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In this study, estimates of the growth rate of new infections, based on the growth rate of new
laboratory-confirmed cases, were used to provide a statistical basis for in-depth research into the
epidemiological patterns of H7N9 epidemics. The incubation period, interval from onset to laboratory
confirmation, and confirmation time for all laboratory-confirmed cases of H7N9 avian influenza in
Mainland China, occurring between January 2013 and June 2017, were used as the statistical data.
Stochastic processes theory and maximum likelihood were used to calculate the growth rate of new
infections. Time-series analysis was then performed to assess correlations between the time series
of new infections and new laboratory-confirmed cases. The rate of new infections showed significant
seasonal fluctuation. Laboratory confirmation was delayed by a period of time longer than that of the
infection (average delay, 13 days; standard deviation, 6.8 days). At the lags of —7.5 and —15 days,

. respectively, the time-series of new infections and new confirmed cases were significantly correlated;

. the cross correlation coefficients (CCFs) were 0.61 and 0.16, respectively. The temporal distribution
characteristics of new infections and new laboratory-confirmed cases were similar and strongly
correlated.

In March 2013, a new type of avian influenza virus, H7N9, was isolated for the first time in China'. In the spring
of that year, an outbreak of H7N9 influenza occurred in 10 provinces in central and eastern China?. Until June
30, 2017, the H7N9 virus has caused 5 nationwide outbreaks: January 2013 to September 2013 (134 cases, 45
deaths), October 2013 to September 2014 (306 cases, 131 deaths), October 2014 to September 2015 (219 cases,
102 deaths), October 2015 to September 2016 (114 cases, 47 deaths), and October 2016 to June 2017 (1058 cases,
221 deaths)>*. The average case fatality risk of H7N9 infection is approximately 40%°, which is higher than the
case fatality risk of SARS (11%)° and lower than that of H5N1 (70%)>. The fifth epidemic was the most severe;
cases were diagnosed in 20 provinces and the total number of cases exceeded the sum of the previous 4 epidem-
ics’. These 5 epidemics occurred mostly in China’s Yangtze and Pearl River Deltas®. The genetic characteristics

. of the viral strains were similar in all 5 epidemics®’. The main sites of infection were live poultry markets®’. The

main route of transmission was human contact with infected poultry or virus-contaminated environments; no
connections were demonstrated between patients’, and only limited, non-sustained human-to-human transmis-
sion within individual regions was observed'®!!.

A typical confirmed case of H7N9 avian influenza, from infection to diagnosis, progresses through the follow-
ing 3 stages: (1) From infection by exposure to the pathogen to symptom presentation, after an incubation period;
(2) from symptom presentation to hospital admission and treatment; and (3) from hospitalization to laboratory
confirmation by a state-certified network laboratory. The state-certified network laboratory reports each case,

. via the pneumonia of unknown etiology (PUE) surveillance system, to the Chinese Center for Disease Control
and Prevention (China CDC)'. A study conducted by Cowling et al.? showed that the mean incubation period
of H7N9 is 3.1 days and follows a Weibull distribution, and that the median interval from onset to laboratory
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confirmation is 8.3 days and follows a log-normal distribution. These study results provide an important basis for
our further investigations.

Because infection occurs before the diagnosis is made, assessing the epidemic trend using the growth rate of
confirmed cases is imprecise; we consider the growth rate of new infections an important indicator of the seri-
ousness of an epidemic. However, the exact time that a patient becomes infected is difficult to ascertain, mainly
because patients themselves do not know exactly when they became infected; most can give only a rough estimate,
and some are unclear even about this. Because the exact time that infection occurs cannot be obtained through
epidemiological surveys, the use of mathematical models to arrive at a reasonable estimate is a good choice.

A number of researchers have used mathematical models to provide a quantitative description of the epidemi-
ological characteristics of H7N9 epidemics'*-'°. For example, Zhang et al.'® established a dynamic model includ-
ing migratory birds, resident birds, domestic poultry, and human populations; they concluded that migrant birds
were most likely the original source of infection. Lin et al.'* modelled chicken-to-chicken transmission and found
that environmental transmission via viral shedding by infected chickens contributed to the spread of the virus.
These studies help us to understand the prevalence of the virus among poultry and the mechanisms of its trans-
mission from poultry to humans. According to the transmission route of H7N9 avian influenza, each infected
individual is relatively independent, the dynamic model of infectious disease spread cannot be used. Quantitative
analysis of epidemic spread within human communities is crucial for a deeper understanding of the mechanisms
by which epidemics spread. However, no studies have yet been published on the evolutionary mechanism of the
entire process from infection to symptom onset to diagnosis.

The present study used statistical data on the temporal distribution of laboratory-confirmed cases and applied
the theory of stochastic processes to reveal the transmission mechanisms of this epidemic among human commu-
nities. In the study, we performed a quantitative analysis of the temporal distribution pattern for the expected val-
ues and 95% confidence intervals (Cls) of the growth rate of new infections. Therefore, this study has important
implications for a deeper understanding of the onset and progression of H7N9 avian influenza epidemics and for
a more precise description of its temporal distribution patterns. Its results can be used for the timely assessment
of the effects of a series of government-instituted interventions and for exploring causal relationships between the
time series of new infections and new confirmed cases, and provide a statistical basis for in-depth analysis of the
impact of human and natural factors on the epidemic.

Methods

Data sources. The confirmation dates of all new H7N9 confirmed cases between January 2013 and January
2017 in Mainland China were obtained from the China CDC; data between February and June 2017 were obtained
from the EMPES-i georeferenced disease data repository compiled by the Food and Agricultural Organization*.
All cases were confirmed as H7N9 by local and/or provincial influenza network laboratories. H7N9 avian influ-
enza is a category B infectious disease according to China’s notifiable infectious diseases classification; hence,
cases confirmed by network laboratories need to be reported immediately using the PUE surveillance system!2.

Temporal distribution of the number of new infections.  Our goal was to treat all laboratory-confirmed
cases between January 2013 and June 2017 as a sample with number N, and to use this sample to estimate the
temporal distribution for the growth rate of new infections.

First, we used Bayes theorem to analyze the probability of infection and subsequent diagnosis given that each
confirmed case experiences 2 stages between infection and diagnosis: The first is between infection and onset (the
incubation period), the second is between onset and laboratory confirmation. The incubation period follows a
Weibull distribution?, with a probability density function expressed as f{-). The onset-to-laboratory confirmation
interval follows a log-normal distribution?, with a probability density function expressed as g(-). These 2 time
periods are mutually independent. The conditional probability, 6(T|t,), indicating the probability of an infected
individual receiving laboratory-confirmation after a duration of T under the condition that infection occurred at
time point ¢, was expressed as convolution equation (1),

T
8(T|t,) :fo f($)g(T —s)ds 0<s< T o
where s denotes the duration of the incubation period and T — s indicates the onset-to-laboratory-confirmation
duration. As laboratory confirmation could happen at any time of the day, T includes a range of values, [T, T;],
where T, and T, denote the beginning and the end of the day, respectively. The conditional probability § (T|t,) was
used to indicate the probability of an infected individual having received laboratory-confirmation during the
period Tj~T, given that infection occurred at time point ¢; (equation 2),

- 7
§(1it) = fT 8(T|t,)dT o

where p(t;) denotes the probability that a susceptible person is infected at time t;and P(¢;, T;) denotes the proba-
bility of receiving laboratory confirmation during day T; given that a susceptible person is infected at time t; and
after a period of T,. Using Bayes theorem, P(t;, T;) was expressed as equation (3),

P(t;, T) = p(t)8(Ti|t;) (3)

Thus, we could construct a likelihood function L(-):
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Figure 1. Temporal distribution of new infections and new confirmed cases of avian influenza A (H7N9)
virus infection. (A) Temporal distribution of the growth rates of new infections. The black solid line represents
the mean values, the grey area represents 95% confidence intervals. (B) Comparison of the number of new
infections and new confirmed cases. The histograms show the number of new reported confirmed cases; the
blue line represents the expected number of new infections.
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Where X; (i = 1, ---, N) denotes the i " infection that occurs. We then calculated the growth rate of new infec-
tions by analyzmg ]'[ ", p(t;) using stochastic process theory.

The main transmission route of H7N9 is human contact with infected poultry or virus-contaminated environ-
ments; the virus is not continually spread among people, rather, susceptible individuals are randomly infected.
The frequency of contact is variable at different times of the year, so the growth rate of new infections is also var-
iable, being lower in summer than that in winter and spring (Fig. 1). We assumed that continuous emergence of
infections represents a series of independent random events.

{N(7), T > 0} denotes the process of counting H7N9 infections within a short time period 7. Based on the
analysis above, N(7) can be regarded as a Poisson process with rate A, and the time interval of any 2 consecutive
infections will follow independent exponential distribution?. For a time interval of length 7, the probability
P(X;, -++, X,3 A\, 7) that m infections will occur consecutively at time pointss,, ..., s,, can be expressed as:

P(X,, ..., X,; A, 7) = P{m infections in [0, s,]}P{none in (s,,, 7]}
/\e_)‘sl/\e_)‘(sz_sl). .. )\e_)‘(sm_sm—l)e_A(T_sm)
/\me—)\‘r (5)
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Because the growth rate of new infections varied during the period 2013~2017, and for reasons of convenience
in the calculations, we assumed a constant growth rate over a short period of time. Hence, the rate changed over
the course of a few consecutive time intervals of moderate length (if the interval is too long the result will be inac-
curate, and if it is too short it will increase the amount of calculation required). We used intervals of an eighth of
amonth. There were 54 months between January 2013 and June 2017, giving 432 intervals. The growth rate of new
infections in each interval was expressed as A, (k = 1, ---, 432), and the length was a constant value, 7. The entire
process of an infection appearing can be viewed as a continuous-time Markov chain with different rates and as a
pure birth process? with states of X, X, ..., Xy. Hence, p(t;) can be converted to the probability of when the
system transitions from state X;_, to state X; at time ¢;, as follows:

p(t) = piX() = i|X(t,_, <t < t)=i— 1} (6)
p(t) = )‘ke_kk(ti_tiil) VR LA
i e—)\k—l(t’ft,-_l))\kefkk(ti*t’) )‘k—l: [ti—l’ I/), /\k: [t/, ti] @)

Based on the above analysis, [[Y | p(t,) is associated with ), (equation 8).

N 432 432
Hp(tl) = H P(Xl, ceuy ka; )\k, T)[ka = N]
i=1 k=1 k=1
432
— H )\kmke*)\,ﬂ'
k=1 (8)

We calculated the value of \, using the maximum likelihood; equation (9) was derived by incorporating equa-
tion (8) into equation (4).

LN, 7) = ;na;EL()\, 7)
N

N
= max [[p(t) [] S(Tt)
i=1

AT>0 50
432 N
= max [] /\km"e_)"‘TH o(Ty|ty)
AT>0 0 i—1 (9)

After logarithmic transformation of equation (9), a very concise result could be obtained by taking the partial
derivative of \;:

e

A= (10)

Where )\, is the growth rate of new infections.

On the basis of the above analysis, we calculated expected values and 95% Cls for ), as follows: For each con-
firmed case, according to a uniform distribution, we randomly selected a time point on the day of laboratory
confirmation as the confirmation time. Then, the Markov chain Monte Carlo method was applied to generate
random numbers that fitted the probability density function §(-)*!; these numbers represent the lengths of time
from infection to laboratory confirmation. As the time of laboratory confirmation is known, the estimated time
of infection can be calculated. After computing the infection times of all confirmed cases, counting was per-
formed on 432 time intervals with length 7 to sequentially obtain m,, and hence to work out the growth rate of
new infections A, of one calculation. The bootstrap method was used to repeat this step 1000 times to obtain the
mean values and 95% CIs for \,. The above method was implemented using MATLAB and Statistics Toolbox
Release 2012a (The MathWorks, Inc., Natick, Massachusetts, USA).

Correlation test of time series for new infections and new confirmed cases. Based on the above
calculations, the expected number of new infections in quarters of a month can be obtained. These numerical
values constitute the time series X = {X(¢), t > 0}, and new confirmed cases will constitute the time series
Y = {Y(¢), t > 0}. X was taken as the covariant variable and Y as the dependent variable. The aim was to test the
CCF atalag of k, n(X, Y), to verify the correlation between the 2 and to analyze whether the former was causing
fluctuations in the latter.
r(X, Y) = S - X, —Y) 12,
Y, = X050y, - 77 (11)

As these 2 time-series have strong autocorrelation (Fig. 1), if the correlation of the 2 processes is evaluated
directly by calculating the CCFs, a false conclusion may be obtained (spurious correlation)??. Hence, the auto-
correlation should be extracted from their respective series—pre-whitening is a precise tool for achieving this
aim??. As the 2 series showed significant seasonal fluctuations, seasonal differencing was performed. After differ-
encing, the series remained non-stationary; hence, first order differencing was performed to obtain 2 stationary
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2013 0 9 80 42 1 1
2014 147 27 27 15 8 1
2015 76 34 8 10 9 1
2016 33 19 13 5 8 4
2017 229 205 122 141 58 63
Years Jul Aug Sep Oct Nov Dec
2013 2 0 1 3 5 69
2014 1 2 2 4 11 61
2015 0 0 4 1 5 23
2016 3 0 1 4 45 190

Table 1. The average numbers of new infections per month during the period 2013~2017.
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Figure 2. The cross-correlation graph for differenced and pre-whitened times series of new infections and new
confirmed cases. The black vertical lines represent the cross-correlation coefficients; the two blue dotted lines
represent 95% confidence interval.

time-series with a mean value of 0. Then, the same filter, based on the first series (an autoregressive model), was
applied to pre-whiten the 2 time-series, followed by calculating the CCFs of the pre-whitened series??. The above
method was implemented using R, version 3.1.0 (http://www.R-project.org/).

Results

Temporal distribution of new infections.  Given that the incubation period of H7N9 fits a Weibull dis-
tribution (mean 3.1 days, standard deviation 1.4 days)?, we could work out the shape (2.4) and scale (3.5) param-
eters. As the onset-to-laboratory-confirmation interval fits a log normal distribution (median 8.3 days, 95% CI
7.3-9.5 days)?, we could work out the mean (2.1 days), standard deviation (0.6). Calculations were performed
according to the methods described by JD Chen?®.

The temporal distributions of the expected number of new infections and new confirmed cases showed a
similar patterns of variation. Both displayed significant seasonal fluctuations and autocorrelation. Figure 1 shows
that the first cases of infection appeared in Mainland China in February 2013. The number of infections increased
drastically, reached a peak in March 2013, and then decreased drastically. From May to September 2013, infec-
tions were sporadic. The number of infections gradually increased from October through November 2013, then
markedly increased in December, reaching a peak in January 2014, thereafter drastically decreasing. The epidemic
stabilized from March through September 2014. Thereafter, the pattern of temporal distribution was essentially
similar to what was observed in 2014, i.e. a high incidence in winter and spring with a low incidence in summer
and autumn. The fifth epidemic was the most serious, with the number of infections increasing drastically in
October 2016 and reaching a peak in January 2017; an estimated 229 new infections occurred in January 2017.
Thereafter, the number of cases gradually decreased, but still fluctuated at a high level. From 2013 through May
2017, the expected numbers of infections annually were 212, 305, 171, 324, and 755. The average numbers of new
infections per month are presented in Table 1.

Correlation test of time series for new infections and new confirmed cases. Seasonal and first
order differencing were performed on the time series of new infections and new confirmed cases, respectively.
Then, pre-whitening (a nineteenth-order-autoregressive model was selected according to the Akaike informa-
tion criteria) was performed, followed by computation of the CCFs. Figure 2 shows that 2 positive CCFs were
obtained: When the lags were —2 and —1, the CCFs were 0.16 and 0.61, respectively. When the lag was 0, the
CCF obtained was —0.43. In addition, when the lag was —15, there was a marginally significant negative CCF,
which we believe to be a false alarm. This is because when calculating the CCFs for a total of 37 samples, we expect
there to be an average of 37 x 0.05=1.85 false alarms. Based on the mean value of 1 interval (7.5 days), the mean
duration from infection to laboratory confirmation, and the standard deviation, the 2 significant positive CCFs
are at —2 and —1 time units.
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Discussion

Since the outbreak of the H7N9 avian influenza epidemic in multiple provinces across China in March 2013,
researchers began conducting scientific research from different epidemiological perspectives. For example, Yuan
et al** conducted sampling in live-poultry markets; detection of viral RNA demonstrated that live-poultry mar-
kets were the main sites at which H7N9 infection. Lin ef al."* and Zhang et al.'* established mathematical models
to explore viral transmission mechanisms within different populations. Cowling et al.?, Wang et al.%, and Bui
et al.'® provided detailed descriptions on the temporal, spatial, and population distributions of the epidemics.
These studies laid the foundation for investigating the epidemiological characteristics of the H7N9 epidemics.
Compared with these published studies, the innovative points lie in our analysis of the transmission mechanisms
in the human population from a stochastic perspective, according to the transmission characteristics of H7N9.
The occurrence of infection was treated as a random event produced by a Poisson process, and the rate of infec-
tion changed with time. Therefore, the entire epidemic process can be regarded as the connection of multiple
Poisson processes occurring at different rates. We established a relationship between the probability of infection
and a continuous time Markov chain; the growth rate of new infections was then obtained.

The initial stage of an infectious disease is effective contact with the pathogen. The growth rate of new infec-
tions reflects the frequency at which susceptible individuals come into contact with the virus: The more frequent
the contact, the faster the rate of new infections increases. Therefore, we believe that this rate is the earliest and
most accurate reflection of the severity of the epidemic. Although changes in the number of confirmed cases can
reflect the temporal distribution features of the epidemic, laboratory confirmation of the diagnosis is delayed by
a period of time greater than that of infection; in our study, the average delay was 13 days (standard deviation,
6.8 days). Therefore, evaluating the epidemic’s development trend using the temporal distribution of confirmed
cases is imprecise. This study aimed to analyze the epidemic trend more accurately and to establish a more precise
statistical foundation for analyzing the impact of various prevention and control measures adopted by China,
and meteorological and environmental factors, on the epidemic. For example, some influencing factors—such
as closing and regular disinfection of live poultry markets, atmospheric temperature, rainfall, and the number
of migratory birds—can be evaluated more timely and accurately by judging the growth rate of new infections.

From Fig. 1B, we intuitively observe that there is a relatively strong correlation between the time series of
infections and confirmed cases. However, this might not be a true correlation; a spurious correlation may exist.
By calculating the CCFs after pre-whitening, we found significant positive correlation between the 2 time series,
with the lags of —1 and —2 time units. Based on this, we can conclude that the occurrence of infections will lead
to the occurrence of confirmed cases. Furthermore, the results verified that the establishment of random models
is consistent with objective facts. With a lag of 0, a significant negative CCF is obtained (Fig. 2); this does not
imply a true negative correlation between the 2 time series. Figure 1B shows that the time series of infections was
smoother than that of confirmed cases, with opposite trends of change at certain time points.

Predicting epidemic trends through a mathematical model can help us to adopt more effective preventive
measures to control potential epidemics. However, our model can only estimate the growth rate of infections
in the past based on existing confirmed cases, i.e., it can only perform a retrospective analysis of epidemics; it
is not predictive. More in-depth research on the transmission mechanisms of epidemics is required to establish
new mathematical models that may require the inclusion of diverse factors such as immunization, closure of
live-poultry markets, regular environmental disinfection, and other human interventions.
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