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Abstract: Migraine is a complex and debilitating disorder that is broadly recognised by its character-
istic headache. However, given the wide array of clinical presentations in migraineurs, the headache
might not represent the main troublesome symptom and it can even go unnoticed. Understanding
migraines exclusively as a pain process is simplistic and certainly hinders management. We describe
the mechanisms behind some of the most disabling associated symptoms of migraine, including
the relationship between the central and peripheral processes that take part in nausea, osmophobia,
phonophobia, vertigo and allodynia. The rationale for the efficacy of the current therapeutic arsenal is
also depicted in this article. The associated symptoms to migraine, apart from the painful component,
are frequent, under-recognised and can be more deleterious than the headache itself. The clinical
anamnesis of a headache patient should enquire about the associated symptoms, and treatment
should be considered and individualised. Acknowledging the associated symptoms as a fundamental
part of migraine has permitted a deeper and more coherent comprehension of the pathophysiology
of migraine.
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1. Introduction

Migraine has been traditionally associated with the core symptom, headache [1].
Photophobia and vomiting, two of the canonical symptoms associated with migraine [2],
are also widely accepted features of the typical migraine attack, as understood classically
by patients and physicians [3]. However, reducing the understanding of migraine to a few
symptoms would be as simplistic, perhaps, as reducing Parkinson’s disease to tremors.

The way that migraineurs deal with their attacks provides valuable information about
hypersensitivity to sensorial stimulation, including avoiding movement, light, sounds,
touch or smells [4]. These are usually subjective, unpleasant experiences, unshared by
family, friends or colleagues. Consequently, migraine patients presenting associated symp-
toms as prominent features can usually be labelled as sensitive. The Greek translation for
sensitive, Eυαίσθητoς “evahistos”, can be separated into the following two parts: the prefix
meaning good or well, and the rest meaning sense or perception. However, any positive
connotation of the term has nowadays dissipated. Many of these “evahistic” manifestations
can actually be the main symptom of the clinical picture in a patient with migraine, and
imply a higher disability [5]. Migraine patients with sensory hypersensitivity may have
more attention difficulties during daily activities [6], or more cranial autonomic symptoms
associated to the headache [7], and the response to preventive treatments may vary [8]. Ex-
ogenous factors, such as stress, obesity, intestinal microbiota and even parental behaviour,
have been speculated to play a role in the chronification and sensitization process [9–12].
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In recent years, the study of non-headache symptoms has been useful in demonstrating
their important role, yet independence from pain, in the pathophysiology of migraine. In
this paper, we will focus on some frequently disabling associated symptoms, such as nausea,
osmophobia, phonophobia, neuro-otological manifestations and cutaneous allodynia, and
will spare comments on some premonitory-like symptoms, such as yawning. Photophobia
has recently been reviewed elsewhere [13], and the usually omnipresent symptom in
migraineurs, movement sensitivity, could be explained by some mechanisms that are
commented on below.

2. Nausea and Vomiting
2.1. Nausea in Migraine and Conditions Related to Migraine

Nausea is one of the symptoms associated with migraine that is considered canon-
ical, according to the International Classification of Headache Disorders, 3rd Edition
(ICHD-3) [2]. Ictal and interictal nausea has a high impact on quality of life and economic
cost [14,15], and is the second most bothersome migraine symptom, reported in 28% of
patients, exceeded only by photophobia [16].

Up to half of the people with episodic migraine suffer from nausea in more than half of
their headache episodes, and the attacks were accompanied by more headache symptoms
and a higher impact, compared to patients with less frequency of nausea. The majority
of those reporting high-frequency nausea were women [17] and had an increased risk of
developing chronic migraine in 2 years [18].

Having migrainous biology could result in patients having more disability when
presenting with other disorders that are generally associated with nausea and vomiting.

2.1.1. Cyclic Vomiting Syndrome

It is well known that there is a strong link between migraine and cyclic vomiting
syndrome [19], with similar associated symptoms during the attacks, and triggers, as
reported by the patients [20,21]. Both nausea and cyclic vomiting syndrome patients
have a decreased connectivity between the sensorimotor network and the insula, which
manages viscero-sensory processing [22] and may be regulated by the endocannabinoid
system [23]. Cannabis can act as a pro-emetic or antiemetic and can cause cannabis hy-
peremesis syndrome, which shares similar features to cyclic vomiting syndrome [24], and
whose recommended treatment is cannabis cessation [25]. Remarkably, the management of
cyclic vomiting syndrome consists predominantly of treatments also used for migraine [26].

2.1.2. Motion Sickness

Motion sickness and migraine may share a similar pathophysiology, as patients with
motion sickness have a robust migrainous biology [27] and around half of migraineurs
present with motion sickness, in comparison with 20% of those with non-migrainous
headaches [28]. Patients with “migrainous vertigo” had an improvement in severe motion
sickness following rizatriptan [29]. Nociceptive stimulation in the trigeminal area is capa-
ble of increasing nausea during motion sickness caused by optokinetic stimulation [30],
whereas nausea did not increase following extra-trigeminal nociceptive inputs [31]. Hav-
ing a history of migraine has also been associated with developing post-operative nau-
sea [32,33], and having motion sickness and being a female are independent risk factors for
post-operative vomiting [32,34].

2.1.3. Pregnancy

Pregnancy is potentially a particularly disabling period for women with migraine.
During pregnancy, one third of migrainous women require hospitalization due to hy-
peremesis gravidarum, and almost forty percent of women with hyperemesis reported
migraine headaches [35].
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Finally, a migrainous background may determine the quality of life related to nausea
in palliative care, and migraine preventive treatments serve as efficacious relief in treating
incoercible nausea in terminal patients with a history of migraine [36].

2.2. Neuroanatomy and Neuropharmacology

There is a matrix of neuro-anatomical structures involved in the onset and control of
nausea, as well as several neurotransmitters that have been the main targets of antiemetic
and acute treatment schemes.

Dopamine has been the main compound implicated in the pathophysiology of nausea
associated with migraine, at least since the 1970s [37]. Patients with migraine are sensitive
to dopaminergic pharmacological agents [38–40] and develop nausea and other classically
considered dopaminergic symptoms, such as yawning, not necessarily accompanied by
headache [38,40]. This propensity may entail a genetic predisposition, and a particular
allelic distribution was found to be significantly different for the D2 dopamine receptor
in a subpopulation of migraineurs with prominent dopaminergic symptoms [41]. Among
the dopaminergic symptoms, nausea, unlike yawning, is considered post-synaptic, and is
triggered by apomorphine and inhibited by domperidone, which targets D2 receptors [40].
Dopamine may also regulate headache pain, as dopaminergic neurons play a role in
nociceptive control by modulating trigemino-vascular neurons [42].

Serotonin also has a major role in nausea, with the receptor 5-hydroxytryptamine-
5-HT3 as the main target not only of modern antiemetic pharmacological compounds, but
also of natural antiemetics used for centuries, such as the gingerol compounds contained in
ginger [43].

Hyporexia during headaches may be explained by the loss of appetite that can be
observed during noxious dural stimulation, which activates the nucleus parabrachial and
the ventromedial of the hypothalamus, and may be mediated by cholecystokinin [44].
However, nausea can also appear before the headache, during the premonitory phase, in
almost a quarter of spontaneous attacks [45]. This percentage was doubled when headache
attacks were triggered in a controlled environment [46].

Another intriguing component in migrainous nausea is substance P. Neurokinin 1
(NK-1) receptor antagonists can inhibit vomit produced by central or peripheral stimuli [47],
and its central action may be mediated by inhibiting the substance P emetic effect [48],
which may take place predominantly in the locus coeruleus [49].

Early pre-clinical experiments are good examples of the extent of anatomical struc-
tures that could be involved in the process of vomiting. Monkeys presented vomiting
following the electrical stimulation of the olfactory tubercle, amygdala, septum, fornix
and the thalamic ventral anterior nucleus [50]. In cats, lesions in the medulla abolished
the characteristic pattern of respiratory motor nerve discharge, observed in vomiting [51],
induced by emetic drugs and electrical vagal stimulation of abdominal afferents. This study
suggested that the regions that control vomiting were localised between the obex and the
retrofacial nucleus [52], both localized in the medulla.

In human neuroimaging studies, some brainstem areas showed significant activation
with a H2

15O positron emission tomography (PET) scan in the premonitory phase of mi-
graine participants with nausea, including the periaqueductal grey, dorsal motor nucleus
of the vagus, nucleus ambiguous and nucleus tractus solitarius [53], as shown in the fol-
lowing paragraphs. Following a rostral-caudal approach, among them, the mesencephalic
periaqueductal grey (PAG) deserves a special mention [53].

PAG has an important role in the descending modulation of the trigeminovascular
processes (Figure 1) [54]. PAG has been related to other autonomic sympathetic activ-
ity [55,56], emotional perception of pain and aversive behaviours [57,58] cough [59] and
breathing control [60]. It is involved in modulating the descending pain pathways [61–63].
This modulation has recently been shown to be activated by mu opioids by means of
presynaptic disinhibition and reducing GABAergic postsynaptic currents [64]. It is yet
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unknown whether this area is related to the chronification observed in migraineurs with
frequent use of opioids, as commented on below.
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Figure 1. Schematic representation of ascending and descending mechanisms involved in the patho-
physiology of migraine, interaction between peripheral and central nervous systems and the trigemi-
nal autonomic reflex. (A) Ascending mechanisms; (B) Descending mechanisms; (C) Connection of
dural, cervical and trigeminal inputs in the trigeminocervical complex; (D) Potential interfaces be-
tween trigeminal and parasympathetic arms of the trigeminal autonomic reflex. Cervical dermatomes
(C1, C2); dorsal root ganglia (DRG); locus coeruleus (LC); periaqueductal gray (PAG); sphenopalatine
ganglion (SPG); trigeminal ganglion (TG); trigeminocervical complex (TCC) rostral ventromedial
medulla (RVM); ophthalmic, maxillary, and mandibular dermatomes of the trigeminal nerve (V1, V2,
V3, respectively). Reproduced from Goadsby and Holland 2019 with permission.

More caudal areas in the rostral dorsal medulla were involved, including the dorsal
motor nucleus of the vagus [53], which may relax the lower esophageal sphincter [65].

The nucleus tractus solitarius has connections with hypothalamic areas that play a
role in autonomic control [66]. Both the nucleus tractus solitarius and dorsal motor nucleus
of the vagus conform, along with the area postrema, the dorsal vagal complex, which is
one of the main termination sites of the afferent fibres of the vagal nerve [67] and has a
high distribution of dopamine D2–4 receptors [68]. The area postrema is one of the sensory
circumventricular organs with a possible chemoreceptive function, situated outside the
blood–brain barrier and connected to the hypothalamus, which is thought to be essential in
controlling neuroendocrine functions [69], is rich in type D2 dopamine receptors [70] and is
the brain area with the higher estimates of substance P [71].

2.3. Treatment of Nausea

The treatment of nausea during migraine attacks must be considered in every patient
presenting with that symptom. When nausea does not respond to analgesic treatment, spe-
cific antiemetic treatment should focus on the pathways of the neurotransmitters described
above (dopamine, serotonin, substance P) as main targets for treatment. Nevertheless, acute
treatment can be essential in the management of nausea associated with migraine. NSAIDs
could be effective in alleviating nausea in patients who have not taken any triptans [72]
and there is a recent meta-analysis that supports gepants as an effective treatment for
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nausea in patients with episodic migraine [73]. Special attention must be paid to patients
consuming opioids. Nausea is a recognised side effect following opioid use [74]. Patients
with episodic migraines who are exposed to opioids have a twofold risk of migraine chroni-
fication [75], a likely reduction in the efficacy of triptans for acute treatment [76] and the
issue of developing gastro-intestinal adverse events after long-term consumption [77]. For
the treatment of nausea, we have focused on the three main neurotransmitters involved,
serotonin, substance P and dopamine.

2.3.1. Serotonin

Triptans are serotonin 5-HT1B/1D receptor agonists, and can help in alleviating nausea,
as exemplified by rizatriptan [78,79]. However, having a sensation of nausea pre-treatment
predicts a low efficacy response [80], perhaps due to the delay in treatment intake, as dis-
cussed in the allodynia section. Ondansetron is a highly-specific 5-HT3 receptor antagonist,
although there are no randomized-controlled trials on migraine. Granisetron, however, was
significantly more effective than placebo for nausea at 30 min [81], and was more effective
than metoclopramide as an adjuvant treatment for acute migraine [82].

Ginger could be a reasonable “over the counter” serotonergic therapeutic strategy
for patients trying to avoid chemical treatments. It might be effective in lowering nausea
according to a meta-analysis of three studies [83], and headache relief similar to that of
sumatriptan has been reported in a double-blind, randomized controlled study [84].

2.3.2. Dopamine

Among the several antiemetics available, metoclopramide is an antagonist of dopamine
D2 receptors and has also an antagonist effect on serotonin 5-HT3 receptors [85]. Metoclo-
pramide presents the highest passage of the blood–brain barrier, compared to domperidone
or chlorpromazine [86]. Metoclopramide helps with the impairment of gastric motility
during migraine attacks, improving the absorption rate of NSAIDs [87], and may also exert
its effect as a pain relief agent [88], probably due to its action in the trigemino–cervical
complex [89]. However, recent literature found conflicting results as a single therapeutic ap-
proach, with either an efficacy similar to that of NSAIDs [90], or no difference of intravenous
metoclopramide compared to saline [91]. Prochlorperazine is a phenothiazine antipsy-
chotic with antagonizing effect of dopamine D2 receptors, similar to chlorpromazine [87,92]
and might be the most effective intravenous antiemetic, which also has a higher risk of
extrapyramidal adverse events [93]. Chlorpromazine is also an effective option to consider
for the treatment of nausea in emergency settings [94].

2.3.3. Substance P

By inhibiting the substance P pathway, NK-1 receptor antagonists, such as aprepitant,
have been used in the treatment of nausea generated by intravenous dihydroergotamine in
patients with migraine [95]. NK1 receptor antagonists are potent antiemetics that have been
approved for the treatment of severe nausea associated with chemotherapy [96], and are
also recommended for cyclic vomiting syndrome, along with ondansetron or triptans [26].

3. Osmophobia

The perception of odour is certainly an extremely subjective experience, or we would
all be wearing the same perfume. Being perhaps the less studied of the senses, the mecha-
nisms behind the way a fragrance is perceived is not yet fully understood. A brief mention
here is appropriate for two interesting theories that were proposed in the twentieth century,
involving a lock-and-key system and vibrational wavelengths [97], which have not yet
been fully developed.

There are several substances whose consumption or inhalation has been popularly
related to headaches [98–101]. Remarkably, Umbellularia californica is a type of tree, com-
monly known as “the headache tree” [102], which contains umbellulone, a ketone that was
reported of being capable of triggering cluster headache-like attacks in a gardener with a
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history of cluster headaches [103]. It was later discovered that this mechanism was medi-
ated by the activation of the transient receptor potential (TRP) ankyrin 1 (TRPA1) [104,105],
followed by the release of calcitonin gene-related peptide (CGRP) [104]. CGRP is also
released through the activation of vanilloid receptors, following stimulation with nitric
oxide [106] or ethanol [107,108], one of the most relevant cluster headache triggers. TRPA1
has also been involved in the responses to some inhaled chemicals, including the smoke
of cigarettes [109], chloride [110,111] hydrogen peroxide-containing substances [111] or
formalin, the noxious compound largely used in pain models [112].

It has been reported that up to 70% of migraineurs can develop a headache after the
stimulation with some odorants, which happened around 25 minutes following the expo-
sure [113], and there is a case report of migraine improvement following the imposition of
mandatory masks in the workplace during the COVID-19 pandemic [114]. Increased sensi-
tivity to smells can be part of the premonitory-like symptoms experienced by migraineurs;
therefore, certain smells may be misinterpreted as the trigger for a migraine attack, which
might not be a necessary factor for its occurrence [115,116]. As a consequence, the results
of studies that assess migraine triggers have debatable interpretations.

Nevertheless, the presence of osmophobia may be related to more florid migraine
phenotypes and greater disability, and a scale has been developed recently for the quantifi-
cation of quality of life related to osmophobia [117]. Migraineurs that present with ictal
osmophobia may have more painful headaches [118,119]. Ictal and interictal osmophobia
have been associated with a longer history of migraines or high frequency of the attacks,
as well as other associated symptoms, such as cranial allodynia [120–122], suggesting a
central sensitization process [123]. Vomiting can also be more common in the presence
of osmophobia [119,121]. Osmophobic migraineurs may also have a higher prevalence of
psychiatric comorbidities than those without it [118,124–126].

Osmophobia has been proposed as a specific marker, helpful for the diagnosis of
migraine [119,124,127–132]; however, it is not very sensitive [122]. Around half of the
patients with migraines reported an increased sense of smell or reduced tolerability to
smells [129,133]. Remarkable examples of patients reporting hyperosmia include the smell
of a rose from more than 5 meters of distance, or soap from a different room, and the main
scents triggers for osmophobia arose from food, specifically fried food and onions, cigarettes
or self-care products, and perfume or paint specifically were reported as triggers [133].
More recently, forty percent of patients with chronic migraine reported osmophobia [134],
and a similar number suggested odours or perfumes as potential triggers of a migraine
attack [101].

Paradoxically, despite their hypersensitivity to smells, migraineurs have a lower
capability for the threshold, identification and discrimination of smells [135,136]. Patients
with episodic migraine were found to have a similar olfactory acuity to controls, and
furthermore, around one fifth of them developed hyposmia during the attack [137]. Taste
abnormalities in migraineurs [133] are a matter of debate [138].

Patients with migraine and osmophobia have neuroanatomical alterations. A signifi-
cantly reduced volume of the olfactory bulb was observed in 1.5 Tesla MRI, compared to
patients with other types of headache [139], and might be more pronounced on the left, in
comparison with controls [140]. In migraineurs with reported hypersensitivity to odours,
regional blood flow in a study using H2

15O-positron emission tomography was found to
be increased in areas of the left piriform cortex and antero-superior temporal gyrus, as
compared to controls, both with and without multiple odour stimuli [141]. During odour
stimulation, blood flow was found to be decreased in bilateral fronto-temporo-parietal
regions, as well as the posterior cingulate gyrus and right locus coeruleus [141]. Another
study using fMRI to compare responses to the smell of roses found higher blood oxy-
gen level-dependent activity in the amygdala and insular cortices of the amygdala and
also in the midbrain, particularly the rostral pons. However, the smell of roses did not
show significant interictal differences compared to the controls [142]. Activation of the
amygdala and orbitofrontal cortex might be related, respectively, with the intensity and
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valence of the smell emotional experience [143]. The amygdala and cingulate cortex also
showed abnormal activation in patients with multiple chemical sensitivity [144,145], which
is associated with a high prevalence of headache [146] and was observed in up to 20% of
migraineurs [147].

Olfactory hallucinations or phantosmia is a hallmark of temporal lobe epilepsy, and
currently a no man’s land when it presents in the form of aura. It is a rare symptom, with a
reported prevalence of 0.66% in a headache center [148]. The majority of reported cases
had normal electroencephalograms that were, however, taken during the interictal period,
and usually respond to antiepileptic drugs.

The reported cases showed that the episodes have an average duration of less than
10 min and the onset occurs prior to the migraine attack [148,149]. Patients with symptoms
of phantosmia scanned with FLASH and eco-planar imaging MRI techniques showed
increased activation of different brain areas associated with the process of the sense of
smell, such as the prefrontal, cingulate, temporal or insular cortex MRI activation was
inhibited by typical antipsychotics that perform its activity through a wide range of binding
receptors [150]. Peripheral blocking activities can alleviate phantosmia [151].

4. Neuro-Otological Manifestations

In 1984, Kayan and Hood described how vestibulocochlear symptoms were frequently
reported, in up to 60% of patients with migraine, and these can be important or disabling
enough for the patient to be the primary reason for referral to a specialist. The incidence of
neuro-otological symptoms for migraineurs seemed homogeneous throughout all ages in
males, but had a peculiar distribution in females. For women who reported audiovestibu-
lar symptoms only when asked during the study, a positive skew distribution could be
observed, with the peak situated in the 3rd decade. However, the female patients whose
reason of referral was the presence of disabling audio-vestibular symptoms had a peak
in the peri-menopausal 5th and 6th decades. This group with disabling symptoms had a
higher incidence in males [28]. They compared 80 patients referred for vestibulocochlear
symptoms with 500 patients with multiple sclerosis for benign positional vertigo and
Méniere’s [28]. Only migraineurs described cochlear sensations, such as tinnitus, distortion
of pitch, or hearing loss [28].

The frequency of migraine in Méniere’s disease is higher than in normal subjects, and
phonophobia has a high prevalence in these patients, independently of the presence of
migraine headache [152].

4.1. Phonophobia

Phonophobia, along with photophobia, is one of the associated symptoms that define
a migraine attack, according to the ICHD-3. As an asset for differential diagnosis, the
presence of phonophobia may be able to exclude secondary headache types, such as
cardiac cephalgia or sleep apnea headache; however, phonophobia is also reported in other
headaches, such as a “tension-type headache”, if it is not accompanied by photophobia
in the episodic categories, or a “cervicogenic headache”, which may make the clinician
hesitate if the patient has a migrainous background [2]. This complication is simplified by
using the appendix criteria for tension-type headaches that exclude both photophobia and
phonophobia; and are clinically preferable.

In 1984, up to 81% of patients with migraine reported phonophobia, in comparison
with only 12.1% of patients with a non-migrainous headache, and the combination of
phonophobia and hearing loss was reported by some patients [28]. A recent meta-analysis
showed that migraineurs may have a higher risk of developing sensorineural hearing
loss [153]; therefore, the exclusion of migraine patients with hearing loss from the majority
of the trials may lead to biased conclusions. In 1985, Blau and Solomon reported noise as
a migraine trigger in 4/50 patients with migraine [133] and the potential measurability
of phonophobia was suggested. Recently, it has been reported that annoying sounds,
as well as other usually reported migraine triggers, may just represent early manifesta-
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tions of migraine premonitory symptoms, as they demonstrate significant agreement with
premonitory spontaneous phonophobia [154]. In studies that assessed sound discomfort
using a range of Hertz stimuli, ictal [155,156] and interictal hearing discomfort thresholds
were lower in migraineurs, as compared with healthy participants [156–158], with a low
positive correlation with age [157]. Women may have a lower threshold than men [159].
Among migraineurs, ictal thresholds are lower than interictal ones [158]. Differences in
monaural and binaural thresholds do not relate to the side of headache [156], and only
a small proportion of participants with chronic migraine (5/48) report unilateral phono-
phobia, which was nonexistent in 54 participants with episodic migraine [160]. Similar to
photophobia, unilaterality of phonophobia can be more specific to trigeminal autonomic
cephalalgias [160].

The use of close-ended questions can be useful in increasing sensitivity for phonopho-
bia during the neurological anamnesis [161].

Several electrophysiological studies have evaluated the hearing pathway in migraineurs
with phonophobia. Phonophobia does not seem to be related with a recruitment phe-
nomenon [155], which is commonly associated with cochlear damage.

The function of the cochlear efferents can be assessed by otoacoustic emission tests,
which evaluates the suppression in the amplitude of transiently evoked signals from the
olivary complex when a sound is produced on the contralateral ear [162,163]. It has been
reported that for healthy controls, these amplitudes are significantly decreased, whereas
in migraineurs, they are not suppressed [162,164]. This was specially observed in low-to-
middle frequencies of 1–1.5 kHz, in a cohort of female phonophobic migraineurs during
the interictal period [165]. However, this was not replicated in another study in patients
with prominent vestibular symptoms, and phonophobia was not significantly associated
with lack of suppression [163]. Neurotransmission in the outer hair cells of the cochlea
may be mediated by CGRP [166], and increased CGRP activity in the inner ear has been
hypothesized to be the cause of an insufficient suppression of the auditory pathway [165].

Another abnormality leading the patient to find sounds uncomfortable may lay in
the cortical processing of auditory stimuli. Whereas latencies are similar, healthy partici-
pants experience a decrease in the amplitude of the auditory N1–P2 component following
sequential blocks of stimuli in cortical-evoked auditory-evoked potentials, whereas partici-
pants with migraine experienced an increase, which could be considered a potentiation,
instead of habituation. Intensity dependence of auditory-evoked potentials, which is
measured as a slope after stimulation at increasing intensities, was also greater in mi-
graineurs [159,167,168], and these may have a lower amplitude in the first blocks of stimuli,
which may mean a decreased pre-activation of the sensory cortex [167,169]. The slope does
not correlate with migraine frequency or duration, or with changes in visually evoked
potentials [169], but may correlate with age [168], and has been associated with serotonergic
activity [159,170–172] and response to preventive treatments [173].

Several studies have used brainstem auditory-evoked potentials. Interictal migraine
patients have similar latency results to those of controls [174]. Podoshin et al. showed a
significant impairment in interpeak latency differences in a group of patients during the
migraine attack, when the rate of click sound stimuli was increased to 55 per second, in
comparison with the same group between attacks [175]. Some studies found no differences
between the side of the headache [175], but differences between sides were found by
Schlake et al. in peak latencies at 10 clicks per second [174]. Peak latencies were delayed
in 6/38 migraine patients, 2 of them with so-called basilar migraine [174], which can be
normal [176] or abnormal during the ictal period [177]. Sand and Vingen showed that the
discomfort threshold for low sound inversely correlated with low levels of habituation in
wave IV-V, which corresponds with the lateral lemniscus in the pons and inferior colliculus
in the midbrain [178]. Latency in waves III to V, corresponding to the tract between the
cochlear nuclei to colliculus, has been correlated with migraine and attack duration [171].
In a recent study, participants with migraines showed that hearing threshold was inversely
correlated with the severity of photophobia, and paradoxically, not with phonophobia,
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and was higher in patients on prophylactic medication or those who had taken a non-
steroidal anti-inflammatory drug on the day of the test, and had higher wave amplitude in
comparison with the controls [179].

There is increased blood flow in the auditory association cortex during an acute attack
in patients with migraine and phonophobia [180].

Patients with episodic migraine that present with cranial and extracranial cutaneous
allodynia have lower thresholds for auditory stimuli either between or during the at-
tacks [181].

4.2. Vertigo

Vertigo is more frequent in people with migraine and vice versa [28,182–187].
Vestibular migraine (VM) is possibly the most frequent cause of recurrent vertigo [188].

It has received many names in the past [186,189,190], and recently, more conditions have
been found to fall possibly under the current umbrella of what is considered today VM [191],
as well as some diagnoses classified as functional disorders today that may, in the near
future, be included. The mere fact of having a diagnosis has proven to be a positive predictor
for the improvement of dizziness [192]. However, currently, VM still remains largely
underdiagnosed [193]. Despite the consensus diagnostic criteria involving balance and
headache societies [2,194], there are several mechanistic questions that remain unanswered,
such as the controversy of whether migraine and VM are a continuum along the same
spectrum or different entities, as well as important classification queries, such as whether
there is a chronic form [195]. The current term of VM may not be well received by the
patient, especially those examined outside a headache clinic environment, who usually do
not report headaches as the main reason for referral [196], and a source of frustration for
the clinician giving a diagnosis to patients who repeatedly report that they do not suffer
from headaches.

The features of the attack of VM have been studied mainly retrospectively [186,189,
190,197–200], and during the acute episode [201]. There may be a relationship between VM
and Méniere disease (MD) [202]. Aural fullness may be an anamnestic key to differentiate
VM from MD [203]. Patients with VM may have a high incidence of endolymphatic
hydrops, although smaller than that of MD [204]; however, no anatomical differences were
found between VM patients and healthy subjects with 3D-SPACE MRI [205]. A correlation
between dizziness severity and cognitive dysfunction has been found [206].

Migraine and vestibular migraine: Similarities between migraine and VM are abun-
dant. The majority (72/118) of patients with vestibular symptoms were considered in
the 1980s as patients with “non-classical” migraine. Among those without vestibular
symptoms, 59 out of 82 were given a diagnosis of “classical migraine”. The incidence
of "classical migraine" was therefore 11% higher among those without vestibular symp-
toms [28]. Vertigo can be triggered with nitroglycerin in up to 84% of migraineurs reporting
vertigo during spontaneous attacks [207]. Patients with migraines exhibit greater visual
and vestibular functional impairment, as well as lower results in the sensory organization
test [208]. VM patients may be more sensitive to moving scenes and find it harder to main-
tain their posture [209–212], as they may tend to rely more on visual cues [213], whereas
changes in the position of the head or posture could also trigger vestibular symptoms in
some migrainous patients [28].

Patients with definite vestibular migraines demonstrated some changes in videonys-
tagmography, but not canal paresis [214]. Spontaneous nystagmus can be triggered in
migraineurs following supraorbital nociceptive inputs, which did not occur following
extracephalic stimulation of the median nerve [215].

Pathophysiology: The pathophysiological research that has used neuroimaging ap-
proaches has contributed enormously to understanding the central anatomical structures
with altered function in VM. In a small study using 18F-deoxyglucose position-emission
tomography, patients showed activation of the cerebellum, frontal cortices, thalami, dorsal
pons and midbrain, right and insula and temporal cortex, and a deactivation of the poste-
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rior parietal and occipito-temporal areas during the attacks [216]. By using imaging-based
voxel-based morphometry, patients with definite vestibular migraine showed a reduction
in grey matter volume in several cortical areas, including the insula, parieto-occipital,
dorsolateral prefrontal, cingulate cortex and the cingulate gyrus, and the volume of areas
associated with vestibular and pain processing was negatively correlated with disease
duration [217]. During caloric tests, patients with vestibular migraine exhibited increased
thalamic activation, as observed in blood oxygenation level-dependent (BOLD) MRIs,
which correlated with the attack frequency [218] and was proposed to hold right domi-
nance [219]. A peripheral, vestibular alteration that involves serotonergic axons has also
been suggested [220–223].

Treatment: Patient’s treatment remains a grey zone, where the therapeutic choice is
dependent on observational studies, as there are only a few randomized, placebo-controlled
trials in this field for preventive [224,225] and acute medication [29,226]. A recent meta-
analysis identified an improvement in the outcomes selected for several therapeutic agents,
most of them migraine preventives, such as tricyclics and beta-blockers [224]. Vestibular
rehabilitation can also be of help [227].

Recently, the inhibition of CGRP receptors has been shown to improve the vestibular
function in animal models of chronic migraines [228], and retrospective studies in humans
show a potential benefit when targeting the CGRP pathway [229]. Half of the patients
were reported to respond to one prophylactic, 17% responded to a combination of two,
and 10% did not have a response [203]. Predictors of poor response have been reported to
be female sex, interictal imbalance, anxiety or depression, and our next topic, cutaneous
allodynia [203].

4.3. Allodynia

Scalp tenderness was reported by 65% of the 500 patients characterized by Selby and
Lance in 1960, and they described that this sensitivity could not be correlated with any
trigeminal or cervical radicular innervation [230]. Cutaneous allodynia can be quantified
in humans objectively [231,232] or by assessing the subjective patient’s experience, by
questionnaires [233,234]. A similar prevalence to that reported by Selby and Lance was
found in large surveys of headache patients, slightly higher in those with the now obsolete
term “transformed migraine”, and was associated with female sex, high body mass index or
depression [235]. Up to one-fifth of patients report severe allodynic symptoms [234]. When
specifically measured, the prevalence increases up to 80% [236] and can be higher in patients
with another concomitant pain syndrome, such as temporomandibular disorders [237].
Patients with chronification of attacks and migraine with aura may also have a higher
prevalence of cutaneous allodynia during the attack [238], although other studies have
not found an association with age or headache frequency of years having migraine in
migraineurs reporting spontaneous attacks [231,239].

Pathophysiology: The mechanisms that predispose a patient to allodynia may represent
a risk for other forms of sensory dysfunction [164,203]. Migraineurs have, in general,
lower pressure-pain and heat thresholds than the general population [232]. The majority of
cutaneous allodynia symptoms are focused on the cranial regions, but a proportion can
also experience the symptoms in extracranial regions [231]. In contrast to patients with
migraine, patients with trigeminal autonomic cephalalgias, such as cluster headaches, do
not report cutaneous allodynia, unless they have a personal or family history of migraine,
and have higher pain threshold both interictally and during the attack [240]. Allodynia
can be triggered experimentally in humans [239], and the clinical sequence of onset and
anatomical spread has been described [241].

Allodynia was initially reported to be an ictal marker of a “no-return point” that di-
vides triptan efficacy [242]; however, triptans can treat spontaneous [243] and nitroglycerine-
induced allodynia associated with migraine in humans [239], and the association appeared
to be, instead, time-dependent [244,245]. In a similar way to low pain intensity, which can
also increase as the attack progresses, lower allodynia may be an independent predictor
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for the efficacy of over-the-counter acute treatments [246], and recently, allodynia has been
shown to be an independent risk factor for the worsening of migraine associated with the
utilization of masks during the COVID-19 pandemic [247].

A complex network of peripheral and central structures is involved in allodynia. In
1994, reduced efficacy in the spinal inhibitory circuits, mediated by GABA-A, was proposed
as a potential cause of allodynia in preclinical models of pain [248]. Two years later, it was
shown that trigeminal afferents could be sensitized with a variety of chemical substances
applied in the dural regions [249]. However, it is unlikely that the simple sensitization
of peripheral afferents accounts for the single cause of allodynia. The periaqueductal
grey holds inhibitory control over trigeminal afferent neurons [250,251] and also has a
regulatory effect on the trigeminocervical nucleus (Figure 1), facilitated by CGRP [252].
Another neuropeptide, pituitary adenylate cyclase-activating peptide 38 (PACAP-38) can
cause sensitization and delayed activation of trigemino-cervical neurons [253]. Under the
bases of the role of the trigemino-cervical complex as a convergence center for afferent
inputs [254], and its diencephalic connections, an increased response in central neurons
could bring a reduced pain threshold in extracranial regions [255].

The diencephalon may be, indeed, strongly involved in the process of allodynia. Stress-
related hypothalamic dysregulation of prolactin has recently been associated with allodynia
in females [256]. Activation in posterior thalamic areas was demonstrated in rodents
and also in migraine patients with extracephalic allodynia, with functional MRI BOLD
techniques [257]. A first-line treatment in the prevention of migraine, propranolol, exerts
part of its mechanisms upon these thalamic areas [258]. Thalamic projections are widely
spread to many areas of the cortex, and have been traced from posterior and lateral nuclei
to several cortical regions, including the auditory, entorhinal or visual cortex [259]. The
medial area of the temporal lobe, for example, may be hyperexcitable in migraineurs, both
during ictal and interictal moments, when applying painful heat stimuli to the forehead, as
detected with diffusion tensor imaging in functional MRI [260]. An hyperexcitable state
has also been suggested in subcortical regions in migraineurs [261].

Somatosensory-evoked potentials have not found significant abnormalities in mi-
graineurs [262]. However, cortical thickness may be different in the associated temporo-
parietal areas of migraineurs, and there is a positive correlation with pain threshold,
contrary to healthy controls [263,264]. Activity is also increased in primary sensory areas,
and between the pons and insula, implying a role in the patient’s emotional response [265].

In preclinical models of allodynia, nitroglycerine is capable of increasing the firing
of trigeminal neurons and dural-evoked action potentials, in addition to creating hyper-
sensitive responses to facial stimulation with innocuous brush or noxious pinch. These
responses were reversible with naratriptan [239] and also ibuprofen, suggesting both a
serotonin and an inflammatory-mediated mechanism [266,267].

Allodynia has not been directly related to levels of amylin or CGRP [268]; however,
it can be modulated to target CGRP [269–271], which may have a glial site of action [272]
and stronger activity in females [271]. Nitroglycerine was able to trigger allodynia in 17/53
patients with migraine; among them, 14 responded to acute treatment with aspirin or
sumatriptan, and those who reported allodynia in their usual attacks were more likely to
experience it during the triggering session [239].

Finally, TRP channels are an interesting area in the understanding and treatment of
migraine [273]. Migraineurs have less tolerance to heat during the interictal period [274].
Recent studies did not find an association between thermal quantitative sensory testing
(QST) and allodynia. However, preclinical models suggest a potential genetic predispo-
sition to mechanical allodynia, involving the non-selective cold-sensitive cation channel
transient receptor potential melastatin 8 (TRPM8), the activation of which causes cranial
and extracranial allodynia [275]. Fibres that express TRPM8 were progressively reduced
in postnatal mice, in contrary to the fibres that express CGRP. Paradoxically, the use of
the TRPM8 agonist menthol can reduce behavioural responses to meningeal chemical
stimulation [276]. These channels may have potential hypothalamic modulation, as orexins
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may play a part in the emotional response to heat [277]. It may be speculated that these
differences could potentially translate to different phenotypes of migraineurs, which find
relief either with fresh air or a heated pad.

5. Conclusions

This article summarizes the literature regarding the associated symptoms in mi-
graineurs. Knowledge concerning migraines and their associated symptoms continues
to grow and is evolving into a concept that might not be as clinically simple as once
imagined [278], with a wide spectrum of presentations of the same migrainous biology.
Trials that have reported the most bothersome associated symptoms, together with pain,
represent a more holistic approach to migraine research.

Associated symptoms of migraine are varied, extremely prevalent, and contribute to
the disabling nature of migraines. Acknowledging the associated symptoms could con-
tribute to a better outcome for the patient, and should never be forgotten in the anamnesis
of the migraineur. Treatment should be focused on correct acute, preventive and anti-emetic
migraine treatments, where needed.

The relationship between the central and peripheral sensitization processes with the
associated symptoms of migraines is evident, and is comparable to the question of what
was first to come, the chicken or the egg.
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