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ABSTRACT: The measurement of gene expression using
fluorescence markers has been a cornerstone of synthetic biology
for the past two decades. However, the use of arbitrary units has
limited the usefulness of these data for many quantitative purposes.
Calibration of fluorescence measurements from flow cytometry
and plate reader spectrophotometry has been implemented
previously, but the tools are disjointed. Here we pull together,
and in some cases improve, extant methods into a single software
tool, written as a package in the R statistical framework. The
workflow is validated using Escherichia coli engineered to express
green fluorescent protein (GFP) from a set of commonly used
constitutive promoters. We then demonstrate the package’s power
by identifying the time evolution of distinct subpopulations of bacteria from bulk plate reader data, a task previously reliant on
laborious flow cytometry or colony counting experiments. Along with standardized parts and experimental methods, the
development and dissemination of usable tools for quantitative measurement and data analysis will benefit the synthetic biology
community by improving interoperability.
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The construction of novel, reliable genetic circuits relies
largely on the reproducible characterization of standard

genetic parts. Fluorescence is often used as a quantitative
output for engineering genetic circuits and can be measured in
microplate readers or flow cytometers. Plate readers are
particularly suited for high throughput applications, such as
understanding temporal dynamics of multiple different
constructs and conditions simultaneously. However, the data
are bulk measurements that obscure population heterogeneity.
Flow cytometry reveals this information but has more limited
throughput capabilities. Recently, an inexpensive and easily
implementable protocol to convert green fluorescence
measurements from both instruments into intercomparable
standard units of molecules of equivalent fluorescein (MEFL)
per particle was validated across hundreds of laboratories in the
international Genetically Engineered Machine (iGEM) com-
petition.1 Measurements of standard calibrants are used to
create calibration curves to convert the arbitrary units (a.u.) of
individual machines to standardized units, a technique that has
previously been established.2−4 Currently, however, software
tools for calibration and normalization exist across multiple
platforms and different coding languages including MATLAB
(for example, TASBE Flow Analytics5), Python (CytoFlow6

and FlowCal7), R (flowBeads8), and Excel (iGEM’s Plate
Reader Calibration preformatted data sheet1). Table S1
compares the features between current free calibration
software tools for plate reader and flow cytometry data.

Although this variety offers choice to end users, it makes high-
throughput application difficult and time-consuming. In
addition, autofluorescence normalization for plate reader
measurements is often implemented inconsistently and in an
“ad hoc” manner, even though it has been shown to be critical
particularly when measuring fluorescent particles that share a
similar emission wavelength with nonfluorescent cells.9

Consequently, standards for calibration and normalization
have yet to be widely adopted and fluorescent data collected
from microplate readers and flow cytometers is currently still
often reported in arbitrary units. Our goal is to create a single,
open source, easily usable tool to calibrate and normalize both
plate reader and flow cytometer data to comparable standard
units.
Here we present FlopR, a full calibration and normalization

package in R, the free and open source programming
language,10 for both flow cytometry and microplate reader
fluorescent data. FlopR normalizes raw data, then uses data
from measurements of standard calibrants to generate
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calibration curves and convert sample data recorded in
arbitrary units to units of molecules of equivalent fluorophore
(MEF) per particle. We demonstrate FlopR can accurately
normalize and calibrate fluorescence data from E. coli that are
constitutively expressing GFP to agree with normalized and
calibrated literature values. Finally, we show FlopR can
reconstruct the growth of individual fluorescent subpopula-
tions of cells from plate reader data of heterogeneous bulk cell
cultures, demonstrating its potential for complex and high
throughput applications such as studies of dynamics within
mixed microbial consortia.

■ RESULTS

Full Normalization and Calibration Workflow. FlopR
has been designed to be simple to use for people with a limited
background in programming. As such, it only requires one
function call to normalize and calibrate an entire folder of flow
cytometry data or a file containing microplate reader data. The
full workflow is shown in Figure 1 and a detailed tutorial can

be found on the GitHub page. As there is no common format
for microplate reader data, a function to parse the data into a
standard format is required. We provide an example parsing
function, spark_parse(), which converts data from Tecan
microplate readers.
Flow cytometry data, in the form of .fcs files, are processed

using the process_fcs_dir() function. The function takes
several arguments that control its behavior. A folder containing
the .fcs files is specified and any file with a filename that
matches the given pattern is processed. The data are first
trimmed to remove debris and then singlet events are isolated
from doublets and larger aggregates, as specified in the
methods. If normalization and/or calibration is required, the
names of the fluorescence channels to be processed are given.
If a nonfluorescent control file is provided, it is first processed
as above, after which the geometric mean of each fluorescence
channel is calculated. These values are then negated from the
other samples to provide normalized fluorescence values. If
calibration of the flow cytometry data is desired, an .fcs file

Figure 1. Full plate reader and flow cytometry data processing by FlopR, including relevant function calls. FlopR normalizes and calibrates parsed
plate reader sample data using the process_plate() function, and cleans, normalizes and calibrates .fcs flow cytometry data stored in a directory
using the process_fcs_dir() function. FlopR outputs processed data in comparable, standard units of MEF/particle.
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with “beads” as part of the filename must be in the folder.
Calibration is performed using measurements of fluorescent
beads labeled with known quantities of fluorophore. The peak
values in each channel, produced by the bead manufacturer,
need to be given to the function. If values are only given for a
subset of the fluorescence channels, only those channels
specified will be calibrated. A plot of the calibration curve for
each fluorescent channel is produced along with the locations
of the bead peaks identified by the software. If these peaks have
not been correctly identified, the user can modify a function
argument; increasing the value may be necessary if erroneous
peaks have been identified. If the bead identification still fails,
the bead peak locations can be specified manually. If desired, a
plot will be saved showing the trimming, normalization, and
calibration of the data. Each processed .fcs file will have
additional columns for normalized and calibrated events, and is
saved in a new folder.
The microplate reader workflow consists of two distinct

parts: generation of calibration parameters, and generation and
processing of sample data. The user should first prepare and
measure a plate of standard calibrants (e.g., microspheres and
fluorescein) at a range of dilutions, following the protocol
developed for the iGEM competition1 and described in
Supplementary Methods S2. The calibration data from the
plate reader is first parsed and if using a Tecan plate reader the
provided spark_parse() function can be used. The function

needs to be provided with the path to the calibration data in
the form of a .csv file, and the path to a .csv file detailing the
layout of the calibration plate. This outputs a formatted .csv
file. The generate_cfs() function uses the parsed calibration
data to produce a .csv file that can then be used to calibrate
later plate reader experiments. This protocol does not need to
be carried out before every experiment but should be carried
out regularlyroughly monthlyto ensure that the parame-
ters reflect the machine’s current behavior.
To process experimental plate reader data, the user should

first create a .csv file with details of the samples and their
position on the plate. The experimental data can then be
parsed in the same way by providing the spark_parse()
function with the path to the data and layout .csv files. The
parsed data can then be given to the process_plate() function.
One or more blank and nonfluorescent control wells can be
specified. The names of the channels for absorbance and
fluorescence measurements also need to be given. These
should be the respective column names found in the input .csv
file. We use a model based approach for autofluorescence
normalization, detailed below, and allow the user to select the
most appropriate model for their data. If the prior calibration
protocol has been carried out, the experimental data can be
converted to calibrated units. The gain level used for each
fluorescence channel needs to be given along with the .csv file
produced by generate_cfs(). The output is saved as a .csv file

Figure 2. Fluorescence normalization in plate readers. (a) GAM fit of the absorbance vs fluorescence of a well containing nonfluorescent control
cells used for FlopR normalization. (b) Comparison of normalization performance by mean absolute error from the expected zero-fluorescence
ground truth for nonfluorescent control cells using FlopR normalization, time normalization, or time OD normalization. Initial inoculates were
serially diluted by a factor of 3:8. The fold difference is the pairwise initial dilution difference between sample and normalizing well. (c) MEFL per
particle timecourses of nonfluorescent cells calculated using time normalization, time OD normalization, or FlopR normalization at different
starting concentration of cells for the sample well and normalizing well. Orange dashed lines show the expected “ground truth” zero-fluorescence.
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containing all the original data, along with normalized and
calibrated absorbance and fluorescence values.
Normalization of Autofluorescence in Plate Reader

Data. Careful normalization of plate reader data is required to
correctly remove autofluorescence from the measurements of
sample of interest. Incorrect normalization can diminish the
dynamic range of the measured fluorescent output, particularly
in the case of GFP.9 Often normalization is done simply by
subtracting the fluorescence of a negative control consisting of
nonfluorescent cells from the fluorescence of the cells of
interest at the same time point. To calculate the fluorescence
per OD, the normalized fluorescence is then divided by the
blank-normalized OD. We describe this first, and most
rudimentary, approach as “time normalization”. This time-
based normalization does not take into account growth
differences between the nonfluorescent control and the sample
population, which can be common in cells containing genetic
circuits that may affect growth.11 A second normalization
strategy, “Time OD normalization”, takes the ratio of
fluorescence to OD of both types of cells first, and then
subtracts nonfluorescent cell measurements from those of the
cells of interest. This can help account for differences in OD
between the two types of cells but assumes a proportional
relationship between OD and autofluorescence over time.
Equations for “time normalization” and “time OD based
normalization” are given in Supplemental Method S1. Another
normalization approach involves using spectral unmixing of the
main identified autofluorescent agents;9,12 however, this
requires detailed knowledge of the source of the autofluor-
escence.9

Our approach is to fit an absorbance versus autofluorescence
calibration curve of the nonfluorescent control cells (Figure
2a), which gives autofluorescence as a function of absorbance
over time for normalization.13−16 Previous mechanistic models
have suggested that autofluorescence is proportional to the
total volume of cells while flavin production and cell size
remains constant.9 However, cell size is not constant across
growth phases2,17 and production of flavins increases on
approach to stationary phase.18 This means that autofluor-
escence is not linearly proportional to optical density. Indeed,
we have observed that the relationship between OD and
autofluorescence is monotonic from lag phase to early
stationary phase, but during stationary phase autofluorescence
increases while absorbance remains stable. Furthermore, over
very long time periods, wells containing nonfluorescent cells
can show a decrease in absorbance while maintaining the same
level of autofluorescence (Figure S2). Due to the complexity of
modeling this relationship, we chose a nonlinear smoothing
approach to fit an autofluorescence calibration curve. The user
can choose the best fitting nonlinear model, and has the
options of a generalized additive model (GAM),19 locally
estimated scatterplot smoothing (LOESS) model,10 a second-
order polynomial or exponential model to fit the data.
Extrapolation is a weakness of the two smoothing models. If
the nonfluorescent control population does not grow as well as
the samples, it may be better to choose one of the other
models. However, this is an uncommon scenario in synthetic
biology since engineered strains are often burdened by the
circuits they carry.
In order to show quantitatively the performance of the

different normalization approaches in cases of growth differ-
ences between normalized cells and normalizing cells, we grew
nonfluorescent cells at different starting dilutions for 15 h

(Figure S3). Accurate normalization of nonfluorescent cells
should remove all autofluorescence, so the “ground-truth”
fluorescence is expected to be zero (shown in Figure 2c as the
orange dashed line). The mean absolute error (MAE) from the
zero-fluorescence ground truth can then be used as an
indicator of normalization performance. Pairs of wells,
inoculated at different starting densities, were normalized
against each other using the three different normalization
methods (Figure S4), and their MAE calculated during the
main growth phase of the sample well (Figure 2b). As the
difference in starting dilution between the wells increases, the
deviation from zero of both time normalization methods
(“time normalization” and “time OD normalization”) increases
substantially. FlopR fitted normalization also shows a moderate
increase but it is considerably smaller than the other types of
normalization, indicating more consistent normalization
performance, independent of growth. Figure 2c shows the
normalized MEFL per particle of a subset of these non-
fluorescent wells over time. In the middle panel, the sample
well and normalizing well are identical indicating that all
methods perform well. Time-based normalization methods are
particularly prone to poor normalization at early time points,
when delays or differences in the start of exponential growth of
the two populations are emphasized.

Calibration of Plate Reader and Flow Cytometer
Fluorescence Data. After normalization, FlopR converts the
fluorescence of the cell sample of interest from arbitrary units
to standardized units of MEF per particle by multiplying the
normalized values with conversion factors generated from
measurements of standard independent calibrants.
For the microplate reader calibration, measurements of a

calibration plate of serial dilutions of fluorescein and
microspheres measured prior to the main experiment are
used as calibrants to generate conversion factors using FlopR’s
generate_cfs() function. Fluorescein shares similar excitation
and emission wavelengths to green fluorescent protein (GFP),
and the microspheres used are of approximately the same size
and diameter as E. coli.2 Our protocol was adapted from the
iGEM standard protocols20,21 and is available in the
Supporting Information. The plate reader calibration plate is
measured under all of the potential experimental conditions
under which the fluorescent cells of interest will be measured
in future experiments, including plate type, well volume or lid
type, and with a range of gain settings. This is so that
conversion factors generated from the calibration plate data
will be valid for future experiments under a range of
conditions. In particular, we note that the relationship between
gain and conversion factors on the plate reader that we used
was linear. This allows us to estimate the conversion factors if
an experiment is run with a gain that was not calibrated against.
To process data from the calibration plate, measurements are
checked for validity to ensure they are not saturated and a
model incorporating pipetting error1 is fitted to the remaining
data. Plots are produced showing the fit for each measured
condition, allowing the user to visually check the results.
For flow cytometry calibration, FlopR uses measurements of

standard calibration particles (also called calibration beads).
The calibration beads have known quantities of fluorophore
bound to them and often present a range of intensities. To
identify the bead fluorescence peaks measured by the flow
cytometer, FlopR uses a Gaussian kernel density estimate from
the R “stats” package,10 as opposed to Gaussian mixtures
models or k-means clustering models used in other flow
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cytometry data calibration software.7,8 This allows us to
provide the user with a single parameter to modify (the
bandwidth, which is equal to the kernel standard deviation) if
the default settings are unsuccessful at identifying bead peaks
(Figure S1). The default bandwidth that we have specified
(0.025) prevents over smoothing of narrow peaks at high
fluorescence intensity, but details of when and how to change
the bandwidth are in the tutorial. From experience with other
software tools, even with the ability to control parameters,

bead peak identification can fail, so we also provide the ability
for users to manually specify peak locations. Corresponding
values of MEF for each identified peak are provided by the
calibration bead manufacturer and are input into FlopR by the
user for the specific bead lot and brand used (full details
available in the FlopR tutorial). The identified peaks are
checked for validity by comparing the fold change in measured
fluorescence of adjacent peaks to the expected fold change
from the manufacturer and discarding those that are more than

Figure 3. Demonstration of FlopR-produced MEFL per particle values measured by flow cytometry or on a plate reader. (a) Three different
constitutive GFP expression constructs were tested, with promoters J23101, J23106, and J23117. (b) Fluorescence measurements on different days
compared to literature values for the same plasmids.1 Plate reader data shows the geometric mean and standard deviation of 12 replicates on 2 days.
Flow cytometry data shows the geometric mean fluorescence intensities and standard deviation of 11 replicates over 2 days.

Figure 4. Using FlopR to monitor population dynamics of individual populations within heterogeneous bulk plate reader measurements. (a) Mixed
cocultures of fluorescent killer cells and nonfluorescent competitor cells at different starting ratios were measured and compared using FlopR. (b)
Distinct subpopulations are easily identifiable by clustering flow cytometry data. (c) Comparison of plate reader calculated killer cell fractions and
flow cytometry measured killer cell population fractions for wells at identical time points. (d) Dynamics of individual cell populations (orange or
gray for killer and competitor, respectively) reconstructed from plate reader data using FlopR. The top panel shows timecourses of cell number of
strains reconstructed from plate reader data. The bottom panel shows timecourse data of killer cell population fractions calculated from plate reader
data or measured from clustered flow cytometry data. Data for (d) is mean and standard deviation of two replicate wells measured on the same day.
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25% outside what is expected. A model developed for
FlowCal,7 which includes bead autofluorescence, is then fitted
to produce coefficients for conversion between measured
fluorescence in arbitrary units and calibrated fluorescence in
MEF.
Demonstrating FlopR Function with Constitutive

GFP Expression Data. We sought to demonstrate the use
of FlopR using constructs that constitutively expressed GFP
with differing strength promoters (Figure 3a). Figure 3b shows
the results of measurements of three different strength
constructs on a plate reader and flow cytometer, compared
against literature values of the same constructs.1 We followed
the protocol conducted by the iGEM interlab study, in which
only a single time point is measured, so it is worthwhile to note
that these were normalized following the interlab protocol and
were not normalized for autofluorescence according to FlopR’s
normalization fit. In this case the nonfluorescent control cells
and GFP-expressing cells showed similar growth dynamics, so
time-based normalization is expected to give accurate results.
The results show that FlopR produces results that are not only
consistent between replicates sampled on different days, but
that are also comparable with results from the literature that
were measured on different instruments and processed using
other software.
Applying FlopR to Identify Bacterial Subpopulations

in Bulk Plate Reader Measurements. Finally, we used
FlopR’s normalization capabilities to identify specific sub-
populations of cells in mixed cultures to demonstrate its
potential applications beyond green fluorescence calibration.
There has been growing interest in engineering multicellular
consortia;22,23 however, identifying the growth dynamics of
individual strains within a mixed culture remains challenging.
We use a previously described system24 in which bacteriocin-
producing fluorescent “killer” cells were mixed at different
starting fractions with nonfluorescent competitor cells, and use
FlopR to process the data measured in a microplate reader and
flow cytometer over 12 h (Figure 4a). Traditionally, separation
of the two population fractions is only possible by clustering in
flow cytometry data (Figure 4b), but sampling is manual and
low throughput, and it requires different fluorescence proteins
in either strain or high expression of a fluorescent protein in
order to adequately distinguish between subpopulations. In
this case, population fractions are simply calculated using the
numbers of cells of each population in each cluster. The killer
cells were engineered to produce two fluorescent proteins,
GFP and mCherry, so that clustering could be performed using
both fluorescence channels without the issue of spectral
overlap of the competitor and killer cell populations when
fluorescence expression is weak.
To reconstruct population fractions from plate reader data,

we make the assumption that fluorescent cells in a
monoculture are representative of the same cells in a coculture.
With this assumption, we can use a positive control well
composed of only fluorescent killer cells to create an
absorbance−fluorescence calibration curve specific to killer
cells using one of the fluorescence channels (Figure S5). This
calibration curve allows us to take into account the fact that
fluorescence per cell may not remain constant over time: a
similar premise to the autofluorescence calibration curve
described previously. At each time point, the fraction of killer
cells was calculated by

=t
nF t

nF n t
fraction( )

( )
( OD ( ))

cells

pos cells

where nFcells(t) is the normalized fluorescence of the sample at
time t, nODcells(t) is the normalized absorbance of the sample
at time t, and nFpos uses the calibration curve to get the
expected fluorescence at the given absorbance assuming an
entirely killer population. The calculated fraction of killer cells
from measurements in both instruments are shown in the
bottom panel of Figure 4d, and a comparison is presented in
Figure 4c, both showing that FlopR can closely reconstruct
accurate subpopulations of cells from bulk data. This fraction
can then be multiplied by the calibrated particle count of the
mixed wells to get the growth timecourses of individual
subpopulations (top row of Figure 4d). At high starting
fractions of killer cells, the competitor cells are immediately
overwhelmed and the killer dominates the culture (right
column of Figure 4d). However, at low initial killer cell
fractions, the competitor cells experience an initial growth
phase, until the concentration of bacteriocin is sufficiently large
to begin eliminating the competitors. Reconstruction of cell
population fractions from plate reader measurements does not
require spectral separation of the two subpopulations and
therefore the use of both fluorescent protein channels is not
necessary. It is indeed possible to reconstruct cell fractions
using the green fluorescence channel (Figure S6) giving similar
results to the reconstruction using red fluorescence in Figure 4.
The same coculture system was explored over a larger range of
population ratios as well as a variety of starting population
densities and the final plate reader calculated population
fraction was compared with flow cytometry data (Figure S7).
These results further demonstrate the accuracy of our method.
However, the data also show that at low population densities
the subpopulation fraction calculation may produce inaccurate
estimates due to noisy measurement of absorbance in the plate
reader at those densities.
We performed a sensitivity analysis to determine how the

true population fractions, fluorescence intensities and
absorbance values, along with errors in measurement of
absorbance and fluorescence, affect our ability to correctly
estimate population fractions (Supplementary Method S3).
We approximate measurement error by assuming measure-
ments are normally distributed around the true value and
examine two scenarios: the error is proportional to the
measurement, and the error is constant regardless of the
magnitude of the measurement (Figure S8). In the former
scenario a measurement error of 1% produces a sensitivity of 1
(all population estimates are within 5% of the true value), a 2%
error gives 0.94 and a 5% error gives 0.63 sensitivity. These
hold regardless of the population ratios, fluorescence intensity
or absorbance. However, when the measurement error is
constant, the sensitivity decreases as the fluorescence intensity
or absorbance decrease because the error proportionally gets
larger. It is likely that true measurement error for plate readers
is proportional to the magnitude of the measurement down to
a minimum error. This would correspond with our
observations in Figure S7 of accuracy diminishing at the
lowest population densities.

■ DISCUSSION
FlopR is a free and open source software tool that allows direct
comparison of flow cytometry and plate reader green
fluorescence data. Future extensions to the software should
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include fluorescence calibration for colors other than green
fluorescence. For example, calibrants for red fluorescence, such
as TexasRed, are currently being investigated.25 Size
calibration26currently available in other flow cytometry
packages5can also be added, which may be of particular
use in order to understand changes or differences in
morphology of different bacterial strains. Size calibration may
be particularly important to understand the size of microsphere
to use as a calibrant to avoid over- or under-estimation of
population size, as differences in particle size can cause large
differences in light scattering, particularly when the size of the
particle approaches that of the incident light wave, as is the
case with bacteria.2 Alternatively, the cells themselves could be
used to create the calibration curves for specific strains: by
measuring the number of cells in a known dilution in the flow
cytometer, it would be possible to estimate the number of cells
in a dilution series of the same sample measured in the plate
reader. In addition, determination of the MEFL per individual
GFP protein, for example by flow cytometry and liquid
chromatography−mass spectrometry,27 would be useful to gain
quantitative information on how many proteins per cells are
producing that fluorescence. This would be highly beneficial to
enable the coupling of computational models to experimental
data. As this software is open source, it can also be extended
with methods for calibration of other instruments and
approaches, such as fluorescence microscopy,28 or other
imaging techniques.
Measurement standards help reproducibility, transparency

and collaboration within the scientific process. Despite this,
fluorescence remains identified as a problematic measurement
area.29,30 We hope this tool will be of use to the synthetic
biology community to facilitate and encourage the use of
standardized units in fluorescence measurements. The full
details on how to use the package and requirements can be
found in the tutorial on FlopR’s GitHub repository at www.
github.com/ucl-cssb/flopr.

■ METHODS
Instruments and Settings. All plate reader experiments

were done on a Tecan SPARK Multimode Microplate Reader,
using 96 well black, clear bottom plates (Corning). Specific
plate reader settings for the individual experiments of each
figure are outlined in Tables S1. All fluorescence measure-
ments were made from the top of the plate, with 125 μL cell
cultures. Plate reader data for Figures 3 and 5 was collected
throughout the timecourse. Plate reader data for Figure 4b was
collected at a single time point, following the protocol detailed
in Beal et al. and available at protocols.io.1,31

All flow cytometry experiments were carried out on an
Attune NxT Flow Cytometer. Green fluorescence was
measured on the BL1 channel (excitation laser: 488 nm,
emission filter: 530/30 nm), and red fluorescence on the YL2
channel (excitation laser: 561 nm, emission: 620/15 nm). Cell
cultures were diluted 1 μL in 200 μL of filtered PBS, with 3
mixing cycles and minimum 3 wash rinses between samples.
As is noted in Table S2, data for Figures 2 and 4 were

measured at excitation and emission wavelengths of 485/20
nm and 535/20 nm for green fluorescence. These differ by 3
nm for excitation and 5 nm for emission from the flow
cytometer excitation and emission wavelengths of the BL1
green fluorescence channel in the flow cytometer. However, as
both the plate reader’s excitation and emission bandwidths are
20 nm and the flow cytometer bandpass filter is 30 nm, the

small difference in the settings is negligible, and the
measurements from both instruments are still comparable.

Calibration Materials. The full protocol for generating
serial dilutions of plate reader calibrants is detailed in
Supporting Method S1. Briefly, fluorescein isothiocyanate
(Sigma-Aldrich, CAS: 3326-32-7) dissolved in PBS and 0.89
μm monodisperse silica microspheres (Cospheric: SiO2MS-2.0
0.890um-1g) suspended in microbiology grade water were
used to create serial dilutions in a 96 well black, clear bottom
plate (Corning), with four replicate dilution series for each
calibrant. Due to the quick settling time of the microspheres,
their dilutions were remixed by pipetting up and down
immediately before measurement on the plate reader. For flow
cytometry calibration, one drop of Spherotech Rainbow
calibration particles (Biolegend catalog number: 422903,
these are identical to Spherotech catalog number: RCP-30-
5A (8 peaks) Spherotech lot number: 073112) was mixed with
300 μL of PBS and measured using the same settings as the
relevant experiment.

Strains and Cultures Conditions. All plasmids, strains,
and antibiotic working concentrations used are listed in Table
S3. For Figure 2 and 4 cells were cultured in M9 minimal
media supplemented with 0.4% glycerol and 0.2% casamino
acids throughout the experiments. Cells for the experiment in
Figure 3b were cultured in LB media throughout the
experiment, following the standard iGEM protocol.31 For
Figure 2, 5 mL cultures were grown overnight in 14 mL round-
bottom vented cap culture tubes at 37 °C and 200 rpm in a
SciQuip ZHWY-103D incubator, then diluted 1:1000 in fresh
M9 media to a total of 5 mL in a new 14 mL tube, grown for 6
more hours at 200 rpm, diluted in fresh M9 media to a target
OD 700 nm of 0.1 and total volume of 5 mL, then diluted
stepwise by a factor of 3/8 (for initial starting dilution ratios of
1, 0.375, 0.141, 0.053, 0.020, 0.007, 0.003, and 0.001) and final
well volume of 125 μL per well in a 96 well black, clear bottom
plate. For Figure 4, 5 mL overnight cultures were diluted 1:100
in fresh M9 media to a total of 5 mL in 14 mL flasks, then
mixed at the specified ratios to a final volume of 125 μL per
well in a 96 well black, clear bottom plate.

Flow Cytometry Data “Trimming”. Each file within the
folder given as the dir_path argument is initially processed to
remove debris using the flowClust package32 to discriminate
between bacterial and debris populations using logged forward-
scatter height versus side-scatter height. This uses a t-mixture
model with a Box-Cox transformation to fit the clusters and
integrated completed likelihood to determine if there is a
debris population or not. If two populations are found, the one
with the greater mean forward-scatter height is chosen as the
sample population and the other is discarded as debris. If the
data has already had debris gated out during the experimental
setup, the user can indicate as such by setting the pre_cleaned
argument to TRUE. In this case, the 10% outliers are removed,
and the remaining events are chosen as the sample population.
Next we attempt to remove doublets and larger cell aggregates
using the singletGate() function provided by the flowStats
package.33 This fits a linear model to logged side-scatter height
versus side-scatter area and discards events outside the 90%
confidence interval. The manipulation of the flow cytometry
data within FlopR relies heavily on functions provided by the
flowCore package.34

Flow Cytometry Normalization. The events from a
nonfluorescent control are trimmed to remove debris and
select singlets, as above. The geometric mean of each
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fluorescence channel is calculated, with 5% of observations
from each end of the distribution removed prior in order to
prevent skew from extreme values.5 Sample data are then
normalized by negating these calculated values from each event
in each fluorescence channel.
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