompson, 2019; Schipke et al., 2019). Lung squeeze manifests 
shortly after surfacing and is characterized by pulmonary 
edema and hemoptysis (Boussuges et  al., 1999; Lindholm 
et  al., 2008; Patrician et  al., 2021a), and is often associated 
with productive cough, dyspnea, and chest tightness (Cialoni 
et al., 2012); decrements in lung function and reduced oxygen 
saturation (Linér and Johan, 2008); and an impairment in 
pulmonary gas efficiency (Patrician et  al., 2021a). Certainly, 
any injury to the delicate pulmonary capillary interface is 
serious and requires the appropriate medical attention. But 
due to the elevated risk of drowning and/or meager accessibility 
to medical aid, it is potentially shortly upon surfacing when 
the consequences of barotrauma can be the most consequential, 
or even fatal (Vestin, 2015). The exact phase of a dive 
when the integrity of the pulmonary capillaries become 
compromised – and exact mechanisms involved – has been 
explored since the late 1950’s (Carey et  al., 1956; Craig, 
1968; Ferretti, 2001; Fitz-Clarke, 2007; Lindholm and 
Lundgren, 2009; Ferretti et  al., 2012). Yet, it is still not 
clear whether lung squeeze can be  attributed to the 
compression and alveolar collapse during descent, the 
cumulative strain and capillary stress failure under 
compression, or the de-compression and alveolar reopening 
during ascent.

An important future direction that remains to be addressed 
in breath-hold divers, is the development of appropriate 
recovery strategies for breath-hold divers who suffer from a 
single bout or repetitive incidents of pulmonary barotrauma 
or lung squeeze. Abstinence from diving and rest is certainly 
a necessity, as the risk of swimming-induced pulmonary edema 
reoccurrence has been reported to be as high as 75% (reviewed 
in; Grünig et  al., 2017). However, the nature and duration 
of such rest is unclear. The only available literature on future 
barotrauma risk is limited to SCUBA (self-contained underwater 
breathing apparatus) divers, and the findings are inconclusive 
(Calder, 1985; Russi, 1998).

Risk of Decompression Sickness
Decompression sickness (DCS) or “Taravana” can occur in 
breath-hold divers, especially those diving repetitively (e.g., 
spearfishing, safety divers, and/or use of underwater scooters) and 

those performing extreme depths (reviewed in; Cross, 1965; 
Paulev, 1965; Rahn and Yokoyama, 1965; Schipke et  al., 
2006; Fitz-Clarke, 2009; Lemaitre et  al., 2009; Moon and 
Gray, 2010; Dujic and Breskovic, 2012). The pathology of 
DCS, including its manifestation and risk factors have been 
extensively reviewed elsewhere (Brubakk and Neuman, 2003); 
however, in breath-hold divers, symptoms can range from 
dizziness, nausea, thoracic/skin/joint pain, hemiplegia, paresis, 
dysarthria, vertigo, and unconsciousness, with short- to 
long-term prognoses (Cross, 1965; Schipke et  al., 2006; 
Cortegiani et al., 2013; Tetzlaff et al., 2017). The consequences 
of DCS are related to the affinity of certain tissues and 
the rate at which they uptake nitrogen. For example, the 
brain, heart, and viscera saturate within a couple of minutes, 
whereas in fat tissues, nitrogen continuously rises (Schipke 
et  al., 2006). Likewise, upon ascent, the half-life of nitrogen 
is less in neural tissues, followed by skin and muscle, and 
then joints, ligaments, and bones (Rusoke-Dierich, 2018). 
Even though the rapid uptake of nitrogen occurring in neural 
tissue and blood may only manifest as narcosis, the rate 
of nitrogen clearance is a serious concern for divers, since 
ascent cannot be  feasibly or safely slowed. It is perhaps not 
surprising that intravascular bubbles have been reported 
following spearfishing, where short surface times and the 
repetitive dives occur with often insufficient times to allow 
nitrogen clearance (Cialoni et  al., 2016). Although this 
observation is not a universal finding (Boussuges et  al., 
1997; Gargne et  al., 2012), arterial gas embolism following 
breath-hold diving has been implicated in stroke risk (Tetzlaff 
et  al., 2017). Ultimately, modeling has suggested that the 
risk of decompression sickness up to 100  meters is quite 
low, but increases non-linearly to 5–7% at 230  m, where 
total lung collapse is anticipated to occur (Fitz-Clarke, 2009). 
This aligns with reports of nitrogen narcosis in elite divers 
diving beyond 100  m (Patrician et  al., 2021a).

ARE THERE LONG-TERM MEDICAL 
CONSEQUENCES TO EXTREME 
BREATH-HOLD DIVING?

There are indigenous diving populations, such as the Ama in 
Japan, the Haeyeno in Korea (Teruoka, 1932; Rahn and Yokoyama, 
1965; Hong and Rahn, 1967; Vaneechoutte et  al., 2011), and 
the Bajau in Indonesia (Abrahamsson and Schagatay, 2014; 
Ilardo et  al., 2018) who still practice breath-hold diving as 
their primarily means of harvesting food. Early reports from 
the Ama seemed to limit occupational aliments to the ear, 
nose, and throat (e.g., hearing loss, stenosis of Eustachian tube, 
sinusitis; Harashima and Iwasaki, 1965). Oh and colleagues 
provide recent evidence to indicate an elevated prevalence of 
chronic kidney disease in Korean Haenyeo, based on a large 
cohort of Korean Haenyeo subsistence divers (n  =  715) and 
controls (n  =  715; matched for a variety of covariates, such 
as age, hypertension, cardiovascular disease, and circulatory 
parameters; Oh et  al., 2017). However, the nature of this 
sustenance diving starkly contrasts the profound degrees of 
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hypoxemia, hyperoxia, and hypercapnia regularly experienced 
by modern competitive free-divers and spear-fishers who push 
their physiological limits. Therefore, whether chronic/lifelong 
extreme diving with profound exposures incurs any long-term 
consequences is an important future research topic.

Brain Biomarkers and Cognitive Function
It is perhaps not entirely surprising that increases in blood-
brain barrier and astrocyte damage markers (i.e., S100β) have 
been shown immediately following maximal static apneas 
(Andersson et al., 2009), which can persist for >1 day following 
a blackout (Linér and Andersson, 2009). An elevated oxidative 
state following sustained diving (Theunissen et al., 2013) increased 
cortisol, copeptin, brain natriuretic peptide, and ischemia-
modified albumin (Marlinge et  al., 2019). However, in another 
study, there was an increase in another brain neuronal damage 
marker (i.e., neuron-specific enolase), yet without changes in 
other related brain and cardiac markers (Kjeld et  al., 2015). 
At least with static apneas without blackout, the rise in some 
brain damage markers that suggest potential disruption of the 
blood-brain barrier seem to occur in the absence of neuronal-
parenchymal damage (Bain et  al., 2018a). However, with 
supramaximal performances during static and dynamic disciplines 
– which have moderate incidences of blackout – the risk is 
likely higher. With regards to cognitive function, however, the 
findings are mixed – with some reports suggesting normative 
scoring on neuropsychological tests (Ridgway and McFarland, 
2006) and others showing slight decrements which were correlated 
with maximum static apnea duration (Billaut et  al., 2018). 
More cross-sectional and longitudinal research is required on 
this topic.

Lung Function
Another relevant question related to the long-term consequences 
of apnea diving pertains to the lungs, and in particular, the 
small airways. To enhance deep diving performance, divers 
regularly perform (1) passive thoracic stretches (e.g., static 
movements to elicit varying degrees of torsion and tension 
within the thorax, at elevated and minimal lung volumes) and 
(2) active lung stretches (via inspiratory and expiratory 
glossopharyngeal breathing, to alter lung volume >TLC and 
<RV respectively; Lindholm et  al., 2009). These techniques 
aim to increase TLC and improve tolerance to hydrostatic-
induced lung compression (i.e., to depths beyond RV-equivalent 
depth). However, any increase in lung compliance could come 
at the cost of exaggerated elastance and a premature closing 
pressure. Therefore, it is logical to hypothesize that the lungs 
of elite divers could become pendulous over time. Unfortunately, 
there is a scarcity of longitudinal data on lung function in 
breath-hold divers. However, some unique data exist in four 
male trained divers who were longitudinally tracked over 3 years 
(personal best depths ranging between 32 and 64  m; 
Walterspacher et  al., 2011), and one well-trained male diver 
over 8  years (personal best depth of 88  m; Seccombe et  al., 
2013). Although it was concluded that there was not clear 
evidence of any long-term deleterious effects of diving or 

training on the lungs, elevations in TLC coincided with reductions 
in FEV1/VC; however, these data should be  confirmed in a 
lager sample size incorporating more sophisticated measures 
of pulmonary function. Cross-sectional reports indicate that 
the FEV1/FVC ratio, at least in mostly recreational diving 
cohorts, does not appear markedly different from matched 
controls (0.79 for both groups; Ferretti et  al., 2012), or is even 
improved (0.94  in elite divers vs. 0.84  in controls; Lemaître 
et  al., 2010). However, mean FEV1/FVC ratios of (1) 0.75 was 
demonstrated in competitive divers with a history of performing 
lung packing (Tetzlaff et  al., 2008), (2) 0.74 was demonstrated 
in actively training and competing divers (Walterspacher et al., 
2011), and (3) 0.76 was demonstrated in recreational to elite 
trained divers (Patrician et al., 2021b), where the highest trained 
divers (n  =  8) had a mean FEV1/FVC ratio of 0.71; and (4) 
0.67–0.69 was demonstrated in the longitudinally tracked diver, 
after 5–8  years of diving/training (Seccombe et  al., 2013). 
Certainly, FEV1/FVC provides limited insight into lung function 
and most of these data do not conform to the classical criteria 
for obstructive impairment (i.e., <0.70%). Therefore, additional 
metrics need to be  evaluated, especially given the difficulty in 
evaluating pre-clinical small airway disease. In the longitudinal 
study by Walterspacher et  al. (2011), mean static and dynamic 
lung compliance was unaltered after the 3-year study, however 
the cohort was divided, with equal proportions of divers 
demonstrating an increase or decrease in compliance. In a 
more recent study by Patrician et  al. (2021b) surrogate 
measurements of lung compliance (i.e., airway resistance and 
reactance via forced oscillation technique) appears mildly altered 
within 170  min post-dive, but were not outside the normative 
ranges at either baseline or post-dive. Ultimately, large scale 
longitudinal studies (with bronchodilator reversibility tests) are 
essential to support or refute the notion that diving – or the 
aggressive training strategies typically employed by divers to 
aid performance (e.g., inspiratory and expiratory glossopharyngeal 
breathing) – might incur any risk of pulmonary function decline.

CONCLUSION

Ever since the early diving studies in the Japanese Ama 
(Teruoka, 1932), our scientific exploration of human breath-
holding capacity has advanced our understanding of human 
physiology and adaptation. In this review, we have discussed 
the physiological responses that occur across the phases of a 
dive, and highlighted the challenges driven by hyperbaria. 
Future longitudinal and cross-sectional studies are needed to 
fully elucidate the potential clinical consequences of apnea 
and diving.
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