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Abstract: Barcode technology has a broad spectrum of applications including healthcare, food security,
and environmental monitoring, due to its ability to encode large amounts of information. With the
rapid development of modern molecular research, barcodes are utilized as a reporter with different
molecular combinations to label many biomolecular targets, including genomic and metabolic
elements, even with multiplex targeting. Along with the advancements in barcoded bioassay,
the improvements of various designs of barcode components, encoding and decoding strategies,
and their portable adoption are indispensable in satisfying multiple purposes, such as medical
confirmation and point-of-care (POC) testing. This perspective briefly discusses the current direction
and progress of barcodes development and provides a hypothesis for barcoded bioassay in the
near future.
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1. Introduction

A barcode represents a collection of data which could be decoded by an optical readout [1]. Barcode
technology was first innovated and adopted in industry. Due to the robust practicability, applications of
barcode spread to many areas including clinical medicine [2], chemical detection [3], and retail trade [4].
Traditional barcodes deliver a variety of information by changing the width and gap of lines, which is
identified as a linear or one-dimensional (1D) barcode. Instead of just a bar, new barcode developments
involve geometric figures which are adapted to produce two dimensional (2D) recognition codes,
such as quick response codes (QR code) [5]. Accompanying the change of code profiles, code readers
are also undergoing innovation to achieve higher specification and sensibility. On the other hand,
various label-free detection methods have been developed to avoid the labeling process, such as surface
plasmon resonance [6], electrochemical detection [7], and grating-coupled interferometry [8]. However,
all these techniques have their own limitations. For example, to detect the electrical signal change in
bioassay, electrochemical impedance spectroscopy is always utilized [9,10]. It requires time-consuming
calibration, and the sensitivity is poor without target amplification or signal amplification [11]. Thus,
code labeling techniques, providing high sensitivity, selectivity, and multiplexing capability, are widely
adopted in molecular diagnosis.

Recent studies have demonstrated the feasibility of multiple barcodes constituted of biomolecules
and particles for biological analysis. These barcodes could provide the function of molecular
identification, which was proverbially proved valid in fundamental and laboratory analysis [12].
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Various barcodes with high coding capability bring possibilities of multiplex detection. With the
pursuit of higher specificity and sensitivity, barcodes might initiate a revolution for clinical detection.
In this perspective, we provide a summary about the different types of barcodes, and predictions
of future development and application of barcodes for health care, biological analysis, molecular
detection, and in vivo diagnosis, as illustrated in Figure 1. Traditional barcodes are utilized for labeling
the information and treatments of patients to prevent medication errors in health care [13]. Recently,
new types of barcodes, also known as 2D recognition code, with or without fluorescence, are widely
used to label target molecules such as proteins, DNA, and RNA. Furthermore, these barcodes are
applied for detecting and monitoring the biological activity in vitro and in vivo for bioanalysis [14,15].
In the future, these advantages of different barcodes could be upgraded to achieve many different
formations, such as different 3D patterns.
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2. Classification of Barcodes for Bioassay

The common barcodes used for bioassay could be categorized into two main classes: Fluorescent
and non-fluorescent-based barcodes. These barcodes could be either self-encoding, or adopted by
other encoding approaches. For example, fluorescent-based barcodes could be combined with genetic
and graphic encoding methods.

Fluorescent-based barcodes are broadly adopted to bioassay, providing a wide range of fluorescent
colors, which is due to their specific emission spectra, diversity of combination, or difference in
structures [12]. Fluorescence is a principal element for expressing the identity of biomolecular targets.
Nowadays, several types of fluorescent barcodes with different materials are used for bioassay.
Fluorescent dyes are generally applied as barcode materials to report the targets. Plenty of ready-made
instruments used for excitation and emission detection have already extended the application of
fluorescent dyes. Mixing different fluorescent dyes in various ratios is a useful strategy to create
many different fluorescent colors, which could be individually or combinatorically applied as the
tags to label the targets [16,17]. A string-like barcode employs sequencing dyes which are placed
at a single-stranded backbone contained in the reporter probe [18]. This technology was utilized to
provide genetic sequencing on an identified label via altering the order of fluorescent dyes to enhance
specificity and reduce background (Figure 2).
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Figure 2. A string-like barcode dye for target RNA labeling and detection. (a) Capture probe and
reporter probe are mixed with biological samples containing target RNA. (b) Capture probe and
reporter probe bind with the target RNA by complementarily binding with target RNA using their short
nucleotide fragment. (c) After immobilizing the complex on the solid surface, the residual is washed
away. (d) The complex of capture probe, reporter probe, and target RNA is released by ultraviolet
light exposure.

According to our data, Ebola RNA molecules labeled by a string-like fluorescent barcode could
be detected at both excitation of 532 nm and 633 nm (Figure 3) under a Total Internal Reflection
Fluorescence (TIRF) microscope [19]. The diffusion of the labeled molecules was imaged with an
electron multiplying CCD camera, enabling high-speed single molecule tracking. Because the barcode
dye can be excited by different wavelengths, it improves the identification accuracy of target molecules
by confirming the presence of targets in different channels. As shown in Figure 3, we are able to
accurately identify the labeled Ebola RNA in dual channels with concentrations ranging from 300 fM
to 30 pM. When the target concentration is low (300 fM), the target molecules are confirmed by
both excitations (red boxes). Exploiting the sequence combination, changing the sequence of the
fluorescent dyes on the backbone of the barcode dye can provide genomic information of different
targets, resembling traditional barcodes [20], thus allowing highly multiplexing detection of the target
molecules. For example, by changing the arrangement of four different colors, multiplexing detection
of up to 800× can be achieved [18].

Fluorescent micro/nanostructures, such as quantum dots [21], lanthanide nanocrystals [22],
and nanowires [23], have also been employed for bioassays. These sub-microstructures are facile
and stable synthetic particles which provide changeable size, morphology, and different components
with various surface modification available for different purposes. The probes could bind with these
fluorescent sub-microstructures to label targets.

Recently, the common barcodes are integrated with several encoding methods, such as using
DNA/RNA and immune antibodies encoding to report the targets with the aid of nanoparticles or
nanorods, dyes, and others as reporters [24,25]. We used DNA oligonucleotide as a linker to bind the
target by hybridizing with complementary oligonucleotide, and the accompanying fluorescent dye as
a reporter to transfer the information of targets [20]. Similarly, gold nanoparticles as reporters could be
detected not only by spectrometry because of their function of Raman signal enhancement, but also
by naked eye because of changeable color by their aggregation and dispersion [26]. Furthermore,
combining DNA oligonucleotide, antibody, and nanoparticles as a barcode was reported to achieve
twice the signal amplification for protein detection [27,28]. These techniques contributed to establishing
the non-fluorescent based barcode library (Figure 4). Structures could also be non-fluorescent
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based barcodes which need reporters labeling/detecting assistance, such as magnetically tunable
structural colors, to help researchers to read out the information of targets in previous research [29].
These combinations give abundant possibilities for encoding and decoding the barcodes, and amplifying
the barcode library.

Diagnostics 2019, 9, x FOR PEER REVIEW 3 of 8 

 

 

Figure 2. A string-like barcode dye for target RNA labeling and detection. (a) Capture probe and 
reporter probe are mixed with biological samples containing target RNA. (b) Capture probe and 
reporter probe bind with the target RNA by complementarily binding with target RNA using their 
short nucleotide fragment. (c) After immobilizing the complex on the solid surface, the residual is 
washed away. (d) The complex of capture probe, reporter probe, and target RNA is released by 
ultraviolet light exposure. 

According to our data, Ebola RNA molecules labeled by a string-like fluorescent barcode could 
be detected at both excitation of 532 nm and 633 nm (Figure 3) under a Total Internal Reflection 
Fluorescence (TIRF) microscope [19]. The diffusion of the labeled molecules was imaged with an 
electron multiplying CCD camera, enabling high-speed single molecule tracking. Because the 
barcode dye can be excited by different wavelengths, it improves the identification accuracy of target 
molecules by confirming the presence of targets in different channels. As shown in Figure 3, we are 
able to accurately identify the labeled Ebola RNA in dual channels with concentrations ranging from 
300 fM to 30 pM. When the target concentration is low (300 fM), the target molecules are confirmed 
by both excitations (red boxes). Exploiting the sequence combination, changing the sequence of the 
fluorescent dyes on the backbone of the barcode dye can provide genomic information of different 
targets, resembling traditional barcodes [20], thus allowing highly multiplexing detection of the 
target molecules. For example, by changing the arrangement of four different colors, multiplexing 
detection of up to 800× can be achieved [18]. 

 
Figure 3. A string-like fluorescent barcode dye-labeled RNA target with various concentrations (300 
fM–30 pM) imaged by a Total Internal Reflection Fluorescence (TIRF) microscope with dual channel 

Figure 3. A string-like fluorescent barcode dye-labeled RNA target with various concentrations
(300 fM–30 pM) imaged by a Total Internal Reflection Fluorescence (TIRF) microscope with dual
channel excitation (532 nm and 633 nm). The red boxes show the molecules being observed unber
both excitations.
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Figure 4. Non-fluorescent barcodes. The colorimetry detection is realized by DNA hybridization based
gold nanoparticle aggregation. (a) The separated gold nanoparticle (red) are aggregated (blue) after
DNA hybridization, reprinted with permission from Reference [26] Copyright (2017) biosensors. (b) The
gold nanoparticle related colorimetry could achieve attomolar (aM) level sensitivity by combining DNA
oligonucleotide with antibody and particles, reprinted with permission from Reference [27] Copyright
(2005) American Chemical Society. (c) With similar technology, the gradient concentration of targets
could be detected according to the color change of gold nanoparticle reagent, reprinted with permission
from Reference [28] Copyright (2007) Springer Nature.
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3. Perspective on Barcodes

In previous research, barcodes were prevalently used for detecting proteins and nucleic acids
in vitro [27,30]. Pre-synthesized DNA sequences worked as cellular barcodes to label and track
large numbers of cells [31]. Along with the development of genome engineering technologies,
in vivo barcodes are created using nuclease-induced mutations which extends barcode applications to
establishing cell development and lineage tracing mammalian model systems [15,32]. With the in vivo
barcodes, researchers could not only trace changes of the genome, but are also capable of marking
and editing the mutated locus to reduce the incidence of lethal diseases, such as cancers. According
to this information, preventive healthcare could be performed to potentially prevent the causes of
potential diseases. This will dramatically improve the understanding of the mechanism of cause and
development of disease and restoration of tissue and organs.

In bioassay, similar to the most commonly used detection technologies such as immunohistochemistry
and immunofluorescence technologies, barcodes are designed as labels to tag and identify the known
genomes [21] and proteins [33]. The purpose of barcodes application is to find and extract these targets
out from complicated samples, such as tissues and bodily fluids [18]. These barcodes are mostly
utilized for substance detection. However, in the past few years, barcodes reflecting the intracellular
reactions, such as protein–protein and cell–cell interactions, were discussed by several studies. Schlecht
et al. took two groups of random nucleotide barcodes and inserted them into different kinds of yeast
cells to yield large libraries of double barcoding system [34]. Using this system, Schlecht and colleagues
created a protein–protein interaction sequencing platform. Similar to protein–protein interactions,
random mRNA barcodes were also used to target pre- and postsynaptic neurons to investigate the
synaptic connections. In this study, the connectome protein was extracted after associating the neurons
through protein–protein crosslinking across the synapse for sequencing [35]. Instead of reporting the
information of substance, this research demonstrated the biological behavior based on the information
from barcodes.

Indeed, bioreactions and behaviors are happening all the time in organisms. During the
physiological and pathological reactions, energy could be generated, stored in the form of adenosine
triphosphate (ATP), and transferred to support other reactions or produce heat. Tantama et al.
used a biosensor to monitor the range of intracellular ATP:ADP in mammalian cells to observe the
physiological changes in energy consumption and production [36]. In the near future, produced and
consumed energy inside organisms could also be labeled and tracked to investigate the transportation
pathways of energy. The barcodes could not only show the quantity of energy production and emission,
but also report the creating or consuming ratio of energy by the luminous intensity.

The behaviors and reactions themselves were also considered as barcodes in previous studies,
such as the intercellular protein phosphorylation [37–40]. Phosphorylation barcode has boundless
prospects for detecting interaction of G proteins and G protein-coupled receptors (GPCRs) [37,39].
As the largest class of signal proteins in humans, the phosphorylation of GPCRs mediated by
isoform-specific GPCR kinases leads to distinct phosphorylation patterns which produce conformational
change of β-arrestins and downstream responses [37,39]. These serial reactions have substantially
distinct phosphorylation patterns between even closely related GPCRs stimulated by the same
stimulation. Therefore, it could be considered as a natural barcode through the mechanism of GPCRs
phosphorylation. There are many molecule–molecule and cell–cell specific behaviors and interactions
inside of an organism, and they might be responsible for the corresponding downstream reaction.
These behaviors and interactions may be used as the barcodes in the future to distinguish their specific
downstream reaction.

Currently, 2D recognition codes are used for most detections. In the future, 3D identification codes,
known as shape recognition, will be created as the next generation in keeping with the times. These 3D
identification codes could have various shapes, as well as 2D profiles. Instead of a planar surface,
3D codes could have uneven topography, which will provide adequate surface area for patterns with
different reporters such as fluorescence, colors, and nanoparticles, and be detected by spectrometers
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and microscopes (Figure 5). With these advantages, 3D codes would possess striking labeling capability
compared with 2D recognition codes. With these 3D identification codes, hundreds of thousands of
options are possible by changing patterns and colors, bringing multiplexing detections which could be
achieved easily and rapidly. It might also speed up the detections in testing organizations, and improve
the quick response for diseases. State-of-the-art technology, such as 3D printing, both top-down [41]
and bottom-up [42], could provide candidates for these 3D codes fabrications. Furthermore, they might
be directly created from 2D to 3D using origami technology [43]. With the development of barcodes,
quantifiable data of 3D codes could be exported by a particular reader and analyzed by simple and
convenient methods.
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Barcodes are robust tools and are applied to various fields for reporting information on different
targets. To investigate the physiological and pathological phenomenon and the mechanisms of these
targets, barcodes are prevalently utilized for bioassay. By means of barcodes, from the microscale
molecules to macroscale cells, one signal phenomenon to serial reactions could be distinguishable.
In the future, diversified forms of barcodes could be created and adopted for different purposes in
the foreseeable future along with the development of scanning and readout devices, which could
launch a new revolution for exploring the occurrence and development of physiological and
pathological processes.
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