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Abstract

Developing a thorough understanding of how ectotherm physiology adapts to different ther-

mal environments is of crucial importance, especially in the face of global climate change. A

key aspect of an organism’s thermal performance curve (TPC)—the relationship between

fitness-related trait performance and temperature—is its thermal sensitivity, i.e., the rate at

which trait values increase with temperature within its typically experienced thermal range.

For a given trait, the distribution of thermal sensitivities across species, often quantified as

“activation energy” values, is typically right-skewed. Currently, the mechanisms that gener-

ate this distribution are unclear, with considerable debate about the role of thermodynamic

constraints versus adaptive evolution. Here, using a phylogenetic comparative approach,

we study the evolution of the thermal sensitivity of population growth rate across phytoplank-

ton (Cyanobacteria and eukaryotic microalgae) and prokaryotes (bacteria and archaea), 2

microbial groups that play a major role in the global carbon cycle. We find that thermal sensi-

tivity across these groups is moderately phylogenetically heritable, and that its distribution is

shaped by repeated evolutionary convergence throughout its parameter space. More pre-

cisely, we detect bursts of adaptive evolution in thermal sensitivity, increasing the amount of

overlap among its distributions in different clades. We obtain qualitatively similar results

from evolutionary analyses of the thermal sensitivities of 2 physiological rates underlying

growth rate: net photosynthesis and respiration of plants. Furthermore, we find that these

episodes of evolutionary convergence are consistent with 2 opposing forces: decrease in

thermal sensitivity due to environmental fluctuations and increase due to adaptation to sta-

ble environments. Overall, our results indicate that adaptation can lead to large and rela-

tively rapid shifts in thermal sensitivity, especially in microbes for which rapid evolution can

occur at short timescales. Thus, more attention needs to be paid to elucidating the implica-

tions of rapid evolution in organismal thermal sensitivity for ecosystem functioning.
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Introduction

Current climate change projections suggest that the average global temperature in 2100 will be

higher than the average of 1986–2005 by 0.3 ˚C–4.8 ˚C [1], coupled with an increase in tem-

perature fluctuations in certain areas [2]. Therefore, it is now more important than ever to

understand how temperature changes affect biological systems, from individuals to whole eco-

systems. At the level of individual organisms, temperature affects functional traits in the form

of the thermal performance curve (TPC). Typically, this TPC, especially when the trait is a rate

(e.g., respiration rate, photosynthesis, growth), takes the shape of a negatively skewed unimo-

dal curve (Fig 1) [3, 4]. The curve increases (approximately) exponentially to a maximum

(Tpk) and then also decreases exponentially, with the fall being steeper than the rise. Under-

standing how various aspects of the shape of this TPC adapt to a changing thermal environ-

ment is crucial for predicting how rapidly organisms can respond to climate change.

According to the Metabolic Theory of Ecology (MTE) as well as a large body of physiologi-

cal research, the shape of the TPC is expected to reflect the effects of temperature on the kinet-

ics of a single rate-limiting enzyme involved in key metabolic reactions [5, 8–11]. Under this

assumption, the rise in trait values up to Tpk can be mechanistically described using the Boltz-

mann-Arrhenius equation:

B Tð Þ ¼ B0 � e
� E
k �

1
T�

1
Tref

� �h i

: ð1Þ

Here, B is the value of a biological trait, B0 is a normalisation constant—that includes the

effect of cell or body size—which gives the trait value at a reference temperature (Tref), T is

temperature (in K), k is the Boltzmann constant (8.617�10−5 eV � K−1), and E (eV) is the ther-

mal sensitivity of the trait at the rising component of the TPC up to Tpk. Because Tpk tends to

be higher than the mean environmental temperature [6, 7, 12], E represents the thermal sensi-

tivity within the organism’s typically experienced thermal range.

Fig 1. The TPC of ectotherm metabolic traits, as described by the Sharpe-Schoolfield model [5]. (A) Tpk (K) is the

temperature at which the curve peaks, reaching a maximum height that is equal to Bpk (in units of trait performance).

E and ED (eV) control how steeply the TPC rises and falls, respectively. B0 (in units of trait performance) is the trait

performance normalised at a reference temperature (Tref) below the peak. In addition, Wop (K), the operational niche

width of the TPC, can also be calculated a posteriori as the difference between Tpk and the temperature at the rise of the

TPC where B(T) = 0.5 � Bpk. We note that we use Wop instead of a metric that captures the entire TPC width because

previous studies have shown that species generally experience temperatures below Tpk [6, 7]. Thus, Wop is a measure of

the thermal sensitivity of the trait near typically experienced temperatures. (B) TPCs of individual- and population-

level traits (such as rmax) are usually well described by the Sharpe-Schoolfield model. The raw data for panel B are

available at https://doi.org/10.6084/m9.figshare.12816140.v1. TPC, thermal performance curve.

https://doi.org/10.1371/journal.pbio.3000894.g001
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Early MTE studies argued that, because of strong thermodynamic constraints, adaptation

will predominantly result in changes in B0, whereas E will remain almost constant across traits

(e.g., respiration rate, rmax), species, and environments around a range of 0.6–0.7 eV [8–10].

The latter assumption is referred to in the literature as universal temperature dependence

(UTD). This restricted range of values that E can take is centered on the putative mean activa-

tion energy of respiration (� 0.65 eV). A notable exception to the UTD is photosynthesis rate,

which is expected to have a lower E value of� 0.32 eV, reflecting the activation energy of the

rate-limiting steps of photosynthesis [13].

The existence of a UTD has been strongly debated. From a theoretical standpoint, critics of

the UTD have argued that the Boltzmann-Arrhenius model is too simple to mechanistically

describe the complex physiological mechanisms of diverse organisms [3, 14–16] and is inade-

quate for describing TPCs emerging from the interaction of multiple factors, and not just the

effects of temperature on enzyme kinetics. That is, the E calculated by fitting the Boltzmann-

Arrhenius model to biological traits is an emergent property that does not directly reflect the

activation energy of a single rate-limiting enzyme. For example, a fixed thermal sensitivity for

net photosynthesis rate is not realistic because it depends on the rate of gross photosynthesis as

well as photorespiration, which is in turn determined not only by temperature but also by the

availability of CO2 in relation to O2 [17].

Indeed, there is now overwhelming empirical evidence for variation in E (thermal sensitiv-

ity) far exceeding the narrow range of 0.6–0.7 eV, with such variation being, to an extent, taxo-

nomically structured [12, 18–23]. Furthermore, the distribution of E values across species is

typically not Gaussian but right-skewed. If we assume that E is nearly constant across species

—and therefore that variation in E is mainly due to measurement error—such skewness could

be the outcome of the proximity of the E distribution to its lower boundary (0 eV). In that

case, however, we would expect a high density of E values close to 0 eV, but such a pattern has

not been observed [18]. Both the deviations from the MTE expectation of a heavily restricted

range for E and the shape of its distribution have been argued to be partly driven by adaptation

to local environmental factors by multiple studies. These include selection on prey to have

lower thermal sensitivity than predators (the “thermal life-dinner principle”) [18], adaptation

to temperature fluctuations within and/or across generations [3, 21, 24–26], and adaptive

increases in carbon allocation or use efficiency due to warming [27–30].

In general then, adaptive changes in the TPCs of underlying (fitness-related) traits are

expected to influence the TPCs of higher-order traits such as rmax, resulting in deviations from

a UTD. Therefore, understanding how the thermal sensitivity of rmax and its distribution

evolves is particularly important, as it may also yield useful insights about the evolution of the

TPCs of underlying physiological traits (e.g., respiration rate, photosynthesis rate, and carbon

allocation efficiency). Indeed, systematic shifts in the thermal sensitivity of fundamental physi-

ological traits have been documented [27, 31–33], albeit not through comparative analyses of

large datasets.

In particular, phylogenetic heritability—the extent to which closely related species have

more similar trait values than species chosen at random—can provide key insights regarding

the evolution of thermal sensitivity. A phylogenetic heritability of 1 indicates that the evolution

of the trait across the phylogenetic tree is indistinguishable from a random walk (Brownian

motion) in the parameter space. Note that this does not necessarily indicate that the trait

evolves neutrally, as it may be under selection towards a nonstationary optimum that itself per-

forms a random walk [34]. In contrast, a phylogenetic heritability of 0 indicates that trait val-

ues are independent of the phylogeny. This is the case either because (i) the trait is practically

invariant across species and any variation is due to measurement error, or (ii) the evolution of

the trait is very fast and with frequent convergence (i.e., independent evolution of similar trait
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values by different lineages). It is worth clarifying that rapid trait evolution that does not result

in convergence (e.g., when major clades are extremely separated in the parameter space) will

not lead to a complete absence of phylogenetic heritability. Phylogenetic heritabilities between

0 and 1 reflect deviations from Brownian motion (e.g., due to occasional patterns of evolution-

ary convergence). Among phytoplankton, measures of thermal sensitivity of rmax (E and Wop)

have previously been shown to exhibit intermediate phylogenetic heritability [35]. This indi-

cates that, among phytoplankton, thermal sensitivity is not constant but evolves along the phy-

logeny, albeit not as a purely random walk in trait space, reflecting either thermodynamically

constrained evolution or rapid evolution in response to selection.

To understand (i) how variation in thermal sensitivity accumulates across multiple auto-

troph and heterotroph groups and (ii) whether its distribution is shaped by environmental

selection, here we conduct a thorough investigation of the evolutionary patterns of thermal

sensitivity, focusing particularly on rmax. Using a phylogenetic comparative approach, we test

the following hypotheses:

1. Thermal sensitivity does not evolve across species and any variation is

noise-like

In this scenario, thermodynamic constraints would force E to be distributed around a mean of

0.65 eV (or 0.32 eV in the case of photosynthesis), with deviations from the mean being mostly

due to measurement error. Depending on the magnitude of the error, the E distribution would

either be approximately Gaussian (little measurement error) or non-Gaussian with a high den-

sity near 0 eV (substantial measurement error). This hypothesis agrees with the UTD concept

of early MTE studies. If this hypothesis holds, thermal sensitivity would have 0 phylogenetic

heritability and would not vary systematically across different environments.

2. Thermal sensitivity evolves gradually across species but tends to revert to

a key central value, without ever moving very far from it

This hypothesis is also consistent with the UTD assumption, as it is a relaxed variant of

hypothesis 1. Here, small deviations from the central tendency of 0.65 eV (or 0.32 eV) are pos-

sible, as they would reflect adaptation of species’ enzymes to certain ecological lifestyles or

niches. Therefore, thermal sensitivity would be weakly phylogenetically heritable. Thermody-

namic constraints would prevent large deviations from the central tendency.

3. Thermal sensitivity evolves in other ways

This is an “umbrella” hypothesis that encompasses multiple subhypotheses that do not invoke

the UTD assumption. For example, a key central tendency (thermodynamic constraint) may

still exist, but its influence would be very weak, allowing for a wide exploration of the parame-

ter space away from it. In this case, changes in thermal sensitivity could be the outcome of

adaptation to different thermal environments. Another subhypothesis is that clades differ sys-

tematically in the rate at which thermal sensitivity evolves, due to the occasional emergence of

evolutionary innovations. Thus, clades with high evolutionary rates would be able to better

explore the parameter space of thermal sensitivity (i.e., through large changes in E and Wop

values), compared to low-rate clades in which thermal sensitivity would evolve more gradually.

A third subhypothesis is that evolution may favour individuals (and metabolic variants) that

are relatively insensitive to temperature fluctuations. In that case, the central tendency of E
would not be stationary but moving towards lower values with evolutionary time. It is worth

clarifying that these 3 subhypotheses are not necessarily mutually exclusive.
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Results

Dataset sources

We combined 2 preexisting datasets of rmax TPCs, spanning 380 phytoplankton species (a

polyphyletic group that includes prokaryotic Cyanobacteria and eukaryotic phyla such as

Dinophyta) [35] and 272 prokaryote species (bacteria and archaea) [32]. In addition, we also

collected 2 TPC datasets of traits that underlie rmax: net photosynthesis and respiration rates of

algae and aquatic and terrestrial plants (221 and 201 species, respectively) [30]. We used these

2 smaller datasets to understand whether the evolutionary patterns of thermal sensitivity differ

between (i) higher-order traits and (ii) traits that are more tightly linked to organismal physiol-

ogy. Trait values were typically measured under nutrient-, light-, and CO2-saturated condi-

tions (where applicable), after acclimation to each experimental temperature.

To investigate the evolution of measures of thermal sensitivity across species, we recon-

structed the phylogeny of as many species in the 4 datasets as possible, from publicly available

nucleotide sequences of (i) the small subunit rRNA gene from all species groups and the (ii)

cbbL/rbcL gene from photosynthetic prokaryotes, algae, and plants (see the Methods section).

We managed to obtain small subunit rRNA gene sequences from 537 species and cbbL/rbcL

sequences from 208 of them (Tables D and E in S1 Appendix).

TPC parameters were quantified for each species/strain present in the phylogeny using the

Sharpe-Schoolfield model (see Fig 1 and the Methods section). The resulting estimates of E
(the slope of the rise of the TPC) and Wop (the operational niche width of the TPC) were

found to be right-skewed (Fig B in S1 Appendix) as has been shown previously [18, 21]. Fur-

thermore, we did not detect a disproportionately high density of thermal sensitivity values

near the lower boundary of E (0 eV), as we would expect if all variation was due to strong mea-

surement error around a true value of, e.g., 0.65 eV. Thus, these results are not consistent with

the hypothesis of a nearly invariant thermal sensitivity (hypothesis 1).

Phylogenetic comparative analyses

We next investigated the evolutionary patterns of thermal sensitivity. Given that the main

focus of this study was to investigate how the thermal sensitivity of rmax (a direct measure of

fitness) evolves, most of the following comparative analyses were performed on our 2 large

TPC datasets (rmax of phytoplankton and prokaryotes). Besides this, the sample sizes of the 2

smaller datasets would be inadequate for obtaining robust results for many of our analyses. If

an analysis makes use of all 4 datasets, this is explicitly stated.

An issue that is worth mentioning is the overlap between the datasets of phytoplankton and

prokaryotic TPCs, given that both of them include Cyanobacteria. To address this, we kept

Cyanobacteria as part of the phytoplankton dataset (due to their functional similarity) and did

not include them in analyses of prokaryotes. We also examined whether our results were

mainly driven by the long evolutionary distance between Cyanobacteria and eukaryotic phyto-

plankton by repeating all phytoplankton analyses after removing Cyanobacteria (see subsec-

tion C.2 in S1 Appendix).

Estimation of phylogenetic heritability. As TPC parameters capture different features of

the shape of the same curve, it is likely that some of them may covary [35]. To account for this

in the estimation of phylogenetic heritability, we fitted a multiresponse phylogenetic regres-

sion model using the MCMCglmm R package (version 2.26) [36] in which all TPC parameters

formed a combined response. To compare the phylogenetic heritabilities of TPC parameters

between planktonic photosynthetic autotrophs and other microbes (autotrophs and hetero-

trophs), we fitted the model separately to our 2 large TPC datasets: rmax of phytoplankton and
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prokaryotes. To satisfy the assumption of models of trait evolution that the change in trait val-

ues is normally distributed, we transformed all TPC parameters so that their distributions

would be approximately Gaussian (see Fig 2). To ensure that the resulting phylogenetic herita-

bility estimates did not merely reflect the priors that were used in the MCMCglmm analysis,

we also estimated phylogenetic heritabilities using the R package Rphylopars (version 0.2.12)

[37] and BayesTraits (version 3.0.2) [38]. The main difference between these 2 and

MCMCglmm is that Rphylopars and BayesTraits cannot account for the covariance among

TPC parameters.

The MCMCglmm analysis revealed the presence of non-negligible phylogenetic heritability

in measures of thermal sensitivity (E and Wop), as well as all other TPC parameters, across phy-

toplankton (including or excluding Cyanobacteria) and prokaryotes (Fig 2 and Fig J in S1

Appendix). In particular, the phylogenetic heritability estimates of ln(E) and ln(Wop) were sta-

tistically different from both 0 and 1, indicating that the 2 TPC parameters evolve across the

phylogeny but not in a purely random (Brownian motion) manner. It is worth stressing that

even the lower bounds of the 95% highest posterior density (HPD) intervals of ln(E) and ln

(Wop) were far greater than 0, allowing us to completely rule out the possibility that all varia-

tion in thermal sensitivity is due to measurement error. In general, TPC parameters exhibit a

similar phylogenetic heritability between the 2 species groups. The only major exception is ln

(Bpk), which is considerably more heritable among prokaryotes than among phytoplankton.

This difference in phylogenetic heritability most likely reflects the strength of the positive cor-

relation between Bpk and Tpk (a “hotter is better” pattern) in the 2 groups. More precisely, Tpk,

which has a phylogenetic heritability of�1, is more strongly correlated with Bpk among pro-

karyotes [32] than among phytoplankton [35], possibly due to the differences in their cellular

physiology. For example, phytoplankton growth rate depends on the interplay among the pro-

cesses of photosynthesis, respiration, and cell maintenance, whose thermal sensitivities can

strongly differ [30]. Qualitatively similar results were obtained from the estimation of

Fig 2. Moderate to strong phylogenetic heritability can be detected in all TPC parameters, across phytoplankton

and prokaryotes. The 3 circles of each radar chart correspond to phylogenetic heritabilities of 0, 0.5, and 1. Mean

phylogenetic heritability estimates—as inferred with MCMCglmm—are shown in purple, whereas the 95% HPD

intervals are in dark grey. Note that we transformed all TPC parameters so that their statistical distributions would be

approximately Gaussian. The data underlying this figure are available at https://doi.org/10.6084/m9.figshare.12816140.

v1. HPD, highest posterior density; TPC, thermal performance curve.

https://doi.org/10.1371/journal.pbio.3000894.g002
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phylogenetic heritabilities with Rphylopars and BayesTraits (S1 Appendix, Fig F). Overall,

these results serve as further evidence that hypothesis 1 (that thermal sensitivity does not vary

across species) can clearly be rejected.

Partitioning of thermal sensitivity across the phylogeny. To understand why thermal

sensitivity has a low to intermediate phylogenetic heritability, we examined how clades

throughout the phylogeny explore the parameter space (of E and Wop) using a disparity-

through-time analysis [39, 40]. At each branching point of the phylogeny, mean subclade dis-

parity is calculated as the average squared Euclidean distance among trait values within the

subclades, divided by the disparity of trait values across the entire tree. Mean subclade dispar-

ity values close to 0 indicate that the mean of the trait variances within subclades is much

lower than the variance of trait values across the entire phylogeny. When the opposite occurs,

the mean subclade disparity will be close to 1 or even higher. The resulting disparity line is

then compared to the null expectation, i.e., an envelope of disparities obtained from simula-

tions of Brownian motion on the same tree. Through the comparison of the observed trait dis-

parity with the null expectation, it is possible to identify the periods of evolutionary time

during which mean subclade disparity is higher or lower than expected under Brownian

motion. Higher than expected subclade disparity indicates that clades converge in trait space,

whereas lower than expected subclade disparity indicates that clades occupy distinct areas of

parameter space. The latter pattern is consistent with an adaptive radiation, in which an initial

period of rapid trait evolution is typically followed by a deceleration of the evolutionary rate as

ecological niches become filled [41, 42]. Frequent episodes of higher than expected subclade

disparity (evolutionary convergence) in thermal sensitivity or segregation of major clades in

the parameter space would be consistent with hypothesis 3.

The mean subclade disparity of thermal sensitivity measures was considerably higher than

expected near the present, highlighting an increasing overlap in the parameter space of ther-

mal sensitivity among distinct clades (Fig 3 and Fig K in S1 Appendix). This pattern of

increasing clade-wide convergence in thermal sensitivity is also apparent when comparing

the thermal sensitivity distributions of different phyla (Fig 4 and Fig C in S1 Appendix). For

example, the distributions of E and Wop of Proteobacteria and Bacillariophyta have similar

shapes and central tendencies, despite the long evolutionary distance that separates the 2

phyla. This high convergence in thermal sensitivity space by diverse lineages suggests that

variation in the 2 TPC parameters is mainly driven by adaptation to local environmental con-

ditions, irrespective of species’ evolutionary history. In other words, it is likely that particular

thermal strategies (e.g., having low thermal sensitivity) may yield significant fitness gains in

certain environments (e.g., those with strong temperature fluctuations that occur predomi-

nantly across—rather than within—generations [24, 25]), leading to convergent evolution of

thermal sensitivity. It is worth noting that these disparity patterns are not an artefact of a

potentially inaccurate tree topology, as higher than expected subclade disparity occurs mainly

near the present, where tree nodes have generally high statistical support (S1 Appendix,

Fig A).

Mapping the evolutionary rate on the phylogeny. We next investigated whether clades

systematically differ in their evolutionary rate for thermal sensitivity (part of hypothesis 3). To

this end, we examined the variation in the evolutionary rate of thermal sensitivity measures

across the phylogeny by fitting 3 extensions of the Brownian motion model: the free model

[43], the stable model [44], and the Lévy model [45]. Under the free model, the trait takes a

random walk in the parameter space (Brownian motion) but with an evolutionary rate that

varies across branches. The stable model can be seen as a generalisation of the free model, as

the evolutionary change in trait values is sampled from a heavy-tailed stable distribution, of

which the Gaussian distribution (assumed under Brownian motion) is a special case. Thus, the
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stable model should provide a more accurate representation of evolutionary rate variation, as

it is better able to accommodate jumps in parameter space towards rare and extreme trait val-

ues. Finally, the Lévy model represents evolution under Brownian motion combined with

occasional episodes of rapid trait change.

The results were robust to the choice of model used for inferring evolutionary rates (Fig 5,

Figs G and H in S1 Appendix). Rate shifts tend to occur sporadically throughout the phylogeny

and especially in late-branching lineages, without being limited to particular clades. This pat-

tern suggests that there is little systematic variation in the evolutionary rate of thermal

Fig 3. Change in mean subclade disparity in thermal sensitivity through time. Shaded regions represent the 95%

confidence interval of the resulting trait disparity from 10,000 simulations of random Brownian evolution on each

respective subtree (subset of the entire phylogeny). The dashed line stands for the median disparity across simulations,

whereas the solid line is the observed trait disparity. The latter is plotted from the root of the tree (t = 0) until the most

recent internal node. The reported P values were obtained from the rank envelope test [40], whose null hypothesis is

that the trait follows a random walk in the parameter space. Note that instead of a single value, a range of P values is

produced for each panel, due to the existence of ties. In general, species from evolutionarily remote clades tend to

increasingly overlap in thermal sensitivity space (mean subclade disparity exceeds that expected under Brownian

motion) with time. The raw data underlying this figure are available at https://doi.org/10.6084/m9.figshare.12816140.

v1.

https://doi.org/10.1371/journal.pbio.3000894.g003
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sensitivity among clades, with sudden bursts of trait evolution arising in parallel across evolu-

tionarily remote lineages.

Visualization of trait evolution as a function of time, and test for directional selec-

tion. To further describe the evolution of thermal sensitivity, we visualized the E and Wop

values from the root of each subtree until the present day, across all 4 TPC datasets, using the

phytools R package (version 0.6–60) [46]. Ancestral states—and the uncertainty around

them—were obtained from fits of the stable model of trait evolution, as described in the

Fig 4. Distributions of thermal sensitivity estimates of rmax for the largest (most species-rich) phyla of this study. In general, more variation

can be observed within than among phyla. The data underlying this figure are available at https://doi.org/10.6084/m9.figshare.12816140.v1.

https://doi.org/10.1371/journal.pbio.3000894.g004
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previous subsection. The visualization allowed us to test hypothesis 2, i.e., that thermal sensi-

tivity evolves around a central tendency of 0.65 eV (or 0.32 eV), with large deviations from this

value reverting quickly back to it. To this end, and to also test the hypothesis of directional

selection towards lower thermal sensitivity (part of hypothesis 3), we used the following

Fig 5. Variation in the evolutionary rate of thermal sensitivity across the phylogeny. Rates were estimated by fitting

the stable model of trait evolution to each dataset and were then normalised between 0 and 1. Most branches exhibit

relatively low rates of evolution (orange), whereas the highest rates (red and brown) are generally observed in late-

branching lineages across different clades. The raw data underlying this figure are available at https://doi.org/10.6084/

m9.figshare.12816140.v1.

https://doi.org/10.1371/journal.pbio.3000894.g005
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model:

lnðEÞ � lnðŷÞ þ slope � t: ð2Þ

ln(E) values (those from extant species and ancestral states inferred with the stable model)

were regressed against a central value (ln(ŷ)) and a slope that captures a putative linear trend

towards lower/higher values with relative time, t. The same model was also fitted to ln(Wop).

The regressions were performed with MCMCglmm and were corrected for phylogeny as this

resulted in lower deviance information criterion (DIC) [47] values than those obtained from

non-phylogenetic variants of the models. More precisely, we executed 2 MCMCglmm chains

per regression for a million generations, sampling every thousand generations after the first

hundred thousand.

This analysis (Fig 6) did not provide support for the hypothesis of strongly constrained

adaptive evolution around a single key central value (hypothesis 2). Instead, lineages explore

large parts of the parameter space, often moving rapidly towards the upper and lower bounds

(i.e., 0 and 4 eV), without reverting back to the presumed central tendency (e.g., see the clade

denoted by the arrow in Fig 6D). The estimated central values for E of the two rmax datasets

were much higher than the MTE expectation, and, in the case of prokaryotes (Fig 6B), the 95%

HPD interval did not include 0.65. Similarly, the inferred central values for E of net photosyn-

thesis rate and respiration rate (0.52 eV and 2.06 eV, respectively; Fig La,b in S1 Appendix)

were both higher than 0.32 and 0.65 eV. The slope parameter that would capture the effects of

directional selection in thermal sensitivity (part of hypothesis 3) was not statistically different

from 0 for any dataset.

Latitudinally structured variation in thermal sensitivity

All our analyses so far converge on one conclusion: that the evolution of the thermal sensitivi-

ties of fitness-related traits can be rapid and largely independent of the evolutionary history of

each lineage. This suggests that certain environments may select for particular values of ther-

mal sensitivity. To identify environmental adaptation in thermal sensitivity, we tested for lati-

tudinal variation in it using the combination of all 4 TPC datasets. Specifically, the increase in

temperature fluctuations from low to intermediate absolute latitudes is expected to increas-

ingly select for thermal generalists (lower E and higher Wop values) [3, 48, 49]. At high lati-

tudes, however, temperature fluctuations may further increase or progressively decrease,

depending on environment type (marine versus terrestrial) and differences between the 2

hemispheres [3, 48, 49]. In any case, the overwhelming majority of our thermal sensitivity esti-

mates belonged to species/strains from low and intermediate latitudes (S1 Appendix, Fig M),

enabling us to investigate the hypothesized gradual transition towards lower thermal sensitiv-

ity from the equator to intermediate latitudes.

Latitude indeed explained a significant amount of variation in E (which declined as

expected) but not in Wop (Fig 7 and Fig N in S1 Appendix, Tables A and B in S1 Appendix).

The E estimates of rmax, net photosynthesis rate, and respiration rate differed statistically in

their intercepts but not in their slopes against latitude, although the latter could be an artefact

of the small sample size. This result suggests that latitude could influence the E values of not

only rmax but also other traits across various species groups. Dividing latitude into 3 bins (i.e.,

low, intermediate, and high absolute latitudes) and comparing their E distributions yielded

similar conclusions (S1 Appendix, Fig O, Table C).

We also tested for a possible latitudinal clade age bias, which could arise if certain clades

originated in particular latitudes and only much later expanded to other areas [50, 51]. For

this, we performed a Mantel test [52] to estimate the correlation between phylogenetic distance
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and latitudinal distance for the 2 largest groups of our study (phytoplankton and prokaryotes).

No such bias was detected for phytoplankton (r = 0.04, P = 0.114), whereas, for prokaryotes,

the correlation was statistically supported but very weak (r = 0.11, P = 0.002). This result indi-

cates that neither species group is characterised by very strong dispersal limitation throughout

its evolutionary history.

Discussion

In this study, we have performed a thorough analysis of the evolution of the thermal sensitivi-

ties of rmax in phytoplankton and prokaryotes and its 2 key underlying physiological traits in

Fig 6. Projection of the phylogeny into thermal sensitivity versus time space. The values of ancestral nodes were

estimated from fits of the stable model. Yellow lines represent the median estimates, whereas the 95% credible intervals

are shown in red. ŷ is the estimated central tendency for each panel, whereas the existence of a linear trend towards

lower/higher values is captured by the reported slope. Parentheses stand for the 95% HPD intervals for ŷ and the slope.

All estimates were obtained for ln(E) and ln(Wop), but the parameters are shown here in linear scale. The inset figures

show the density distributions of E and Wop values of extant species in the dataset. The arrow in panel D shows an

example of a whole clade shifting towards high Wop values, without being attracted back to ŷ. The raw data underlying

this figure are available at https://doi.org/10.6084/m9.figshare.12816140.v1. HPD, highest posterior density.

https://doi.org/10.1371/journal.pbio.3000894.g006
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plants (net photosynthesis rate and respiration rate). To achieve this, we formulated and tested

3 alternative hypotheses that represent different views expressed in the literature regarding the

impact of thermodynamic constraints on the evolution of thermal sensitivity of fitness-related

traits.

The first hypothesis was that the activity of a single key rate-limiting enzyme of respiration

or photosynthesis directly determines the performance of physiological traits [9, 13] and emer-

gent proxies for fitness (such as rmax) [53, 54] (the UTD assumption). As a result, thermal sen-

sitivity should be strictly constant across traits, species, and environments. This hypothesis was

first introduced in early papers that described the MTE [8–10]. In contrast to the UTD expec-

tation, we detected substantial variation in thermal sensitivity, within and across traits and spe-

cies groups (Fig B in S1 Appendix). Furthermore, the distribution of E (slope of the rising part

of the TPC) values did not exhibit an inflated density near its lower boundary (around 0 eV),

as we would expect if all variation in thermal sensitivity was due to measurement error. The

rejection of hypothesis 1 was additionally supported by our finding that thermal sensitivity is

phylogenetically heritable across phytoplankton and prokaryotes (Fig 2).

Our second hypothesis was that thermal sensitivity evolves across species but remains close

to a key value imposed by strong (but not insurmountable) thermodynamic constraints. We

tested this hypothesis using a series of phylogenetic comparative analyses which revealed that

the evolution of thermal sensitivity is characterised by an increasing overlap in parameter

space by evolutionarily remote lineages (Figs 3 and 4) due to bursts of rapid evolution (Fig 5).

Additionally, visualisation of thermal sensitivity evolution through time (Fig 6 and Fig L in S1

Appendix) showed that thermal sensitivity can rapidly move away from its presumed central

value without being strongly attracted back to it (e.g., see the arrow in Fig 6D). In conclusion,

these results lead us to reject hypothesis 2, i.e., that thermal sensitivity evolves under very

strong thermodynamic constraints.

Fig 7. E values weakly decrease with absolute latitude. 23% of the variance is explained by latitude and trait identity,

which increases to 58% if species identity is added as a random effect on the intercept. Note that values on the vertical

axis increase exponentially. The data underlying this figure are available at https://doi.org/10.6084/m9.figshare.

12816140.v1.

https://doi.org/10.1371/journal.pbio.3000894.g007
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Our final hypothesis was that thermal sensitivity evolves in an adaptive manner and that,

even if a central tendency exists, its influence on thermal sensitivity evolution is weak. This

hypothesis was supported by the results of all phylogenetic comparative analyses and by our

detection of a systematic relationship between E and latitude. The latter is likely driven by the

increase in temperature fluctuations from the equator to intermediate latitudes and agrees

with the expectation that thermally variable environments should select for phenotypes with

low thermal sensitivity, and vice versa [3, 21, 24, 25]. That a similar latitudinal effect could not

be detected on Wop (the operational niche width of the TPC) is possibly because of the much

smaller sample size available for this, combined with the fact that Wop is nonlinearly related to

E (S1 Appendix, Fig D). More precisely, in the Sharpe-Schoolfield model, Wop will necessarily

decrease as E increases, provided that changes in E are not strongly associated with changes in

other TPC parameters (e.g., Tpk or ED; Fig E in S1 Appendix). Indeed, a previous study showed

that E correlates systematically only with Wop [35]. In any case, E is arguably a more meaning-

ful measure of thermal sensitivity than Wop because the latter assumes that species mainly

experience temperatures close to Tpk, while E captures the entire rise of the TPC. Besides tem-

perature fluctuations, a decrease in E with absolute latitude could also be explained by the met-

abolic cold adaptation hypothesis [55–58]. According to it, cold-adapted species should evolve

lower thermal sensitivities (as well as higher B0 values; see Fig 1) to maintain sufficient trait

performance at very low temperatures. As our datasets do not possess the necessary resolution

(especially at high latitudes; Figs M and O in S1 Appendix) for differentiating between these 2

alternative (and non-mutually exclusive) processes, this question remains to be addressed by

future research.

Overall, a set of novel mechanistic explanations of TPC evolution emerge from our compar-

ison of phylogenetic heritabilities of TPC parameters (Fig 2 and Fig F in S1 Appendix). Con-

trary to E and Wop, which have low to intermediate phylogenetic heritabilities, Tpk is almost

perfectly phylogenetically heritable and evolves relatively gradually (i.e., without large jumps

in parameter space; see Fig I in S1 Appendix). Thus, we expect TPCs to adapt to different ther-

mal environments through both gradual changes in Tpk and discontinuous changes in E. Grad-

ual changes in Tpk may be achieved through evolutionary shifts in the melting temperature of

enzymes, i.e., the temperature at which 50% of the enzyme population is deactivated [59, 60].

In contrast, changes in thermal sensitivity may be the outcome of (i) evolution of enzymes

with different heat capacities [60–62], (ii) changes in the plasticity of cellular membranes [3,

63], or even (iii) restructuring of the underlying metabolic network [64].

Fundamental differences in the selection mechanisms underlying the evolution of Tpk and

E may also explain the difference in evolutionary patterns between them. Specifically, both the

mean environmental temperature (to which Tpk responds [7, 35]) and the temperature fluctua-

tions (to which E responds [3, 21, 24–26, 35]) vary systematically from the equator to interme-

diate latitudes. We hypothesize that a species adapted to low temperatures is unlikely to adapt

to a high-temperature environment rapidly enough (i.e., through a large increase in Tpk) as it

is pushed to its thermal tolerance limits [65, 66]. In contrast, a species adapted to a fluctuating

thermal environment (i.e., with a low E value) should be able to survive in more thermally sta-

ble conditions without much cost, becoming a thermal specialist (i.e., with a high E value) rela-

tively rapidly, resulting in the observed jumps in trait space when mapped on the phylogeny

(Figs 3 and 6, Figs K and L in S1 Appendix).

It is worth stressing, however, that not all types of thermal fluctuations are expected to

impose selection for thermal generalists. In particular, thermal generalist variants of a given

species are expected to be favoured when temperature fluctuations primarily occur across gen-

erations [24, 25, 67]. In contrast, moderate to strong thermal variation within generations

would lead to selection for thermal specialists, even when intergenerational fluctuations are
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also present. For the microbial groups of the present study, an estimate of the minimum gener-

ation time can be calculated as the inverse of the Bpk of rmax. Across our datasets of phyto-

plankton and prokaryotes, the minimum generation time ranges from a few minutes to 3.5

months, with phylogenetically corrected medians of� 40.5 hours for phytoplankton and�

3.5 hours for prokaryotes (S1 Appendix, Fig P). Given this and because the magnitudes of

annual and intra-annual (e.g., monthly) thermal fluctuations increase from the equator to

intermediate latitudes [3, 48, 68], most microbes from intermediate latitudes are expected to

generally experience substantial intergenerational thermal fluctuations and to a much lesser

extent intragenerational fluctuations. This is indeed consistent with the observed weak decline

in E at intermediate latitudes compared to the equator (Fig 7 and Fig O in S1 Appendix). Nev-

ertheless, latitude, trait identity, and species identity account for only 58% of the variance in E,

indicating that adaptive shifts in E may also be driven by other factors such as biotic interac-

tions [18, 69, 70]. A systematic identification of drivers of thermal sensitivity as well as the

magnitude of their respective influence could be the focus of future studies.

For the thermal sensitivity of rmax in particular, the observed patterns of discontinuous evo-

lution likely reflect the evolution of TPCs of underlying physiological traits on which it

depends. For example, in populations of photosynthetic cells, shifts in the thermal sensitivity

of any or all of photosynthesis rate, respiration rate, and carbon allocation efficiency can

induce large changes in the E of rmax [30]. Indeed, we observed large adaptive shifts in thermal

sensitivity even for fundamental physiological traits such as respiration rate (S1 Appendix, Fig

Lb,d), contrary to the MTE expectation of strong evolutionary conservatism [8–10]. This result

is in agreement with a previous study that had identified significant adaptive variation in the

TPC of the specific activity of Rubisco carboxylase [31]. It remains to be seen whether a similar

lack of evolutionary conservation can be detected in key enzymes of non-photosynthetic

organisms. Further research is clearly also needed on how the thermal sensitivities of different

traits underlying fitness interact, and the extent to which these interactions can be modified

through adaptation.

Besides biological-driven variation in thermal sensitivity, “artificial” variation may also be

present, hindering the recognition of real patterns. For example, E estimates can be inaccurate

if trait measurements in the rise of the TPC are limited, and span too narrow a range of tem-

peratures [12]. To address this issue, we only kept E estimates if at least 4 trait measurements

were available at the rise of each TPC. Further variation in thermal sensitivity can be intro-

duced if trait values are measured instantaneously (without allowing sufficient time for accli-

mation) or under suboptimal conditions (e.g., under nutrient- or light-deficient conditions).

Such treatments can lead to systematic biases in the shape of the resulting TPCs, which may

strongly differ from TPCs obtained after adequate acclimation and under optimal growth con-

ditions [27, 71–74]. To avoid such biases, the datasets that we used only included TPCs that

were experimentally determined after acclimation and under optimal conditions. On the other

hand, maintenance of a given strain under a fixed set of experimental conditions for hundreds

of generations could also lead to adaptive changes in TPC shape, due to the emergence of

novel genetic mutations, as has been previously shown [26, 27]. While the strains in our dataset

were not grown over such long time periods, future studies could employ experimental evolu-

tion to measure the rate of thermal sensitivity evolution over much shorter timescales than the

ones in our study.

Put together, all these results yield a compelling mechanistic explanation of how evolution

shapes the distribution of E and emphasize the need to consider the ecological and evolution-

ary underpinnings as well as implications of variation in E, as has been pointed out in a spate

of recent studies [12, 18, 20, 21, 30]. In particular, our study helps explain the reason for the

right skewness in the E distributions previously identified across practically all traits and
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taxonomic groups [12, 18, 21]. A clear explanation for this pattern has been lacking,

partly because MTE posits that E should be thermodynamically constrained and thus almost

invariable across species [8–10]. Our study fills this gap in understanding by showing that the

distribution of E is the outcome of frequent convergent evolution, driven by the adaptation of

species from different clades to similar environmental conditions. In other words, as species

encounter new environments through active or passive dispersal [75–77], they face selection

for particular values of thermal sensitivity, which results in (often large) shifts in E. This pro-

cess explains both the low variation in E among some species groups (Fig 4) and the shape of

its distribution. More precisely, the high degree of right skewness probably reflects the fact that

most environments select for thermal generalists, with high E values being less frequently

advantageous. Our findings have implications for ecophysiological models, which may benefit

from accounting for variation in thermal sensitivity among species or individuals. This could

both yield an improved fit to empirical datasets [78] and provide a more realistic approxima-

tion of the processes being studied. Finally, the existence of adaptive variation in thermal sensi-

tivity is likely to partly drive ecological patterns at higher scales (e.g., the response of an

ecosystem to warming). How differences in thermal sensitivity among species influence eco-

system function is largely unaddressed [32, 78] but highly important for accurately predicting

the impacts of climate change on diverse ecosystems.

Methods

Phylogeny reconstruction and relative time calibration

We performed sequence alignment using MAFFT (version 7.123b) [79] and its L-INS-i algo-

rithm, and we ran Noisy (version 1.5.12) [80] with the default options to identify and remove

phylogenetically uninformative homoplastic sites. For a more robust phylogenetic reconstruc-

tion, we used the results of previous phylogenetic studies by extracting the Open Tree of Life

[81] topology for the species in our dataset using the rotl R package [82]. We manually exam-

ined the topology to eliminate any obvious errors. In total, 497 species were present in the tree,

whereas many nodes were polytomic. To add missing species and resolve polytomies, we

inferred 1,500 trees with RAxML (version 8.2.9) [83] from our concatenated sequence align-

ment, using the Open Tree of Life topology as a backbone constraint and the General Time-

Reversible model [84] with Γ-distributed rate variation among sites [85]. This model was fitted

separately to each gene partition (i.e., one partition for the alignment of the small subunit

rRNA gene sequences and one partition for the alignment of cbbL/rbcL gene sequences). Out

of the 1,500 resulting tree topologies, we selected the tree with the highest log-likelihood and

performed bootstrapping (using the extended majority-rule criterion) [86] to evaluate the sta-

tistical support for each node.

Finally, we calibrated the resulting RAxML tree to units of relative time by running DPPDiv

[87] on the alignment of the small subunit rRNA gene sequences using the uncorrelated Γ-dis-

tributed rates model [88] (S1 Appendix, Fig A). For this, we used the alignment of small sub-

unit rRNA gene sequences only, as DPPDiv can only be run on a single gene partition. We

executed 2 DPPDiv runs for 9.5 million generations, sampling from the posterior distribution

every 100 generations. After discarding the first 25% of samples as burn-in, we ensured that

the 2 runs had converged on statistically indistinguishable posterior distributions by examin-

ing the effective sample size and the potential scale reduction factor [89, 90] for all model

parameters. More precisely, we verified that all parameters had an effective sample size above

200 and a potential scale reduction factor value below 1.1. To summarise the posterior distri-

bution of calibrated trees into a single relative chronogram, we kept 4,750 trees per run (one

PLOS BIOLOGY Deep-time evolution of the thermal sensitivity of population growth rate across microbes

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000894 October 16, 2020 16 / 24

https://doi.org/10.1371/journal.pbio.3000894


tree every 1,500 generations) and calculated the median height for each node using the

TreeAnnotator program [91].

Sharpe-Schoolfield model fitting

To obtain estimates of the parameters of each experimentally determined TPC, we fitted the

following 4-parameter variant of the Sharpe-Schoolfield model (Fig 1) [5, 35]:

B Tð Þ ¼ B0 �
e
� E
k �

1
T�

1
Tref

� �h i

1þ E
ED � E
� e

ED
k �

1
Tpk
� 1
T

� �h i : ð3Þ

This model extends the Boltzmann-Arrhenius model (Eq 1) to capture the decline in trait

performance after the TPC reaches its peak (Tpk). We followed the same approach for fitting

the Sharpe-Schoolfield model as Kontopoulos and coworkers [35]. Briefly, we set Tref to 0 ˚C

because, for B0 to be biologically meaningful (see Fig 1), it needs to be normalised at a temper-

ature below the minimum Tpk in the study. Thus, a Tref value of 0 ˚C allowed us to include

TPCs from species with low Tpk values in the analyses. Also, as certain specific TPC parameter

combinations can mathematically lead to an overestimation of B0 compared to the true value,

B(Tref) [92], we manually recalculated B(Tref) for each TPC after obtaining estimates of the 4

main parameters (B0, E, Tpk, and ED). For simplicity, these recalculated B(Tref) values are

referred to as B0 throughout the study. Finally, Bpk and Wop were calculated based on the esti-

mates of the 4 main parameters.

After rejecting fits with an R2 below 0.5, there were (i) 312 fits across 118 species from the

phytoplankton rmax dataset, (ii) 289 fits across 189 species from the prokaryote rmax dataset,

(iii) 87 fits across 38 species from the net photosynthesis rates dataset, and (iv) 34 fits across 18

species from the respiration rates dataset. Note that some species were represented by multiple

fits due to the inclusion of experimentally determined TPCs from different strains of the same

species or from different geographical locations. To ensure that all TPC parameters were reli-

ably estimated, we performed further filtering based on the following criteria: (i) B0 and E esti-

mates were rejected if fewer than 4 experimental data points were available below Tpk. (ii)

Extremely high E estimates (i.e., above 4 eV) were rejected. (iii) Wop values were retained if at

least 4 data points were available below Tpk and 2 after it. (iv) Two data points below and after

the peak were required for accepting the estimates of Tpk and Bpk. (v) ED estimates were kept if

at least 4 data points were available at temperatures greater than Tpk.

Estimation of phylogenetic heritability for all TPC parameters using

MCMCglmm, Rphylopars, and BayesTraits

For MCMCglmm, the methodology that we used was also identical to that of Kontopoulos and

coworkers [35]. In short, we specified a phylogenetic mixed-effects model for each of the 2

large TPC datasets. The models had a combined response with all TPC parameters trans-

formed towards normality. The uncertainty for each estimate was obtained with the delta

method [93] or via bootstrapping (for ln(Wop)) and was incorporated into the model. Missing

estimates in the response variables (i.e., when not all parameter estimates could be obtained

for the same TPC) were modelled according to the “Missing At Random” approach [36, 94].

Regarding fixed effects, a separate intercept was specified for each TPC parameter. Species

identity was treated as a random effect on the intercepts and was corrected for phylogeny

through the integration of the inverse of the phylogenetic variance-covariance matrix. For

each dataset, 2 Markov chain Monte Carlo chains were run for 200 million generations, and
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estimates of the parameters of the model were sampled every 1,000 generations after the first

20 million generations were discarded as burn-in. Tests to ensure that the chains had con-

verged and that the parameters were adequately sampled were done as previously described.

We also estimated Pagel’s λ [95] (which is equivalent to phylogenetic heritability [96]) for

each TPC parameter using Rphylopars and BayesTraits. For the latter, we executed 2 Markov

chain Monte Carlo chains for 10 million generations, kept samples from the posterior every

1,000 generations after the first million, and ensured that sufficient convergence had been

reached. Nevertheless, we note that our previous approach is superior because Rphylopars and

BayesTraits analyse each TPC parameter separately, and thus covariances among TPC parame-

ters are not taken into account when estimating missing values. Furthermore, these 2 methods

cannot accommodate the uncertainty for each TPC parameter estimate.

Disparity-through-time analyses

We performed disparity-through-time analyses for ln(E) and ln(Wop), using the rank envelope

method [40] to generate a confidence envelope from 10,000 simulations of random evolution

(Brownian motion). As it is not straightforward to incorporate multiple measurements per

species with this method, we selected the ln(E) or ln(Wop) estimate of the Sharpe-Schoolfield

model fit with the highest R2 value per species.

Free, stable, and Lévy model fitting

We fitted the free, stable, and Lévy models of trait evolution to estimates of ln(E) and ln(Wop),

using the motmot.2.0 R package (version 1.1.2) [97, 98], the stabletraits software [44], and the

levolution software [45], respectively. To obtain each fit of the stable model, we executed 4

independent Markov chain Monte Carlo chains for 30 million generations, recording posterior

parameter samples every 100 generations. Samples from the first 7.5 million generations were

excluded, whereas the remaining samples were examined to ensure that convergence had been

achieved. For fitting the Lévy model, we used the peak-finder algorithm to estimate the value

of the model’s α parameter. More precisely, we set the starting value of α to 100.5, the step size

to 0.5, and the number of optimizations to 5, as suggested in levolution’s documentation. We

also changed the maximum number of iterations (option “-maxIterations”) to 2,000 so that the

algorithm could sufficiently converge in all cases.

Investigation of a putative relationship between latitude and ln(E) and ln

(Wop)

We examined the relationship of thermal sensitivity with latitude by fitting regression models

with MCMCglmm to all 4 TPC datasets combined. The response variable was ln(E) or ln

(Wop), whereas possible predictor variables were (i) latitude (in radian units and using a cosine

transformation, as absolute latitude in degree units, or split in 3 bins of low, intermediate, and

high absolute latitude; subsections D.2 and D.3 in S1 Appendix), (ii) the trait from which ther-

mal sensitivity estimates were obtained, and (iii) the interaction between latitude and trait

identity. To properly incorporate multiple measurements from the same species (where avail-

able), we treated species identity as a random effect on the intercept. We fitted both phyloge-

netic and non-phylogenetic variants of all candidate models. Two chains per model were run

for 5 million generations each, with samples from the posterior being captured every thousand

generations. We verified that each pair of chains had sufficiently converged, after discarding

samples from the first 500,000 generations. To identify the most appropriate model, we first

rejected models that had a nonintercept coefficient with a 95% HPD interval that included 0.

We then selected the model with the lowest mean DIC value. To report the proportions of
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variance explained by the fixed effects (Varfixed), by the random effect (Varrandom), or left unex-

plained (Varresid), we calculated the marginal and conditional coefficients of determination

[99]:

R2

m ¼
Varfixed

Varfixed þ Varrandom þ Varresid
; ð4Þ

R2

c ¼
Varfixed þ Varrandom

Varfixed þ Varrandom þ Varresid
: ð5Þ

Mantel test between phylogenetic and latitudinal distance matrices

We used the R package ade4 (version 1.7–13) [100] to infer the correlation of phylogenetic dis-

tance with latitudinal distance across phytoplankton and prokaryotes using the Mantel test. To

generate the P values, we set the number of permutations to 9,999.

Supporting information

S1 Appendix. Supplementary material.

(PDF)
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tionary jumps in large phylogenies using Lévy processes. Syst Biol. 2017; 66(6):950–963. https://doi.

org/10.1093/sysbio/syx028 PMID: 28204787

46. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods

Ecol Evol. 2012; 3(2):217–223.

47. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and

fit. J R Stat Soc Series B Stat Methodol. 2002; 64(4):583–639.

48. Vasseur DA, Yodzis P. The color of environmental noise. Ecology. 2004; 85(4):1146–1152.

49. Clarke A, Gaston KJ. Climate, energy and diversity. Proc Biol Sci. 2006; 273(1599):2257–2266.

https://doi.org/10.1098/rspb.2006.3545 PMID: 16928626

50. Qian H, Ricklefs RE. Out of the tropical lowlands: latitude versus elevation. Trends Ecol Evol. 2016; 31

(10):738–741. https://doi.org/10.1016/j.tree.2016.07.012 PMID: 27523604

51. Qian H, Zhang J, Hawkins BA. Mean family age of angiosperm tree communities and its climatic corre-

lates along elevational and latitudinal gradients in eastern North America. J Biogeogr. 2018; 45

(1):259–268.

52. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res.

1967; 27(2):209–220. PMID: 6018555

53. Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL. Effects of body size and temperature on

population growth. Am Nat. 2004; 163(3):429–441. https://doi.org/10.1086/381872 PMID: 15026978

54. Frazier MR, Huey RB, Berrigan D. Thermodynamics constrains the evolution of insect population

growth rates: "warmer is better". Am Nat. 2006; 168(4):512–520. https://doi.org/10.1086/506977

PMID: 17004222

55. Wohlschlag DE. Metabolism of an Antarctic fish and the phenomenon of cold adaptation. Ecology.

1960; 41(2):287–292.

56. Clarke A. Seasonal acclimatization and latitudinal compensation in metabolism: do they exist? Funct

Ecol. 1993; 7(2):139–149.

57. Chown SL, Haupt TM, Sinclair BJ. Similar metabolic rate-temperature relationships after acclimation

at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth. J Insect Physiol. 2016;

85:10–16. https://doi.org/10.1016/j.jinsphys.2015.11.010 PMID: 26592773

58. Payne NL, Smith JA. An alternative explanation for global trends in thermal tolerance. Ecol Lett. 2017;

20(1):70–77. https://doi.org/10.1111/ele.12707 PMID: 27905195

59. Somero GN. Proteins and temperature. Annu Rev Physiol. 1995; 57(1):43–68.

60. Pucci F, Rooman M. Physical and molecular bases of protein thermal stability and cold adaptation.

Curr Opin Struct Biol. 2017; 42:117–128. https://doi.org/10.1016/j.sbi.2016.12.007 PMID: 28040640

61. Hobbs JK, Jiao W, Easter AD, Parker EJ, Schipper LA, Arcus VL. Change in heat capacity for enzyme

catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chem Biol. 2013; 8

(11):2388–2393. https://doi.org/10.1021/cb4005029 PMID: 24015933

62. DeLong JP, Gibert JP, Luhring TM, Bachman G, Reed B, Neyer A, et al. The combined effects of reac-

tant kinetics and enzyme stability explain the temperature dependence of metabolic rates. Ecol Evol.

2017; 7(11):3940–3950. https://doi.org/10.1002/ece3.2955 PMID: 28616189

63. Cooper BS, Hammad LA, Montooth KL. Thermal adaptation of cellular membranes in natural popula-

tions of Drosophila melanogaster. Funct Ecol. 2014; 28(4):886–894. https://doi.org/10.1111/1365-

2435.12264 PMID: 25382893

64. Braakman R, Follows MJ, Chisholm SW. Metabolic evolution and the self-organization of ecosystems.

Proc Natl Acad Sci U S A. 2017; 114(15):E3091–E3100. https://doi.org/10.1073/pnas.1619573114

PMID: 28348231
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