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1e inflammatory proliferation of fibroblast-like synoviocytes (FLSs) and functional imbalances in T lymphocytes play critical
roles in the pathogenesis of rheumatoid arthritis (RA). 1e clinical efficacy of Huayu Tongbi Fang (HYTB, a traditional herbal
formula) in RA treatment has been validated. In this study, we aimed to explore the regulatory mechanisms of HYTB on the
proliferation and differentiation of T lymphocytes, and the inhibitory effect of HYTB on inflammatory proliferation of FLSs. 1e
RCS-364 (Rat FLSs) cells were cocultured with rat splenic lymphocytes that were induced by interleukin-1β in Transwell
chambers. After freeze-dried HYTB powder treatment, the percentage of T-cell subset and apoptosis rates of FLSs were measured
using flow cytometry. Furthermore, protein expression of key molecules of NF-κB and JAK/STAT signaling pathways was
quantified using Western blot. 1e granulocyte-macrophage colony-stimulating factor (GM-CSF) was measured using enzyme-
linked immunosorbent assay. 1e results showed that HYTB could inhibit the inflammatory proliferation of FLSs through
inducing cell apoptosis. Additionally, HYTB treatment could intervene in the proliferation and differentiation of T lymphocytes
and regulate protein expression of key molecules in NF-κB and JAK/STATcell signaling pathways. Moreover, it could inhibit FLS
activation by suppressing GM-CSF production by T cells and FLSs. 1erefore, the HYTB formula should be used as a traditional
medicine against RA in modern complementary and alternative therapies.

1. Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease
that affects 0.5%–1.0% of adults worldwide. RA joint in-
flammation is associated with immune cell infiltration, sy-
novial inflammatory hyperplasia, and excessive
proinflammatory mediator production, eventually resulting
in articular cartilage injury [1, 2]. Although the detailed
etiology and pathogenesis of RA remain uncertain, recent

studies have demonstrated that inflammatory proliferation
and activation of fibroblast-like synoviocytes (FLSs) and
abnormal T-cell subset differentiation play critical roles in
RA pathogenesis [3, 4]. T-cell activation also contributes to
RA pathogenesis. Abnormal balance of T helper cells, 11/
12, and Treg/117 induces the inflammatory immune
response and FLS activation. FLSs produce proinflammatory
cytokines and chemokines, recruit effective T cells to sy-
novial tissue in the joint, and initiate autoimmune arthritis.
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1e proinflammatory cytokine secretion, including gran-
ulocyte-macrophage colony-stimulating factor (GM-CSF),
initiates and augments autoimmune arthritis [5–8]. Effective
1 cells and activating FLSs participate in autoimmune
responses and aggravate bone and cartilage degradation
[9, 10].

1e nuclear factor-κB (NF-κB) signaling pathway is
related to several pathophysiological changes including in-
flammation, cell survival, proliferation, and differentiation.
Activation of this pathway regulates proinflammatory cy-
tokine production and accelerates the RA pathological
progression. Moreover, inflammatory cytokines activate the
Janus kinase/signal transducers and activators of tran-
scription (JAK/STAT) signaling pathway (also known as IL-
6 signal pathway) and elevate the matrix metalloproteinase
gene expression, resulting in apoptosis resistance in FLSs
[11]. 1e proinflammatory cytokines activate 117 and FLSs
to secrete GM-CSF. GM-CSF stimulates monocytes, den-
dritic cells (DCs), and 117 cells and augments innate and
adaptive immune cell activation and the synovitis in joints
[10].

Huayu Tongbi Fang (HYTB), a Chinese herbal for-
mula, is considered to improve the RA pathological mi-
croenvironment by activating blood circulation,
dissipating blood stasis, and dredging meridians and
collaterals. Its curative effect and drug safety have been
established through long clinical practice in RA treatment.
Despite the good curative effect of HYTB in RA treatment
[12], the mechanisms for inhibiting abnormal T-cell dif-
ferentiation and inflammatory proliferation of FLSs are
not clear. In this study, RSC-364 cells (Rat FLSs cell line)
[4, 13] cocultured with rat lymphocytes that were induced
by IL-1β in Transwell chambers were used as cell models.
Following freeze-dried HYTB powder treatment, the rates
of T-cell subsets and FLSs apoptosis were measured. 1e
expression of key molecules in NF-κB and JAK/STAT
signaling pathways and GM-CSF level were also studied.
We wanted to explore the possible mechanisms by which
HYTB regulates T-cell proliferation and differentiation,
thus inhibiting the FLSs activation and inflammatory
proliferation.

2. Materials and Methods

2.1. Preparation of the Freeze-Dried HYTB Powder. 1e
modified HYTB formula was composed of six medicinal
herbs. 1e constitution ratio of the six herbs was composed
of Ligusticum chuanxiong Hort [4], Dioscorea nipponica
Makino [4], Radix Aconiti Lateralis Preparata [2],Astragalus
membranaceus [4], Radix Paeoniae Alba [3], and Corydalis
yanhusuo [3]. 1e herbal mixture was soaked in deionized
water for 20min and extracted with boiling water at 10 :1 (v/
w) for 2.5 h. 1e extracted liquid was collected, and the herb
residue was then added with deionized water and boiled for
another 1 h. 1e extracted liquid was collected and com-
bined with the first one. After the water extract was con-
centrated by heating the mixture at 75°C for 2.5 h.1e herbal
extract was filtered using a standard test sieve of 150 μm,
freeze-dried, and maintained in desiccators at 4°C until use.

2.2. High-Performance Liquid Chromatography-Electrospray
Ionization/Mass Spectrometer (HPLC-ESI/MSn) Analysis.
1e constituents of the freeze-dried HYTB powder were
measured using HPLC-ESI/MSn. 1e specific measuring
procedures were based on our previously described method
[14]. 1e PeakView™ 2.2 software was used to analyze the
data including retention time, accurate mass, and MS/MS
spectrum comparison.

2.3. Cell Viability Assay. Cell viability assay was performed
using the cell counting kit-8 (CCK8) method. In brief, RSC-
364 cells were seeded into a 96-well plate at a density of 4,000
cells/well for 24 h at 37°C and 5% CO2 in a cell incubator.
Following treatment with various HYTB concentrations (0,
10, 50, 100, 250, 500, 750, and 1000 µg/mL, six repetitions)
for 24 h at 37°C, cells were added to wells with 10 µL CCK8
(Beyotime, Nanjing, China) per well and incubated for 4 h.
Subsequently, optical density (OD) was measured at 450 nm
using a Varioskan Flash microplate reader (1ermo Fisher
Scientific, Inc.). According to the experimental results, we
used the 100 and 250 µg/mL concentrations as cell stimu-
lation concentrations in this study (Figure S1).

2.4. Preparation of Rat Lymphocytes. Sprague Dawley rats
(weighing 180–220 g) were obtained from the Beijing Vital
River Laboratory Animal Technology Co. Ltd, Beijing, China
(certificate number SCXK: 2012-0001). 1is study was ap-
proved by the Institutional Ethics Committee of the Beijing
University of Chinese Medicine (No. 17-02, Beijing, China),
and all animal protocols complied with the National In-
stitutes of Health Guide for the Care and Use of Laboratory
Animals (revised 2011). After intraperitoneal injection
(50mg/kg) of pentobarbital sodium anesthesia, the spleen
was isolated under sterile conditions.1e rats were sacrificed
by intravenous pentobarbital sodium anesthesia (150mg/kg)
administration, and the death of rats after cardiac arrest was
confirmed for 30min. Single-cell suspensions from rat
spleens were collected with gentle MACS Dissociator (Macs
Miltenyi, Teterow, Germany). 1e spleens were placed in a
homogenate pipe with phosphate-buffered saline (PBS). 1e
suspension was filtered through a 70 μm nylon cell strainer.
After centrifugation (1000 rpm, 5min), cells were resus-
pended in 5mL of Red Blood Cell Lysis Buffer for 5min and
centrifuged at 2000 rpm for 5 minutes. 1e
splenic lymphocytes were cultured in 2mL RPMI-1640
medium supplemented with 3% fetal bovine serum (FBS).

2.5. Cell Culture and Treatment. RSC-364 cells were col-
lected and seeded into six-well culture plates (1× 106 cells/
per well). After synchronization, cells were washed three
times with PBS. Transwell inserts were placed onto culture
plates. 1e lymphocytes (1× 106 cells/per well) were then
seeded into the upper chambers. 1e freeze-dried HYTB
powder was dissolved in RPMI-1640 medium. Afterward,
cells were stimulated for 12 h and 24 h in RPMI-1640 me-
dium containing 5%. FBS, with 25 ng/mL IL-β alone or
together with 25 ng/mL IL-1 receptor antagonist (IL-1RA)
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or the freeze-dried HYTB powder, at a final concentration of
100 or 250 μg/mL.

2.6. Hematoxylin-Eosin (HE) Staining. RSC-364 cells
(1.5×105 cells/per well) were seeded into 24-well plates with
preplaced coverslips. Lymphocytes (1.5×106 cells/per well)
were seeded into Transwell upper chambers in separate
wells. After 12 or 24 h of treatment, RSC-364 cells were fixed
with 95% alcohol for 15min. Next, cells were stained with
hematoxylin and eosin. 1e stained cells were observed and
photographed using a light microscope (DM RAS2, Leica,
Solms, Germany).

2.7. Flow Cytometry Analysis. RSC-364 cells were stained
using an Annexin V/propidium iodide (PI) apoptosis
detection kit (BD Biosciences, MA, USA). After 12 or 24 h

of treatment, cells were harvested, washed three times with
PBS, and incubated with 5 μL Annexin V-FITC and 10 μL
PI for 20min at room temperature. To measure the 11,
12, or 117 cell percentages, lymphocytes were harvested
and stimulated with phorbol 12-myristate 13-acetate
(PMA) (50 ng/mL) and ionomycin (Ion) (1 μg/mL) (Sigma,
San Francisco, CA, USA) in the presence of GolgiPlug (BD
Bioscience) for 5 h at 37°C and 5% CO2 in a cell incubator.
After being surface-labeled with anti-rat CD4 PE-Cya-
nine5 antibody (eBioscience), lymphocytes were blocked,
fixed, permeabilized using Fixation/Permeabilization kit
(BD Bioscience), and stained with anti-rat IFNc PE, IL-4
PE-Cyanine7, or IL-17A FITC antibodies (BD Bioscience).
1e stained apoptotic cells and 1 cells were measured
using a FACS Calibur cytometer, and data were analyzed
using CellQuest software (Beckman Coulter, Brea, CA,
USA).

In
te

ns
ity

BPC of ESI (+) TOF-MS

1 3 4
6

8

910

13
14

15

16

17
19

20

21 22

23, 24

25

Time (min)

2.5e5

2.0e5

1.5e5

1.0e5

5.0e4

0.0e0
5 10 15 20 25 30 35 40 45

(a)

Time (min)

BPC of ESI (-) TOF-MS

2

5, 7

11, 12

18

In
te

ns
ity

5 10 15 20 25 30 35 40 45

5.5e5

5.0e5

4.5e5

4.0e5

3.5e5

3.0e5

2.5e5

2.0e5

1.5e5

1.0e5

5.0e4

0.0e0

(b)

Figure 1: HPLC-ESI/MSn total ion chromatograms of HYTB processed by different methods. (a) Negative base peak of MS spectrum.
(b) Positive base peak of MS spectrum.
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2.8. Enzyme-Linked ImmunosorbentAssay (ELISA). After 12
or 24 h of treatment, the supernatant of the culture solution
was collected. 1e GM-CSF concentrations were measured
using ELISA kit (eBioscience), according to the instructions
provided by the manufacturer. 1e optical density of each
sample was measured with a plate reader at 450 nm. Sub-
sequently, the GM-CSF levels were quantified using stan-
dard curves and shown as the number of picograms per
milliliter.

2.9. Western Blot Analysis. After 12 or 24 h of treatment,
RSC-364 cells and lymphocytes were harvested. Cells were
lysed using RIPA Lysis Buffer containing protease inhibitor
cocktail (Sigma, St. Louis, MO, USA). Protein samples
(2mg/ml) were separated by 10% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and elec-
trotransferred onto the polyvinylidene difluoride mem-
branes (Sigma, St. Louis, MO, USA). 1e membranes were
blocked with 5% skimmilk and incubated overnight with the
following primary antibodies at 4°C: T-bet, GATA-3, RORct,
TRAF2, IKKα/β, phospho-IKKα/β, and NF-κB p50
for lymphocytes; TRAF2, MyD88, IKKα/β, phospho-IKKα/
β, NF-κB p50, JAK1, STAT3, and phospho-STAT3 for RSC-
364 cells (1 :1000, Cell Signaling Technology, MA, USA).1e
membranes were then incubated with horseradish peroxi-
dase- (HRP-) conjugated IgG secondary antibody (1 : 3000,
Abcam, Cambridge, MA, USA) at room temperature for 2 h.
All immunoreactive proteins were visualized using Super-
Signal West Pico Chemiluminescent Substrate (1ermo
Scientific, Rockford, IL, USA). 1ree replicates of each

experiment were performed. 1e densitometry values were
normalized to GAPDH and quantified using Image-Pro Plus
version 4.0 (Media Cybernetics Inc., Rockville, MD, USA).

2.10. Statistical Analysis. All data are presented as mean-
± standard deviation (SD). 1e SPSS version 13.0 was used
for statistical analyses. A P< 0.05 was considered statistically
significant.

3. Results

3.1. Identification of Chemical Constituents in HYTB by
HPLC-ESI/MSn. Representative liquid chromatography-
mass spectrometry chromatograms are shown in Figure 1.
Negative (Figure 1(a)) and positive (Figure 1(b)) modes were
operated in the HPLC-ESI/MSn experiment. Twenty-five
constituents were identified by comparing the retention time
with the IDA method. 1e identified compounds are shown
in Table 1.

3.2.HYTBRegulated theDifferentiation of(andTregCells of
Lymphocytes in the Coculture System Induced by IL-1β.
1e percentages of 11, 12, 117, and Treg cells
in lymphocytes were measured by flow cytometry. 1e 11
(IFN+CD4+, Figure 2(a)) and 117 (IL-17+CD4+,
Figure 3(a)) cell percentages were significantly increased
compared with those of the model group after 12 and 24 h of
IL-1β induction. After 12 or 24 h of HYTB treatment, the
abnormal differentiation of 11 and 117 cells was sup-
pressed. However, the percentages of 12 (IL-4+CD4+,

Table 1: Chemical components identified from HYTB by HPLC-ESI/MSn.

Peak Ionization mode TR (min) Formula Identification Peak area Area (%)
1 + 1.46 C5H9NO2 Proline 1642000 1.8
2 − 1.73 C7H10O5 Shikimic acid 690900 1.3
3 + 1.79 C5H11NO2 L-Valine 76360 0.1
4 + 12.3 C23H28O11 Albiflorin 3810000 4.2
5 − 12.84 C26H28O14 Isoschaftoside 177500 0.3
6 + 12.93 C23H28O11 Paeoniflorin 4280000 4.7
7 − 13.27 C9H8O3 p-Coumaric acid 140300 0.3
8 + 14.21 C22H22O10 Calycosin-7-O-glucoside 2572000 2.8
9 + 15.21 C20H23NO4 Tetrahydrojatrorrhizine 7699000 8.4
10 + 16.24 C20H19NO5 Protopine 7553000 8.3
11 − 16.5 C7H6O3 4-Hydroxybenzoic acid 813700 1.5
12 − 16.88 C18H16O8 Rosmarinic acid 13000000 23.7
13 + 17.52 C20H20NO4 Jatrorrhizine 7553000 8.3
14 + 17.6 C20H18NO4 Epiberberine 5307000 5.8
15 + 17.71 C19H14NO4 Coptisine 11150000 12.2
16 + 18 C21H22O9 Liquiritin 906500 1.0
17 + 18.72 C22H27NO4 Corydaline 11150000 12.2
18 − 19.25 C26H22O10 Salvianolic acid A 2482000 4.5
19 + 19.95 C23H28O10 Isomucronulatol-7-O-glucoside 636600 1.2
20 + 20.88 C22H24NO4 Dehydrocorydaline 3605000 4.0
21 + 25.34 C16H12O4 Formononetin 2911000 3.2
22 + 33.75 C18H14O3 Dihydrotanshinone I 2155000 2.4
23 + 37.86 C19H20O3 Cryptotanshinone 5041000 5.5
24 + 37.89 C18H12O3 Tanshinone I 1663000 1.8
25 + 40.2 C19H18O3 IIA Tanshinone 5269000 5.8
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Figure 3: Percentages of CD4+IL-17+ cells and protein expression of RORct in lymphocytes after treatment. (a) Flow cytometry histogram.
1e results are presented in bar charts. (b) RORct was detected in lymphocytes byWestern blot analysis.1e quantified results are presented
in bar charts. GAPDH is used as an internal control. Data are presented as the mean± SD (n� 3). ∗P< 0.05 and ∗∗P< 0.01.
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Figure 4: Percentages of CD4+IL-4+ cells and protein expression of GATA-3 in lymphocytes after treatment. (a) Flow cytometry histogram.
1e results are presented in bar charts. (b) GATA-3 was detected byWestern blot analysis.1e quantified results are presented in bar charts.
GAPDH is used as an internal control. Data are presented as the mean± SD (n� 3). ∗∗P< 0.01.
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Figure 4(a)) cells were significantly decreased by IL-1β. After
12 h of HYTB treatment, the number of 12 cells was sig-
nificantly increased. 1e percentages of Treg (CD4+CD25+,
Figure 5) cells in the HYTB group (250 μg/mL) were sig-
nificantly increased compared to those induced by IL-1β
alone at these two-time nodes of treatment. 1ese results
indicated that HYTB treatment could interfere with the
proliferation and differentiation of1 and Treg cells induced
by IL-1β, and the regulatory effects were time- and dose-
dependent.

To explore HYTB treatment mechanisms on intervening
in the proliferation and differentiation of 1 cells, the
protein expression of specific transcription factors in1 cells
was measured using Western blot analysis. As shown in
Figures 2(b), 3(b), and 4(b), the T-bet protein levels (the
specific transcription factor of 11) and RORct (that of
117) were significantly decreased, and GATA-3 (that of
12) was remarkably increased in lymphocytes after HYTB
treatment at two-time nodes.1e regulatory effects of HYTB
treatment, especially of 250 μg/mL HYTB treatment groups,
were equal or superior to those of IL-1RA groups.

3.3. HYTB Inhibited the Activation of the NF-κB Signaling
Pathway inLymphocytes Inducedby IL-1β. IL-1β can activate
the NF-κB signaling pathway and contribute to the in-
flammatory immune response [15]. We measured the
protein levels of key molecules in the NF-κB signaling
pathway of lymphocytes after HYTB treatment. As shown in
Figures 6 and 7, the protein levels of TRAF2, IKKα/β, and
NF-κB p50 were significantly downregulated after 12 and
24 h of HYTB treatment. Phospho-IKKα/β also significantly
decreased. 1e HYTB inhibitory effects (250 μg/mL) of the
treatment groups were better than those of the other groups
after 24 h of treatment.

3.4. HYTB Suppressed the Inflammatory Proliferation of FLSs
by InducingCell Apoptosis. 1eHE staining analysis showed
that RSC-364 cells appeared regular with large and spindle-
shaped nuclei in normal group, and cells induced by IL-1β
exhibited irregular spindle shape and various degrees of
damage in the cytoplasm. 1e inflammatory proliferation of
RSC-364 cells also appeared. HYTB treatment significantly
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inhibited FLSs proliferation and repaired the cell damage
(Figure 8(a)).

In addition, we also measured apoptotic cell percentage
in RSC-364 cells after treatment. As shown in Figure 8(b),

the apoptotic cell percentage in the HYTB treatment groups
significantly increased compared with that induced by IL-1β
alone after 12 h of treatment. 1e inducing effect of HYTB
treatment was superior to that of IL-1RA.
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3.5. HYTB Treatment Inhibited GM-CSF Production in the
Coculture System of Lymphocytes and FLSs Induced by IL-1β.
IL-1β signaling drives 117 cells and FLSs to produce GM-
CSF, active DCs, and macrophages, contributing to per-
petuate autoimmune inflammation [16, 17]. We measured

the GM-CSF levels in the supernatant of the coculture so-
lution after treatment by ELISA. As shown in Figure 9, the
GM-CSF levels in a coculture system of lymphocytes and
FLSs significantly increased after IL-1β stimulation. HYTB
treatment downregulated the GM-CSF secretion.1e HYTB
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treatment inhibitory effect at 250 μg/mL concentration was
equal or superior to that of IL-RA.

3.6. Inhibitory Effects ofHYTB on theActivation of NF-κB and
JAK/STAT Signaling Pathways of RSC-364 Cells in the
Transwell System. Activation of NF-κB and JAK/STAT
signaling pathways plays key roles in the RA pathogenesis
[18]. For these reasons, we measured the protein levels of key
molecules in NF-κB and JAK/STAT signaling pathways in
RSC-364 cells after treatment. As shown in Figures 10 and
11, the protein expression of MyD88, TRAF2, IKKα/β, and
NF-κB p50 in RSC-364 cells of HYTB treatment groups was
significantly lower than those induced by IL-1β alone at two
time nodes. Furthermore, IKKα/β protein phosphorylation
was inhibited by HYTB treatment.1e phospho-STAT3 and
JAK1 protein levels in RSC-364 cells also significantly de-
creased after HYTB treatment (Figures 12 and 13). 1e
inhibitory effects of 250 μg/mL HYTB were better than those
of IL-1RA groups.

4. Discussion

In traditional Chinese medicine, multiple agents contained
in one formula will synergistically work as medical treat-
ment. Twenty-five chemical constituents of HYTB formula
were identified by HPLC-ESI/MSn analysis. Pharmacological
research demonstrated that paeoniflorin can inhibit lipo-
polysaccharide-induced production of tumor necrosis fac-
tor-α (TNF-α) and IL-1β, thereby increasing IL-10
production [19]. Coptisine can inhibit IL-1β-induced in-
flammatory response by suppressing NF-κB signaling
pathway [20]. Moreover, isoschaftoside and jatrorrhizine
have been shown to inhibit proliferation, migration, and
production of inflammatory mediators [21, 22]. Epi-
berberine, coptisine, and p-coumaric acid have antibacterial,
anti-inflammatory, and antioxidative effects [23–26].
Pharmacological studies have also shown that calycosin-7-

O-glucoside could reduce the expression of platelet-derived
growth factor, fibroblast growth factor, and toll-like receptor
[27]. Tanshinone IIA could upregulate lncRNA GAS5 and
block cell cycle in the G2/M phase, inducing FLSs apoptosis
[28, 29]. 1erefore, we suggest that these HYTB constituents
could be contributed by interacting withmultiple targets and
exerting synergistic therapeutic effects on regulating pro-
liferation and differentiation of 1 and Treg cells, thereby
inhibiting inflammatory FLSs proliferation by inducing
apoptosis, and attenuating proinflammatory cytokine pro-
duction for the suppression and resolution of inflammation
in RA.

T-cell infiltration and inflammatory cytokine imbalance
in the joint lumen could induce an abnormal anti-immune
response and initiate inflammatory proliferation of synovial
tissue and the autoimmune arthritis, resulting in articular
cartilage injury [30]. 1e imbalances in the differentiation
and function of 11 and 12/117 cells influence RA
pathogenesis [3, 31, 32]. Naı̈ve CD4+ Tcells differentiate into
either type of 1 cell subset depending on the stimulation of
specific transcription factors. 11 cell differentiation de-
pends on expression of transcription factor T-bet through
the IL-12/STAT-4 signaling pathway and the interferon-c
(IFN-c)/STAT-1 signaling pathway [33]. GATA-3 induces
12 cell differentiation by the IL-4/STAT-6 pathway [34].
117 cell differentiation induces the expression of the
transcription factor RORct by TGFβ and IL-6/STAT3
pathways [35].

11 cells play a predominant role in the RA pathology.
Synovium-infiltrating 11 cells secrete IFN-c and activate
macrophages and TNF production [36]. However, several
studies have demonstrated that 11 phenotype does not
explain all mechanisms involved in RA. IL-17-producing
117 cells were found in peripheral blood monocytes in a
large proportion of RA patients. 1e 117 cell proportion is
related to disease activity during RA progression [36]. IL-17
secreted by 117 cells activates osteoblasts and FLSs and
induces osteoclastogenesis [37]. IL-17 also induces
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production of TNF and IL-6 from FLSs and macrophages
and augments recruitment of inflammatory cells into the
synovial tissue. CD4+ T cells overexpressing RORct induce
the CCR6 production and promote the CD4+ T-cell mi-
gration into inflamed joints [38].12 cells coordinating with
IL-4 and IL-10 suppress 11 cell differentiation. In addition,
IL-4R controls IL-17 production. GATA-3 overexpression
reduces 117 cell differentiation [39]. Treg cells have

regulatory roles in the development of autoimmune ar-
thritis. Depletion of CD25+ T cells augments the severity of
collagen-induced arthritis in a murine model. CD4+CD25+
Treg cell transplantation suppresses the progression of ar-
thritis [40]. In this study, our results indicated that HYTB
treatment has a regulatory effect on 1 cells differentiation.
HYTB could downregulate 11 and 117 cell proportions
and induce 12 and Treg cell differentiation after IL-1β
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stimulation. One possible mechanism is interfering with
protein expression of 1 specific transcription factors.

Synovial hyperplasia and infiltration of immune cells
lead to excessive expansion and destruction of articular
cartilage in RA [41]. Activated FLSs have resistance to cell
apoptosis. Small molecule inflammatory mediators and
proteolytic enzymes produced by FLSs can degrade the
extracellular matrix in RA [42]. Our results showed that

HYTB treatment could inhibit FLSs inflammatory prolif-
eration induced by IL-1β by promoting apoptosis.

GM-CSF, a key proinflammatory cytokine, activates
dendritic cells and macrophages.117 cells induced by IL-
1 and IL-23 signaling secrete GM-CSF and initiate au-
toimmune inflammation [43]. FLSs are important effector
cells that produce large amounts of inflammatory cyto-
kines, contributing to cartilage and bone degradation in
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Figure 11:1e key molecules protein levels of the NF-κB signaling pathway in RSC-364 cells after 24 h of treatment. TRAF2, MyD88, IKKα/
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RA. IL-17 combined with IL-1 increases GM-CSF pro-
duction by FLSs. Loss of GM-CSF production by 117
cells and FLSs could inhibit progression of autoimmune
arthritis [44]. HYTB treatment decreased GM-CSF pro-
duction in the coculture system of lymphocytes and FLSs
induced by IL-1β.

1e NF-κB signaling pathway plays a key role in the
pathogenesis of RA. NF-κB signaling pathway activation
stimulates proinflammatory cytokines expression, leading
to the inflammatory response of RA [45]. It can also induce
expression of antiapoptotic cytokines, inhibit apoptosis of
FLSs, and contribute to the synoviocyte hyperplasia
stimulated by proinflammatory cytokines [46]. 1e JAK/
STAT3 signaling pathway also plays a key role in the RA
pathological progression. 1e cell cycle and apoptosis of
FLSs in RA are regulated by activation of JAK/STAT3
signaling pathway [47]. 1e results of present study
showed that HYTB treatment could intervene in the
protein expression of key molecules of NF-κB and JAK/
STAT3 signaling pathways, inhibit activation of these

pathways, induce FLSs apoptosis, and contribute toward
inhibiting inflammatory proliferation of FLSs induced by
proinflammatory cytokines.

Our study demonstrated that the HYTB formula could
regulate proliferation and differentiation of 1 cells,
suppress NF-κB and JAK/STAT signaling pathways acti-
vation, induce apoptosis in FLSs, and decrease GM-CSF
production, resulting in the suppression of inflammatory
proliferation of FLSs stimulated by proinflammatory cy-
tokines. HYTB can restore homeostasis in the tissue mi-
croenvironment of RA. 1ese in vitro experimental results
and preliminary clinical observation results provide sup-
porting supplements for HYTB formula in the treatment of
autoimmune arthritis, including RA. However, in vivo
experiments and clinical trials are necessary to confirm the
anti-inflammatory activities of HYTB. 1is is also a key
point in our follow-up research work. Taken together, this
Chinese medical formula, HYTB, should be used as a
complementary or alternative traditional medicine for RA
treatment.
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