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The concept of a “local” renin angiotensin
system (RAS) can mean different things
to different people. Its main purpose is
to differentiate the “local” RAS operat-
ing in tissues from the classical “circu-
lating” RAS, but it is difficult to differ-
entiate between the two systems because
of their extensive overlap. The circulat-
ing RAS comprises kidney-derived renin
acting on liver-derived angiotensinogen to
generate angiotensin (Ang) I that is con-
verted to Ang II by angiotensin convert-
ing enzyme (ACE). However, tissues are
the main site of production of angiotensin
peptides by the circulating RAS, whereby
plasma-derived renin acts on plasma-
derived angiotensinogen to generate Ang I,
which is converted to Ang II by endothelial
ACE (1–4).

Local RAS refers to tissue-based mecha-
nisms of Ang peptide formation that oper-
ate separately from the circulating RAS.
Although many different concepts of local
RAS have been described, a key feature
is the local synthesis of RAS components
including angiotensinogen and enzymes
such as renin that cleave angiotensino-
gen to produce Ang peptides indepen-
dently of the circulating RAS. ACE and
Ang II type 1 (AT1) and type 2 (AT2)
receptors are invariably locally synthe-
sized, but these are also components of
the circulating RAS. Many other poten-
tial components of local RAS have been
described that may contribute to tissue-
specific mechanisms of Ang peptide for-
mation, and that may either partici-
pate in disease processes or contribute
to mechanisms that protect from tissue
injury. These include the (pro)renin recep-
tor (5), renin-independent mechanisms of

Ang peptide generation from Ang- (1-
12) (6), intracellular (or intracrine) RAS
that may contribute to cardiovascular dis-
ease (7, 8), and AT2 receptors (7) and
the ACE2/Ang-(1-7)/Mas receptor path-
way (6–8) that may mediate therapeutic
benefit in cardiovascular disease. In addi-
tion, novel Ang peptides with novel phar-
macology, including Ang IV, Ang A, ala-
mandine, and angioprotectin (6, 8), have
the potential to contribute to disease or
to protective mechanisms. Moreover, the
brain RAS, including the ACE2/Ang-(1-
7)/Mas receptor and the Ang IV/insulin
regulated aminopeptidase pathways may
play a role in Alzheimer’s and Parkinson’s
diseases (9). Local production of aldos-
terone may have a pathogenic role (7,
10), ACE, AT2 receptors, Ang-(1-7) and
acetyl-Ser-Asp-Lys-Pro may have a role in
hematopoiesis (11), and the ACE2/Ang-(1-
7)/Mas receptor pathway may contribute
to fetal programing, reproduction, and
cancer (6, 12).

This short opinion piece discusses the
potential clinical relevance of local RAS.
The challenge in demonstrating the inde-
pendence of local from circulating RAS,
and the potential interaction of ACE
inhibitor and AT1 receptor blocker (ARB)
therapies with local RAS are discussed.
Attempts to define local RAS that are
independent of the circulating RAS have
been primarily based on animal mod-
els and the clinical relevance of local
RAS is uncertain. However, this area of
research continues to evolve, and today’s
opinions may change as we gain better
understanding of how these novel compo-
nents and mechanisms impact on clinical
medicine.

HOW CAN LOCAL RAS BE SHOWN TO
BE INDEPENDENT OF THE
CIRCULATING RAS?
As reviewed elsewhere (5–12), many lines
of evidence suggest the possibility of local
RAS that may operate independently of
the circulating RAS and play a patho-
genic or protective role. This evidence
includes the widespread tissue expression
of angiotensinogen, the only known pre-
cursor of the Ang peptides and an essen-
tial requirement for an independent local
RAS (13–16). However, local production
of RAS components does not prove their
functional significance, and proving their
clinical relevance presents many challenges.
One approach to study of the role of
locally synthesized RAS components is
their targeted deletion from specific tis-
sues. This approach has been applied to the
kidney.

Both clinical experiences with ACE
inhibitor and ARB therapies during preg-
nancy, and ACE, renin, angiotensinogen,
and AT1 receptor gene mutation and
knockout models demonstrate a critical
role for the RAS in renal development and
function in animals and humans (17–23).
Moreover, ACE inhibition demonstrates a
differential regulation of Ang II levels in
kidney and blood (24). However, these data
do not prove a specific role for the local RAS
in the kidney. Matsusaka et al. investigated
the role of the local RAS in renal develop-
ment and function by producing mice with
genetic deletion of angiotensinogen syn-
thesis in the kidney. In contrast to the mor-
phological and functional consequences
of whole body or liver specific deletion
of angiotensinogen gene expression, dele-
tion of angiotensinogen production in the
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kidney had no effect on renal morphol-
ogy or function (25). Moreover, contrary
to the expectation that locally produced
angiotensinogen was the main contribu-
tor to renal Ang II levels, Matsusaka et al.
showed deletion of renal angiotensinogen
production had no effect on renal Ang II
levels, and that liver angiotensinogen is
the primary source of Ang II in the kid-
ney (25). With the caveat that the studies
of Matsusaka et al. were not in patho-
physiological models (25), these data show
that evidence for local synthesis of a RAS
component is not sufficient to establish
a role for the locally synthesized compo-
nent in physiology or pathology, whether
by an intracellular (intracrine) or extra-
cellular mechanism. Proof that a locally
synthesized RAS component contributes to
physiology or pathology requires demon-
stration that deletion of the locally syn-
thesized component impacts on physiology
and/or pathology.

Similar to the case for angiotensino-
gen, mice with reduced renal expression
of ACE had normal histology and urine
concentrating ability (26), suggesting that
locally synthesized ACE does not play an
essential role in normal renal development
and function. Moreover, the marked reduc-
tion in Ang II levels in kidney, heart, and
other organs caused by global ACE gene
deletion, despite near-normal Ang I lev-
els (27, 28), indicates that an intracellular
(intracrine) ACE-independent mechanism
of Ang II formation is unlikely to exist in
these tissues.

Evidence for a pathogenic role of renal
ACE is the demonstration that genetic dele-
tion of renal ACE expression prevented
hypertension produced by subcutaneous
administration of Ang II (26), suggesting a
specific renal ACE-dependent mechanism
of hypertension in this model. However,
the significance of this finding is uncer-
tain because ACE inhibition does not mod-
ify hypertension produced by intravenous
Ang II administration in either animal of
human studies (29–33), and it is ques-
tionable whether the subcutaneous Ang II
model of hypertension has any physiologi-
cal or pathological relevance (34).

An alternative approach to defining a
local tissue RAS was to use recombinant
technology to express ACE as a reporter
gene on the cardiomyocyte membrane
(35). In this model, ACE expression on the

cardiomyocyte membrane (where it is not
normally expressed) would be expected to
increase cardiac Ang II levels if Ang I were
also present in this tissue compartment.
Expression of ACE on the cardiomyocyte
membrane increased cardiac Ang II levels
in mice without endothelial expression of
ACE, but not in rats or mice with endothe-
lial ACE expression (35, 36). These studies
do not therefore provide evidence in sup-
port of Ang I formation in the extravascu-
lar compartment of the heart of animals
with endothelial ACE expression. By con-
trast, deletion of testicular ACE reduced
male fertility (37), indicating a specific
role for testicular ACE. However, ACE has
many substrates (38) and the reduction in
male fertility may reflect an action of tes-
ticular ACE that is independent of Ang
peptides.

Part of the challenge in identifying a
local RAS that is independent of the cir-
culating RAS is the difficulty in measur-
ing in vivo levels of Ang peptides in tis-
sues. For example, initial reports of sub-
stantial amounts of Ang II and Ang-(1-
7) in the brain (39, 40) were not con-
firmed when more rigorous methodology
was applied (41, 42).

DO THE THERAPEUTIC BENEFITS OF
ACE INHIBITOR AND ARB THERAPIES
ESTABLISH THE CLINICAL RELEVANCE
OF LOCAL RAS?
A key argument in support of the clin-
ical relevance of the RAS, whether local
or circulating, is the therapeutic benefit
from inhibition of this system. De Mello
and Frohlich proposed that the local RAS
mediates in part the therapeutic benefits of
ACE inhibitor and ARB therapies (7), but
there are difficulties in establishing such a
role for local RAS. For example, the claim
that the beneficial effects of these therapies
occurred independently of blood pressure
(7) suggests, but does not prove, a role
for local RAS. The complexity of blood
pressure regulation means that alternative
explanations are possible and ambulatory
blood pressure monitoring may be neces-
sary to demonstrate an effect of therapy on
blood pressure not detected by office blood
pressure measurement (43). Furthermore,
the different benefits of ACE inhibitor and
ARB therapies in comparison with antihy-
pertensive agents that act independently of
the RAS (7) do not prove that these benefits

were due to inhibition of local rather than
the circulating RAS.

Ang II administration is a well-
recognized model of cardiovascular and
renal disease (44–46), and the therapeu-
tic benefits of RAS inhibition are almost
certainly in large part a consequence of
reduced Ang II stimulation of the AT1
receptor in high renin, high Ang II condi-
tions such as renal artery stenosis and heart
failure. Reduced AT1 receptor stimulation
may also play an important role in the renal
effects of RAS inhibition, including the side
effects of these therapies (47, 48). Many
studies investigating the combination of
ACE inhibitor, ARB, and renin inhibitor
therapies were based on the assumption
that the therapeutic benefits of these agents
are the consequence of reduced AT1 recep-
tor stimulation, and that combination of
these therapies would produce greater ther-
apeutic benefit by producing greater reduc-
tion in AT1 receptor stimulation (47–53).
What may not have been appreciated was
the large body of preclinical and clinical
data indicating that these drugs also pro-
duce benefits by mechanisms separate from
reduced AT1 receptor stimulation. More-
over, many of these mechanisms separate
from reduced AT1 receptor stimulation
involve novel RAS components implicated
in local tissue RAS (Figure 1). For exam-
ple,ARB therapies, by blocking the negative
feedback control of renin secretion, also
increase Ang II levels that stimulate the
AT2 receptor, leading to cardioprotection
(54, 55). Moreover, both ACE inhibitor and
ARB therapies increased Ang-(1-7) levels
(56) that may produce therapeutic effects
mediated by the Ang-(1-7)/Mas receptor
pathway (6). In addition, ACE inhibitor,
ARB, and renin inhibitor therapies increase
bradykinin levels that may contribute to
their antihypertensive and cardioprotec-
tive actions (54, 55, 57–63). Consequently,
therapeutic benefit from ACE inhibitor,
ARB, and renin inhibitor therapies does not
prove a pathogenic role for the RAS, either
local or circulating.

An important aspect of these additional
mechanisms of therapeutic benefit from
RAS inhibition is that combination of ACE
inhibitor, ARB, and/or renin inhibitor ther-
apies may block some of these mechanisms
of benefit, thereby explaining the many
clinical studies, apart from heart failure
(49), that showed no additional benefit
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FIGURE 1 | Diagrammatic representation of angiotensin (Ang) and bradykinin peptide formation
and metabolism, with the sites of action of angiotensin converting enzyme (ACE) inhibitors
(ACEI), angiotensin type 1 (AT1) receptor blockers (ARB), and the renin inhibitor aliskiren. In
addition to inhibiting renin, aliskiren increases tissue kallikrein activity and bradykinin levels that may act
on bradykinin type 1 (B1) and type 2 (B2) receptors (55). Neutral endopeptidase (NEP) converts Ang I to
Ang-(1-7), ACE2 converts Ang II to Ang-(1-7), and aminopeptidases convert Ang II to Ang III and Ang IV.

from combination of ACE inhibitor, ARB,
and renin inhibitor therapies (47, 48, 50–
53). For example, the benefits of ARB ther-
apy produced by increased Ang II levels and
AT2 receptor stimulation will be blocked
if combined with renin inhibitor or ACE
inhibitor therapies, because renin inhibitor
and ACE inhibitor therapies attenuate the
increase in Ang II levels produced by ARB
therapy (55, 56, 64, 65). Moreover, the
benefits of ACE inhibitor and ARB thera-
pies produced by increased Ang-(1-7) lev-
els and Mas receptor stimulation will be
blocked if combined with renin inhibitor
or neutral endopeptidase inhibitor thera-
pies because renin inhibitor and neutral
endopeptidase inhibitor therapies attenu-
ate the increase in Ang-(1-7) levels pro-
duced by ACE inhibitor and ARB therapies
(66). In addition, neutral endopeptidase
inhibitor therapy may increase Ang II levels
by reducing Ang II metabolism (66, 67).

CONCLUSION
Current concepts of the local RAS have
expanded to include the (pro)renin recep-
tor, renin-independent mechanisms of
Ang peptide generation from Ang-(1-12),
AT2 receptors, the ACE2/Ang-(1-7)/Mas
receptor and Ang IV/insulin regulated
aminopeptidase pathways, an intracellu-
lar (intracrine) RAS, and novel Ang pep-
tides (5–9, 11, 12). Much of the evidence
for these new RAS components is based

on animal studies and further research is
required to establish that local RAS con-
tribute to physiology and disease. Con-
sequently, the clinical relevance of local
RAS remains speculative. Nevertheless, the
expanding repertoire of local RAS compo-
nents offers new therapeutic targets and the
prospect of new therapies.

ACKNOWLEDGMENTS
St Vincent’s Institute of Medical Research is
supported in part by the Victorian Govern-
ment’s Operational Infrastructure Support
Program.

REFERENCES
1. Campbell DJ. The site of angiotensin produc-

tion. J Hypertens (1985) 3:199–207. doi:10.1097/
00004872-198506000-00002

2. Campbell DJ. Circulating and tissue angiotensin
systems. J Clin Invest (1987) 79:1–6. doi:10.1172/
JCI112768

3. Admiraal PJJ, Derkx FHM, Danser AHJ, Pieterman
H, Schalekamp MADH. Metabolism and produc-
tion of angiotensin I in different vascular beds in
subjects with hypertension. Hypertension (1990)
15:44–55. doi:10.1161/01.HYP.15.1.44

4. Campbell DJ. Angiotensin II generation in vivo:
does it involve enzymes other than renin
and angiotensin-converting enzyme? J Renin
Angiotensin Aldosterone Syst (2012) 13:314–6. doi:
10.1177/1470320312447162

5. Binger KJ, Muller DN. Autophagy and the
(pro)renin receptor. Front Endocrinol (2013)
4:155. doi:10.3389/fendo.2013.00155

6. Chappell MC, Marshall AC, Alzayadneh EM,
Shaltout HA, Diz DI. Update on the angiotensin
converting enzyme 2-angiotensin (1-7)-Mas

receptor axis: fetal programing, sex differences, and
intracellular pathways. Front Endocrinol (2014)
4:201. doi:10.3389/fendo.2013.00201

7. De Mello WC, Frohlich ED. Clinical perspec-
tives and fundamental aspects of local cardiovas-
cular and renal renin-angiotensin systems. Front
Endocrinol (2014) 5:16. doi:10.3389/fendo.2014.
00016

8. Zhuo JL, Ferrao FM, Zheng Y, Li XC. New frontiers
in the intrarenal renin-angiotensin system: a crit-
ical review of classical and new paradigms. Front
Endocrinol (2013) 4:166. doi:10.3389/fendo.2013.
00166

9. Wright JW, Kawas LH, Harding JW. A role for the
brain RAS in Alzheimer’s and Parkinson’s diseases.
Front Endocrinol (2013) 4:158. doi:10.3389/fendo.
2013.00158

10. Aroor AR, Demarco VG, Jia G, Sun Z, Nistala
R, Meininger GA, et al. The role of tissue renin-
angiotensin-aldosterone system in the develop-
ment of endothelial dysfunction and arterial stiff-
ness. Front Endocrinol (2013) 4:161. doi:10.3389/
fendo.2013.00161

11. Rodgers KE, Dizerega GS. Contribution of the local
RAS to hematopoietic function: a novel therapeu-
tic target. Front Endocrinol (2013) 4:157. doi:10.
3389/fendo.2013.00157

12. Herr D, Bekes I, Wulff C. Local renin-
angiotensin system in the reproductive system.
Front Endocrinol (2013) 4:150. doi:10.3389/fendo.
2013.00150

13. Campbell DJ, Habener JF. Angiotensinogen gene
is expressed and differentially regulated in multi-
ple tissues of the rat. J Clin Invest (1986) 78:31–9.
doi:10.1172/JCI112566

14. Campbell DJ, Habener JF. Cellular localization of
angiotensinogen gene expression in brown adipose
tissue and mesentery: quantification of messen-
ger ribonucleic acid abundance using hybridiza-
tion in situ. Endocrinology (1987) 121:1616–26.
doi:10.1210/endo-121-5-1616

15. Campbell DJ, Habener JF. Hybridization in situ
studies of angiotensinogen gene expression in
rat adrenal and lung. Endocrinology (1989)
124:218–22. doi:10.1210/endo-124-1-218

16. Campbell DJ, Sernia C, Thomas WG, Old-
field BJ. Immunocytochemical localization of
angiotensinogen in rat brain: dependence of neu-
ronal immunoreactivity on method of tissue pro-
cessing. J Neuroendocrinol (1991) 3:653–60. doi:
10.1111/j.1365-2826.1991.tb00330.x

17. Bullo M, Tschumi S, Bucher BS, Bianchetti
MG, Simonetti GD. Pregnancy outcome follow-
ing exposure to angiotensin-converting enzyme
inhibitors or angiotensin receptor antagonists: a
systematic review. Hypertension (2012) 60:444–50.
doi:10.1161/HYPERTENSIONAHA.112.196352

18. Moreno C, Hoffman M, Stodola TJ, Didier
DN, Lazar J, Geurts AM, et al. Creation
and characterization of a renin knockout
rat. Hypertension (2011) 57:614–9. doi:10.1161/
HYPERTENSIONAHA.110.163840

19. Yanai K, Saito T, Kakinuma Y, Kon Y, Hirota K,
Taniguchi-Yanai K, et al. Renin-dependent cardio-
vascular functions and renin-independent blood-
brain barrier functions revealed by renin-deficient
mice. J Biol Chem (2000) 275:5–8. doi:10.1074/jbc.
275.1.5

www.frontiersin.org July 2014 | Volume 5 | Article 113 | 3

http://dx.doi.org/10.1097/00004872-198506000-00002
http://dx.doi.org/10.1097/00004872-198506000-00002
http://dx.doi.org/10.1172/JCI112768
http://dx.doi.org/10.1172/JCI112768
http://dx.doi.org/10.1161/01.HYP.15.1.44
http://dx.doi.org/10.1177/1470320312447162
http://dx.doi.org/10.3389/fendo.2013.00155
http://dx.doi.org/10.3389/fendo.2013.00201
http://dx.doi.org/10.3389/fendo.2014.00016
http://dx.doi.org/10.3389/fendo.2014.00016
http://dx.doi.org/10.3389/fendo.2013.00166
http://dx.doi.org/10.3389/fendo.2013.00166
http://dx.doi.org/10.3389/fendo.2013.00158
http://dx.doi.org/10.3389/fendo.2013.00158
http://dx.doi.org/10.3389/fendo.2013.00161
http://dx.doi.org/10.3389/fendo.2013.00161
http://dx.doi.org/10.3389/fendo.2013.00157
http://dx.doi.org/10.3389/fendo.2013.00157
http://dx.doi.org/10.3389/fendo.2013.00150
http://dx.doi.org/10.3389/fendo.2013.00150
http://dx.doi.org/10.1172/JCI112566
http://dx.doi.org/10.1210/endo-121-5-1616
http://dx.doi.org/10.1210/endo-124-1-218
http://dx.doi.org/10.1111/j.1365-2826.1991.tb00330.x
http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.196352
http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.163840
http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.163840
http://dx.doi.org/10.1074/jbc.275.1.5
http://dx.doi.org/10.1074/jbc.275.1.5
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Campbell Clinical relevance of local RAS

20. Gribouval O, Moriniere V, Pawtowski A, Arrondel
C, Sallinen SL, Saloranta C, et al. Spectrum of
mutations in the renin-angiotensin system genes
in autosomal recessive renal tubular dysgenesis.
Hum Mutat (2012) 33:316–26. doi:10.1002/humu.
21661

21. Niimura F, Labosky PA, Kakuchi J, Okubo S,
Yoshida H, Oikawa T, et al. Gene targeting in mice
reveals a requirement for angiotensin in the devel-
opment and maintenance of kidney morphology
and growth factor regulation. J Clin Invest (1995)
96:2947–54. doi:10.1172/JCI118366

22. Tsuchida S, Matsusaka T, Chen XM, Okubo S,
Niimura F, Nishimura H, et al. Murine double nul-
lizygotes of the angiotensin type 1A and 1B recep-
tor genes duplicate severe abnormal phenotypes of
angiotensinogen nullizygotes. J Clin Invest (1998)
101:755–60. doi:10.1172/JCI1899

23. Esther CR Jr., Howard TE, Marino EM, God-
dard JM, Capecchi MR, Bernstein KE. Mice lack-
ing angiotensin-converting enzyme have low blood
pressure, renal pathology, and reduced male fertil-
ity. Lab Invest (1996) 74:953–65.

24. Campbell DJ, Lawrence AC, Towrie A, Kladis A,
Valentijn AJ. Differential regulation of angiotensin
peptide levels in plasma and kidney of the rat.
Hypertension (1991) 18:763–73. doi:10.1161/01.
HYP.18.6.763

25. Matsusaka T, Niimura F, Shimizu A, Pastan I,
Saito A, Kobori H, et al. Liver angiotensinogen is
the primary source of renal angiotensin II. J Am
Soc Nephrol (2012) 23:1181–9. doi:10.1681/ASN.
2011121159

26. Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK,
Giani JF, Nguyen MT, Riquier-Brison AD, et al.
The absence of intrarenal ACE protects against
hypertension. J Clin Invest (2013) 123:2011–23.
doi:10.1172/JCI65460

27. Campbell DJ, Alexiou T, Xiao HD, Fuchs S,
McKinley MJ, Corvol P, et al. Effect of reduced
angiotensin-converting enzyme gene expression
and angiotensin-converting enzyme inhibition on
angiotensin and bradykinin peptide levels in mice.
Hypertension (2004) 43:854–9. doi:10.1161/01.
HYP.0000119190.06968.f1

28. Alexiou T, Boon WM, Denton DA, Di Nicolantonio
R, Walker LL, McKinley MJ, et al. Angiotensino-
gen and angiotensin converting enzyme gene copy
number and angiotensin and bradykinin pep-
tide levels in mice. J Hypertens (2005) 23:945–54.
doi:10.1097/01.hjh.0000166834.32817.41

29. Textor SC, Brunner HR, Gavras H. Converting
enzyme inhibition during chronic angiotensin II
infusion in rats. Evidence against a nonangiotensin
mechanism. Hypertension (1981) 3:269–76. doi:10.
1161/01.HYP.3.2.269

30. Mizelle HL, Hall JE, Woods LL. Interactions
between angiotensin II and renal nerves during
chronic sodium deprivation. Am J Physiol Renal
Physiol (1988) 255:F823–7.

31. Shoback DM, Williams GH, Hollenberg NK,
Davies RO, Moore TJ, Dluhy RG. Endoge-
nous angiotensin II as a determinant of
sodium-modulated changes in tissue responsive-
ness to angiotensin II in normal man. J Clin
Endocrinol Metab (1983) 57:764–70. doi:10.1210/
jcem-57-4-764

32. Koletsky RJ, Gordon MB, LeBoff MS, Moore
TJ, Dluhy RG, Hollenberg NK, et al. Captopril
enhances vascular and adrenal responsiveness to
angiotensin II in essential hypertension. Clin Sci
(1984) 66:299–305.

33. Hannedouche T, Ikeni A, Marques LP, Natov S,
Dechaux M, Schmitt F, et al. Renal effects of
angiotensin II in normotensive subjects on short-
term cilazapril treatment. J Cardiovasc Pharmacol
(1992) 19(Suppl 6):S25–7. doi:10.1097/00005344-
199219006-00005

34. Campbell DJ. Do intravenous and subcutaneous
angiotensin II administration increase blood pres-
sure by different mechanisms? Clin Exp Pharmacol
Physiol (2013) 40:560–70. doi:10.1111/1440-1681.
12085

35. Campbell DJ, Xiao H, Fuchs S, Bernstein KE.
Genetic models provide unique insight into
angiotensin and bradykinin peptides in the
extravascular compartment of the heart in vivo.
Clin Exp Pharmacol Physiol (2009) 36:547–53.
doi:10.1111/j.1440-1681.2008.05106.x

36. Tian XL, Pinto YM, Costerousse O, Franz WM,
Lippoldt A, Hoffmann S, et al. Over-expression
of angiotensin converting enzyme-1 augments
cardiac hypertrophy in transgenic rats. Hum
Mol Genet (2004) 13:1441–50. doi:10.1093/hmg/
ddh147

37. Hagaman JR, Moyer JS, Bachman ES, Sibony M,
Magyar PL,Welch JE, et al. Angiotensin-converting
enzyme and male fertility. Proc Natl Acad Sci U S A
(1998) 95:2552–7. doi:10.1073/pnas.95.5.2552

38. Erdos EG. Angiotensin I converting enzyme and
the changes in our concepts through the years.
Hypertension (1990) 16:363–70. doi:10.1161/01.
HYP.16.4.363

39. Ganten D, Hermann K, Bayer C, Unger T, Lang RE.
Angiotensin synthesis in the brain and increased
turnover in hypertensive rats. Science (1983)
221:869–71. doi:10.1126/science.6879184

40. Chappell MC, Brosnihan KB, Diz DI, Ferrario CM.
Identification of angiotensin-(1-7) in rat brain.
Evidence for differential processing of angiotensin
peptides. J Biol Chem (1989) 264:16518–23.

41. Lawrence AC, Clarke IJ, Campbell DJ. Angiotensin
peptides in brain and pituitary of rat and sheep.
J Neuroendocrinol (1992) 4:237–44. doi:10.1111/j.
1365-2826.1992.tb00165.x

42. Senanayake PD, Moriguchi A, Kumagai H, Ganten
D, Ferrario CM, Brosnihan KB. Increased expres-
sion of angiotensin peptides in the brain of trans-
genic hypertensive rats. Peptides (1994) 15:919–26.
doi:10.1016/0196-9781(94)90051-5

43. Svensson P, de Faire U, Sleight P, Yusuf S, Öster-
gren J. Comparative effects of ramipril on ambu-
latory and office blood pressures. A HOPE sub-
study. Hypertension (2001) 38:e28–32. doi:10.
1161/hy1101.099502

44. Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban
V, Suzuki Y, Mezzano S, et al. Role of the renin-
angiotensin system in vascular diseases: expanding
the field. Hypertension (2001) 38:1382–7. doi:10.
1161/hy1201.100589

45. Dzau VJ. Tissue angiotensin and pathobiol-
ogy of vascular disease: a unifying hypothesis.
Hypertension (2001) 37:1047–52. doi:10.1161/01.
HYP.37.4.1047

46. Remuzzi G, Perico N, Macia M, Ruggenenti P.
The role of renin-angiotensin-aldosterone system
in the progression of chronic kidney disease. Kid-
ney Int (2005) 68(Suppl 99):S57–65. doi:10.1111/
j.1523-1755.2005.09911.x

47. Mann JF, Schmieder RE, McQueen M, Dyal L,
Schumacher H, Pogue J, et al. Renal outcomes
with telmisartan, ramipril, or both, in people
at high vascular risk (the ONTARGET study):
a multicentre, randomised, double-blind, con-
trolled trial. Lancet (2008) 372:547–53. doi:10.
1016/S0140-6736(08)61236-2

48. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I,
Schumacher H, et al. Telmisartan, ramipril, or
both in patients at high risk for vascular events.
N Engl J Med (2008) 358:1547–59. doi:10.1056/
NEJMoa0801317

49. McMurray JJ, Ostergren J, Swedberg K, Granger
CB, Held P, Michelson EL, et al. Effects of can-
desartan in patients with chronic heart failure
and reduced left-ventricular systolic function tak-
ing angiotensin-converting-enzyme inhibitors: the
CHARM-Added trial. Lancet (2003) 362:767–71.
doi:10.1016/S0140-6736(03)14283-3

50. Pfeffer MA, McMurray JJ, Velazquez EJ, Rouleau
JL, Kober L, Maggioni AP, et al. Valsartan, cap-
topril, or both in myocardial infarction compli-
cated by heart failure, left ventricular dysfunc-
tion, or both. N Engl J Med (2003) 349:1893–906.
doi:10.1056/NEJMoa032292

51. Solomon SD, Shin SH, Shah A, Skali H, Desai A,
Kober L, et al. Effect of the direct renin inhibitor
aliskiren on left ventricular remodelling follow-
ing myocardial infarction with systolic dysfunc-
tion. Eur Heart J (2011) 32:1227–34. doi:10.1093/
eurheartj/ehq522

52. Parving HH, Brenner BM, McMurray JJ, de Zeeuw
D, Haffner SM, Solomon SD, et al. Cardiorenal end
points in a trial of aliskiren for type 2 diabetes.
N Engl J Med (2012) 367:2204–13. doi:10.1056/
NEJMoa1208799

53. Gheorghiade M, Bohm M, Greene SJ, Fonarow GC,
Lewis EF, Zannad F, et al. Effect of aliskiren on
postdischarge mortality and heart failure readmis-
sions among patients hospitalized for heart failure:
the ASTRONAUT randomized trial. JAMA (2013)
309:1125–35. doi:10.1001/jama.2013.1954

54. Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN,
Peterson E, et al. Effects of angiotensin-converting
enzyme inhibitors and angiotensin II type 1 recep-
tor antagonists in rats with heart failure - Role of
kinins and angiotensin II type 2 receptors. J Clin
Invest (1997) 99:1926–35. doi:10.1172/JCI119360

55. Koid SS, Ziogas J, Campbell DJ. Aliskiren
reduces myocardial ischemia-reperfusion
injury by a bradykinin B2 receptor- and
angiotensin AT2 receptor-mediated mech-
anism. Hypertension (2014) 63:768–73.
doi:10.1161/HYPERTENSIONAHA.113.02902

56. Ménard J, Campbell DJ, Azizi M, Gonzales M-F.
Synergistic effects of ACE inhibition and Ang II
antagonism on blood pressure, cardiac weight, and
renin in spontaneously hypertensive rats. Circu-
lation (1997) 96:3072–8. doi:10.1161/01.CIR.96.9.
3072

57. Campbell DJ, Kladis A, Duncan A-M. Effects
of converting enzyme inhibitors on angiotensin

Frontiers in Endocrinology | Cellular Endocrinology July 2014 | Volume 5 | Article 113 | 4

http://dx.doi.org/10.1002/humu.21661
http://dx.doi.org/10.1002/humu.21661
http://dx.doi.org/10.1172/JCI118366
http://dx.doi.org/10.1172/JCI1899
http://dx.doi.org/10.1161/01.HYP.18.6.763
http://dx.doi.org/10.1161/01.HYP.18.6.763
http://dx.doi.org/10.1681/ASN.2011121159
http://dx.doi.org/10.1681/ASN.2011121159
http://dx.doi.org/10.1172/JCI65460
http://dx.doi.org/10.1161/01.HYP.0000119190.06968.f1
http://dx.doi.org/10.1161/01.HYP.0000119190.06968.f1
http://dx.doi.org/10.1097/01.hjh.0000166834.32817.41
http://dx.doi.org/10.1161/01.HYP.3.2.269
http://dx.doi.org/10.1161/01.HYP.3.2.269
http://dx.doi.org/10.1210/jcem-57-4-764
http://dx.doi.org/10.1210/jcem-57-4-764
http://dx.doi.org/10.1097/00005344-199219006-00005
http://dx.doi.org/10.1097/00005344-199219006-00005
http://dx.doi.org/10.1111/1440-1681.12085
http://dx.doi.org/10.1111/1440-1681.12085
http://dx.doi.org/10.1111/j.1440-1681.2008.05106.x
http://dx.doi.org/10.1093/hmg/ddh147
http://dx.doi.org/10.1093/hmg/ddh147
http://dx.doi.org/10.1073/pnas.95.5.2552
http://dx.doi.org/10.1161/01.HYP.16.4.363
http://dx.doi.org/10.1161/01.HYP.16.4.363
http://dx.doi.org/10.1126/science.6879184
http://dx.doi.org/10.1111/j.1365-2826.1992.tb00165.x
http://dx.doi.org/10.1111/j.1365-2826.1992.tb00165.x
http://dx.doi.org/10.1016/0196-9781(94)90051-5
http://dx.doi.org/10.1161/hy1101.099502
http://dx.doi.org/10.1161/hy1101.099502
http://dx.doi.org/10.1161/hy1201.100589
http://dx.doi.org/10.1161/hy1201.100589
http://dx.doi.org/10.1161/01.HYP.37.4.1047
http://dx.doi.org/10.1161/01.HYP.37.4.1047
http://dx.doi.org/10.1111/j.1523-1755.2005.09911.x
http://dx.doi.org/10.1111/j.1523-1755.2005.09911.x
http://dx.doi.org/10.1016/S0140-6736(08)61236-2
http://dx.doi.org/10.1016/S0140-6736(08)61236-2
http://dx.doi.org/10.1056/NEJMoa0801317
http://dx.doi.org/10.1056/NEJMoa0801317
http://dx.doi.org/10.1016/S0140-6736(03)14283-3
http://dx.doi.org/10.1056/NEJMoa032292
http://dx.doi.org/10.1093/eurheartj/ehq522
http://dx.doi.org/10.1093/eurheartj/ehq522
http://dx.doi.org/10.1056/NEJMoa1208799
http://dx.doi.org/10.1056/NEJMoa1208799
http://dx.doi.org/10.1001/jama.2013.1954
http://dx.doi.org/10.1172/JCI119360
http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02902
http://dx.doi.org/10.1161/01.CIR.96.9.3072
http://dx.doi.org/10.1161/01.CIR.96.9.3072
http://www.frontiersin.org/Cellular_Endocrinology
http://www.frontiersin.org/Cellular_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Campbell Clinical relevance of local RAS

and bradykinin peptides. Hypertension (1994)
23:439–49. doi:10.1161/01.HYP.23.4.439

58. Zeitz CJ, Campbell DJ, Horowitz JD. Myocar-
dial uptake and biochemical and hemodynamic
effects of ACE inhibitors in humans. Hyper-
tension (2003) 41:482–7. doi:10.1161/01.HYP.
0000054976.67487.08

59. Linz W, Wiemer G, Gohlke P, Unger T,
Schölkens BA. Contribution of kinins to the
cardiovascular actions of angiotensin-converting
enzyme inhibitors. Pharmacol Rev (1995) 47:
25–49.

60. Hornig B, Kohler C, Drexler H. Role of bradykinin
in mediating vascular effects of angiotensin-
converting enzyme inhibitors in humans. Circu-
lation (1997) 95:1115–8. doi:10.1161/01.CIR.95.5.
1115

61. Gainer JV, Morrow JD, Lovelend A, King DJ,
Brown NJ. Effect of bradykinin-receptor block-
ade on the response to angiotensin-converting-
enzyme inhibitor in normotensive and hyperten-
sive subjects. N Engl J Med (1998) 339:1285–92.
doi:10.1056/NEJM199810293391804

62. Campbell DJ, Krum H, Esler MD. Losar-
tan increases bradykinin levels in hypertensive
humans. Circulation (2005) 111:315–20. doi:10.
1161/01.CIR.0000153269.07762.3B

63. Campbell DJ, Zhang Y, Kelly DJ, Gilbert RE,
McCarthy DJ, Shi W, et al. Aliskiren increases
bradykinin and tissue kallikrein mRNA levels in
the heart. Clin Exp Pharmacol Physiol (2011)
38:623–31. doi:10.1111/j.1440-1681.2011.05572.x

64. Azizi M, Chatellier G, Guyene T-T, Murieta-
Geoffroy D, Ménard J. Additive effects of com-
bined angiotensin-converting enzyme inhibition
and angiotensin II antagonism on blood pressure
and renin release in sodium-depleted normoten-
sives. Circulation (1995) 92:825–34. doi:10.1161/
01.CIR.92.4.825

65. Azizi M, Menard J, Bissery A, Guyenne TT,
Bura-Riviere A, Vaidyanathan S, et al. Pharma-
cologic demonstration of the synergistic effects
of a combination of the renin inhibitor aliskiren
and the AT1 receptor antagonist valsartan on the
angiotensin II-renin feedback interruption. J Am
Soc Nephrol (2004) 15:3126–33. doi:10.1097/01.
ASN.0000146686.35541.29

66. Campbell DJ, Anastasopoulos F, Duncan A-
M, James GM, Kladis A, Briscoe TA. Effects
of neutral endopeptidase inhibition and com-
bined angiotensin converting enzyme and neu-
tral endopeptidase inhibition on angiotensin and
bradykinin peptides in rats. J Pharmacol Exp Ther
(1998) 287:567–77.

67. Richards AM, Wittert GA, Espiner EA, Yandle TG,
Ikram H, Frampton C. Effect of inhibition of
endopeptidase 24.11 on responses to angiotensin
II in human volunteers. Circ Res (1992) 71:1501–7.
doi:10.1161/01.RES.71.6.1501

Conflict of Interest Statement: The author declares
that the research was conducted in the absence of any
commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 23 April 2014; accepted: 30 June 2014; pub-
lished online: 14 July 2014.
Citation: Campbell DJ (2014) Clinical relevance of local
renin angiotensin systems. Front. Endocrinol. 5:113. doi:
10.3389/fendo.2014.00113
This article was submitted to Cellular Endocrinology, a
section of the journal Frontiers in Endocrinology.
Copyright © 2014 Campbell. This is an open-access arti-
cle distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with
these terms.

www.frontiersin.org July 2014 | Volume 5 | Article 113 | 5

http://dx.doi.org/10.1161/01.HYP.23.4.439
http://dx.doi.org/10.1161/01.HYP.0000054976.67487.08
http://dx.doi.org/10.1161/01.HYP.0000054976.67487.08
http://dx.doi.org/10.1161/01.CIR.95.5.1115
http://dx.doi.org/10.1161/01.CIR.95.5.1115
http://dx.doi.org/10.1056/NEJM199810293391804
http://dx.doi.org/10.1161/01.CIR.0000153269.07762.3B
http://dx.doi.org/10.1161/01.CIR.0000153269.07762.3B
http://dx.doi.org/10.1111/j.1440-1681.2011.05572.x
http://dx.doi.org/10.1161/01.CIR.92.4.825
http://dx.doi.org/10.1161/01.CIR.92.4.825
http://dx.doi.org/10.1097/01.ASN.0000146686.35541.29
http://dx.doi.org/10.1097/01.ASN.0000146686.35541.29
http://dx.doi.org/10.1161/01.RES.71.6.1501
http://dx.doi.org/10.3389/fendo.2014.00113
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Endocrinology/archive

	Clinical relevance of local renin angiotensin systems
	How can local RAS be shown to be independent of the circulating RAS?
	Do the therapeutic benefits of ACE inhibitor and ARB therapies establish the clinical relevance of local RAS?
	Conclusion
	Acknowledgments
	References


