
 International Journal of 

Molecular Sciences

Article

Liposomal Encapsulation for Systemic Delivery of
Propranolol via Transdermal Iontophoresis Improves
Bone Microarchitecture in Ovariectomized Rats

Benjamin Teong 1, Shyh Ming Kuo 2, Wei-Hsin Tsai 3, Mei-Ling Ho 1, Chung-Hwan Chen 1,4,5,*
and Han Hsiang Huang 3,*

1 Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan;
benzblackcat@yahoo.com (B.T.); homelin@kmu.edu.tw (M.-L.H.)

2 Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan;
smkuo@isu.edu.tw

3 Department of Veterinary Medicine, National Chiayi University, Chiayi City 60054, Taiwan;
s1050155@mail.ncyu.edu.tw

4 Department of Orthopaedics, College of Medicine, Kaohsiung Medical University,
Kaohsiung City 80708, Taiwan

5 Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University,
Kaohsiung City 80145, Taiwan

* Correspondence: hwan@kmu.edu.tw (C.-H.C.); hhuang@mail.ncyu.edu.tw (H.H.H.);
Tel.: +886-7-312-1101 (ext. 5751) (C.-H.C.); +886-5-273-2952 (H.H.H.);
Fax: +886-7-311-9544 (C.-H.C.); +886-5-273-2917 (H.H.H.)

Academic Editor: Andreas Taubert
Received: 18 February 2017; Accepted: 31 March 2017; Published: 13 April 2017

Abstract: The stimulatory effects of liposomal propranolol (PRP) on proliferation and differentiation
of human osteoblastic cells suggested that the prepared liposomes-encapsulated PRP exerts
anabolic effects on bone in vivo. Iontophoresis provides merits such as sustained release of
drugs and circumvention of first pass metabolism. This study further investigated and evaluated
the anti-osteoporotic effects of liposomal PRP in ovariectomized (OVX) rats via iontophoresis.
Rats subjected to OVX were administered with pure or liposomal PRP via iontophoresis or
subcutaneous injection twice a week for 12 weeks. Changes in the microarchitecture at the proximal
tibia and the fourth lumbar spine were assessed between pure or liposomal PRP treated and
non-treated groups using micro-computed tomography. Administration of liposomal PRP at low
dose (0.05 mg/kg) via iontophoresis over 2-fold elevated ratio between bone volume and total tissue
volume (BV/TV) in proximal tibia to 9.0% whereas treatment with liposomal PRP at low and high
(0.5 mg/kg) doses via subcutaneous injection resulted in smaller increases in BV/TV. Significant
improvement of BV/TV and bone mineral density (BMD) was also found in the fourth lumbar spine
when low-dose liposomal PRP was iontophoretically administered. Iontophoretic low-dose liposomal
PRP also elevated trabecular numbers in tibia and trabecular thickness in spine. Enhancement
of bone microarchitecture volumes has highlighted that liposomal formulation with transdermal
iontophoresis is promising for PRP treatment at the lower dose and with longer duration than its
clinical therapeutic range and duration to exhibit optimal effects against bone loss in vivo.

Keywords: propranolol; liposome; bone loss; iontophoresis

1. Introduction

Bone is dynamically and constantly being remodeled to sustain a healthy skeleton. Trabecular
bone is the main position of bone remodeling so it is also the main site of bone remodeling disease.
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This is also termed metabolic bone diseases [1]. In bone remodeling, osteoblasts are responsible for bone
formation and osteoclasts undertake bone resorption. It was defined by Frost that bone remodeling
is the balanced coupling of bone formation and resorption, resulting in a continuous replacement of
old bone by new bone [2]. When people age, the coupling between bone resorption and formation
shifts to an elevated rate of resorption and a declined rate of bone formation. Osteoporosis is a bone
debilitating disease characterized by reduced bone mass and deterioration of bone microstructures
which increases the risk of fracture [3]. In the aging female, bone loss increases after menopause due to
deficiency of estrogen. Thus, the rise of elderly population leads to an increasing demand for effective
treatment and prevention of osteoporosis.

Actions of anti-catabolic drugs focus on suppression of bone resorption to prevent and reverse
age-associated reduction in bone mass and enhancement in bone fragility. Another challenging
approach is to increase bone formation and osteoblastogenesis against age-related bone loss [4].
Despite findings of anabolic actions of some anti-osteoporetic therapy such as strontium ranelate [5],
the only Food and Drug Administration (FDA) approved anabolic therapy for osteoporosis is
parathyroid hormone [4]. However, it required daily subcutaneous injection which is inconvenient.
Propranolol (PRP) is a nonselective β-adrenoreceptor blocker that is hydrophilic, highly lipid stable and
has a low molecular weight. PRP was the first β-blocker approved and is known to be a widely used
therapy for improving cardiovascular diseases such as ischaemic heart disease, and symptom control
such as hypertension, arrhythmia and angina pectoris [6,7]. It has been reported that β-blockers
such as PRP is able to enhance bone mass in murine models and epidemiological studies [8–11].
Reports showed that the greater preventive effect against ovariectomy (OVX) was observed in low-dose
propranolol group in the OVX osteoporotic rats [9]. The work by Rodrigues et al. demonstrated
that PRP decreased bone resorption in vivo and suppressed in vitro osteoclast differentiation and
resorptive activity in the murine experimental periodontal model [12]. β2-adernergic agonists, on
the other hand, exerted catabolic effects in primary human osteoblasts in vitro as these compounds
increased bone resorption and decreased bone formation in vivo [13–15]. We have previously shown
that PRP increases proliferation and osteoprotegerin (OPG) mRNA expression in primary human
osteoblasts [13]. Nonetheless, PRP undergoes extensive hepatic first-pass metabolism and thus
resulting in poor bioavailability [16]. These drawbacks may largely limit the potential anabolic
effects of PRP on bone in vivo. Thus, we hypothesized that these disadvantages can be overcome, at
least partially, by transdermal systemic delivery in combination with use of liposomal drug carriers
through adjustment of administrative routes and controlled release of PRP.

Liposomes are defined as colloidal, vesicular structure composed by one or more lipid bilayers
surrounding equal numbers of aqueous compartments. The unique structures have been proposed
as a potential drug carrier for a wide variety of substances such as peptides and protein, hormones,
enzymes, antibiotic, antifungal and anticancer agents [17–22]. Several liposome formulations
are clinically used to combat cancer and infectious diseases and numerous are going through
clinical trials [23]. Liposomes are biocompatible, biodegradable, non-toxic and non-immunogenic.
In addition, liposomes increased stability of encapsulated drug and improved pharmacokinetic
effects and therapeutic index of drugs [24,25]. Among classes of liposomes, phosphatidylcholine
liposomes are the most widely used due to their relevance to the behavior of these components
in cell membranes [26] as phospholipids are the core elements of liposomes [23]. The phospholipid
1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) has been used in preparation of liposomes for years
and using DSPC, we have successfully fabricated liposomal PRP, which possessed similar stimulatory
effects on human osteoblastic cell proliferation and differentiation [27]. Thus, DSPC liposomes were
employed as a carrier for PRP encapsulation in this study.

The transdermal delivery route, such as iontophoresis, offers certain advantages including feasible
controlled delivery or sustained release of drugs, avoidance of first pass-hepatic metabolism and
a self-administered approach to drug delivery. Its non-invasive advantages over injective routes like
intramuscular, intravenous and subcutaneous injections are safety and alleviation of pain. Therefore,
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transdermal delivery has been shown to be poised to provide alternatives and bring increasing impact
on medicine [28]. Iontophoresis is characterized by uses of a small amount of physiologically acceptable
direct current to drive ionized and unionized drugs across and into the skin. It has been indicated
as a meritocratic and functionality-enhanced manner in the second-generation transdermal delivery
systems [28,29]. Iontophoresis would increase the drug delivery efficiency to achieve therapeutic
levels and might further allow modulation of delivery for individualized dosing. Other advantages
of iontophoresis include enabling continuous or pulsatile drug delivery and provide better control
over the amount of drug delivered [29]. To date, the potentials of using liposomes in collaboration
with transdermal iontophoresis to enhance the permeability, bioavailability and effects of PRP against
bone loss have not been investigated. The combination of liposome-encapsulation with iontophoresis
may potentially synergize their merits to optimize the anabolic effects of PRP against bone loss. Thus,
the hypothesis is that transdermal delivery of PRP combined with liposomal encapsulation is able to
enhance the bioavailability and anabolic effects of PRP on bone. Comparison between transdermal
delivery route and subcutaneous injective route in regard of improving bone microarchitecture in tibia
and spine for evaluation of anabolic effects of pure and liposomal PRP in OVX osteoporetic rat model
was revealed in the current study. The analysis and elevation of anabolic effects of liposomal PRP
administered by iontophoresis on bone in vivo was verified in our work to highlight that application
of liposomal encapsulation in combination with iontophoretic administration may therapeutically
reinforce the actions of PRP against osteoporosis.

2. Results

2.1. Measurement of Animal Weight

The weight of rats was measured at the end of the experiment. All animals gained weight but
the mean body weight did not show statistically significant difference among groups administered
with the same route, either by iontophoresis or subcutaneous injection. When identical drug form was
given, the body weight of the rats with subcutaneous injection was respectively greater than that in
the iontophoretic administration (Figure 1). Weight loss might be due to repeated restraint stress due
to anesthesia during the iontophoretic process [30]. The processes of iontophorosis performed in rats
were carefully monitored by veterinarians and experienced animal research technicians. During the
administration period, no clinical signs of pain, salivation or abnormal behavior were found since
Zoletil® (Virbac, France) and xylazine have been appropriately administered. No significant changes
in respiratory, physical responses to stimulation or neurological signs were observed in rats of
iontophoresis groups. Control of subcutaneous injection groups (S-OVX) had the highest mean
body weight, approximately 550 g whereas no obvious effects of pure or liposomal PRP on body
weight were observed compared to S-OVX.
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2.2. Trabecular Bone Analysis (Tibia)

OVX induced bone loss in trabecular bone compartment of the tibia, was measured by
micro-computed tomography (micro-CT) (Table 1). Figure 2A,B show the comparison of tibia
bone volume (BV)/total tissue volume (TV) percentage among all experimental groups. Micro-CT
reconstructed images of rats’ proximal tibia are shown in Figure 2C. OVX rats without PRP treatment
(control of iontophoresis and subcutaneous groups; I-OVX and S-OVX) had BV/TV of approximately
4.1–4.5%, as opposed to a normal rat that would have BV/TV of approximately 40%, according
to our previous study [31]. Treatment of pure PRP by iontophoresis, both at 0.05 and 0.5 mg/kg,
were unable to rescue the bone loss leaving trabecular BV/TV of 3.41% ± 0.69% and 3.27% ± 0.41%,
respectively. Animals that given iontophoretic liposomes-encapsulated 0.05 mg/kg PRP (I-0.05PRP/L)
had the highest and over 2-fold enhancement in BV/TV (9.00% ± 2.04%) compared to I-OVX (p < 0.05).
I-0.05PRP/L also significantly increased mean trabecular numbers in tibia (p < 0.05, Figure 3), indicating
that liposomal encapsulation was necessary to either permeate drug across the skin barrier or to prolong
in vivo PRP anabolic effects on bone. I-0.5PRP/L had BV/TV of 2.61% ± 0.39%, which was lower than
I-0.05PRP/L, and even lower than that in I-OVX group. On the other hand, subcutaneous injection
of pure 0.5 mg/kg and liposomal 0.05 or 0.5 mg/kg PRP resulted in insignificant increase of BV/TV
percentage as compared with S-OVX group. Also, PRP of pure or liposomal dosage forms administered
subcutaneously could not cause any significant increases in trabecular numbers and mean trabecular
thickness in tibia (data not shown). I-0.05PRP/L group also showed slight and insignificant increase in
bone mineral density (BMD) in tibia whereas subcutaneous injection of the two PRP forms did not
cause significant changes in BMD in tibia in the OVX rats (Figure S1).

Table 1. Bone measurements in trabecular bone of proximal tibia in the ovariectomized (OVX) rats
administered with pure or liposomal propranolol (PRP) by iontophoresis (n = 13) or subcutaneous
injection (n = 8).

Tibia I-OVX I-0.05PRP I-0.5PRP I-0.05PRP/L I-0.5PRP/L S-OVX S-0.5PRP S-0.05PRP/L S-0.5PRP/L

BV/TV, % 4.07 (0.45) 3.41 (0.69) 3.27 (0.41) 9.00 a (2.04) 2.61 (0.39) 3.78 (0.80) 5.65 (0.63) 7.60 (2.01) 4.77 (0.79)
TbTh, mm 0.10 (0.00) 0.10 (0.00) 0.10 (0.01) 0.11 (0.00) 0.10 (0.00) 0.11 (0.01) 0.11 (0.00) 0.12 (0.01) 0.11 (0.01)

TbN, mm−1 0.41 (0.05) 0.29 (0.05) 0.32 (0.04) 0.81 a (0.19) 0.27 (0.04) 0.41 (0.09) 0.53 (0.07) 0.68 (0.19) 0.45 (0.08)
TbSp, mm 1.10 (0.11) 1.16 (0.07) 1.22 (0.13) 1.04 (0.14) 1.26 (0.08) 1.26 (0.22) 1.09 (0.12) 1.09 (0.22) 1.35 (0.16)

All value presented as mean ± standard error (SE), a p < 0.05, compared to respective OVX group; All groups
undergo ovariectomy. I-OVX: control of iontophoresis groups; S-OVX: control of subcutaneous injection groups.
TbTh: trabecular thickness; TbN: trabecular number; TbSp: trabecular separation.
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tibia trabecular number (* p < 0.05) and (B) slightly increased tibia trabecular number.

2.3. Trabecular Bone Analysis (Spine)

The micro-CT analysis of trabecular bone in spine was specific at the fourth lumbar section
(Table 2). A normal rat would have BV/TV of approximately 80%. As shown in Figure 4A,B, the OVX
group had BV/TV of 30.51% ± 1.90% and 31.93% ± 2.79% after iontophoretic and subcutaneous
administration respectively. Using iontophoretic manner, pure PRP at both doses were unable to
increase spinal trabecular bone mass, retaining BV/TV of 26.13% ± 1.29% and 27.60% ± 1.18%,
respectively. However, by employing liposomes as drug carrier, I-0.05PRP/L significantly increased
the trabecular bone volume of spine, having BV/TV of 35.93% ± 1.35% (p < 0.05). There were
no statistically significant differences between spinal BV/TV values of S-0.5PRP, S-0.05PRP/L and
S-0.5PRP/L compared to S-OVX group (Figure 4B). Reconstruction images of rats’ fourth lumbar spine
assessed by micro-CT are shown in Figure 4C. Meanwhile, significantly increased spinal trabecular
thickness was also observed in the I-0.05PRP/L group (p < 0.01) (Figure 5). No significant differences
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in trabecular number and trabecular thickness were found between the experimental groups when
pure or liposomal PRP were given subcutaneously (data not shown). Also, both I-0.05PRP/L and
I-0.5PRP/L exhibited significant increases in BMD in spine whereas no significant differences were
observed in BMD among the groups with subcutaneous administration (Figure S2).

Table 2. Bone measurements in the trabecular bone of lumbar spine in the OVX rats administered with
pure or liposomal PRP by iontophoresis (n = 13) or subcutaneous injection (n = 8).

Spine I-OVX I-0.05PRP I-0.5PRP I-0.05PRP/L I-0.5PRP/L S-OVX S-0.5PRP S-0.05PRP/L S-0.5PRP/L

BV/TV, % 30.51 (1.90) 26.13 (1.29) 27.60 (1.18) 35.93 a (1.35) 32.00 (1.31) 31.93 (2.79) 34.73 (1.95) 30.61 (2.51) 31.57 (2.37)
TbTh, mm 0.16 (0.01) 0.14 (0.00) 0.14 (0.00) 0.18 b (0.01) 0.17 (0.00) 0.18 (0.01) 0.17 (0.01) 0.16 (0.01) 0.16 (0.01)

TbN, mm−1 1.92 (0.11) 1.84 (0.08) 1.93 (0.07) 2.01 (0.07) 1.94 (0.08) 1.81 (0.16) 2.01 (0.10) 1.85 (0.08) 1.93 (0.09)
TbSp, mm 0.33 (0.03) 0.34 (0.02) 0.31 (0.01) 0.29 (0.01) 0.32 (0.02) 0.32 (0.03) 0.31 (0.01) 0.31 (0.01) 0.31 (0.02)

All value presented as mean ± SE, a p < 0.05, b p < 0.01, compared to respective OVX group. All groups
undergo ovariectomy.
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Figure 4. (A) Low-dose liposomal PRP (0.05 mg/kg) given by iontophoresis (n = 13) enhanced BV/TV
in spine (* p < 0.05); (B) Subcutaneous injection PRP of pure or liposomal forms (n = 8) did not have
significant effects on spinal BV/TV; (C) The micro-CT reconstructed images were in consistency with
the BV/TV values of proximal tibia of the rat acquired in each experimental group.
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Figure 5. (A) Liposomal PRP (0.05 mg/kg) given by iontophoresis (n = 13) mildly increased spinal
trabecular number; (B) Iontophoretic liposomes-encapsulated PRP (0.05 mg/kg) significantly increased
spinal trabecular thickness (n = 13, ** p < 0.01).

2.4. Effects on Serum Calcium, Phosphorous and Cholesterol Level

Biochemical parameters in serum of all groups were shown in Table 3. I-0.1PRP/L group (p < 0.01)
and I-0.5PRP/L groups showed small but significant decrease in serum calcium (p < 0.01) compared
to I-OVX group. S-0.05PRP/L also had a slight but significant decrease in serum calcium (p < 0.05)
compare with S-OVX. Both I-0.05PRP and I-0.05PRP/L presented with decreases in serum phosphorous
concentration compared to I-OVX group (p < 0.001 and p < 0.01, respectively) as S-0.05PRP also showed
a decrease in serum phosphorous compared to S-OVX (p < 0.001). No significant differences were
found in serum sodium and potassium between experimental groups (data not shown). No significant
differences were found in serum cholesterol level among groups.

Table 3. Effects of pure PRP and liposomes-encapsulated PRP at high and low doses administered
with iontophoresis (n = 13) or subcutaneous injection (n = 8) on serum calcium, inorganic phosphorous
and cholesterol level in the OVX rats.

Groups Calcium (mg/dL) Phosphorous (mg/dL) Cholesterol (mg/dL)

Iontophoresis
I-OVX 11.34 ± 0.13 10.60 ± 0.54 122.92 ± 6.29

I-0.05PRP 11.01 ± 0.11 8.00 ± 0.29 c 115.23 ± 4.54
I-0.5PRP 10.62 ± 0.40 11.72 ± 0.57 123.85 ± 5.98

I-0.05PRP/L 10.69 ± 0.13 b 7.79 ± 0.55 b 124.62 ± 6.25
I-0.5PRP/L 10.88 ± 0.10 b 11.34 ± 0.57 125.31 ± 4.03

Subcutaneous
S-OVX 11.11 ± 0.13 13.95 ± 1.28 130.38 ± 7.34

S-0.5PRP 11.61 ± 0.23 13.10 ± 1.34 124.88 ± 4.54
S-0.05PRP/L 10.66 ± 0.08 a 7.36 ± 0.36 c 113.13 ± 5.74
S-0.5PRP/L 11.21 ± 0.13 15.76 ± 0.77 137.25 ± 8.17

All value presented as mean ± SE, a p < 0.05; b p < 0.01; c p < 0.001, compared to respective OVX group. All groups
undergo ovariectomy. Reference value for calcium is 5.3–13.0 (mg/dL), for phosphorous is 11.0–14.3 (mg/dL), and
for cholesterol 40–130 (mg/dL).
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2.5. Effects on Liver and Kidney Function

For serum glutamic oxaloacetic transaminase (SGOT) level, the group I-0.05PRP/L showed
a significant reduction (p < 0.05) while I-0.5PRP/L showed a significant increase (p < 0.05) compared
with that of I-OVX (Table 4). There were no significant differences in serum glutamic pyruvate
transaminase (SGPT) level compared to OVX group via either delivery routes. Reduction of creatinine
was observed in the four iontophoretic-PRP treated groups compared with I-OVX (p < 0.05 or p < 0.01).
Higher blood urea nitrogen (BUN) level (p < 0.05) was observed in I-0.5PRP/L compared to I-OVX.

Table 4. Effects of pure PRP and liposomes-encapsulated PRP at high and low doses administered with
iontophoresis (n = 13) or subcutaneous injection (n = 8) on serum glutamic oxaloacetic transaminase
(SGOT), serum glutamic pyruvate transaminase (SGPT), creatinine and blood urea nitrogen (BUN) in
the OVX rats.

Groups SGOT (U/L) SGPT (U/L) Creatinine (mg/dL) BUN (mg/dL)

Iontophoresis
I-OVX 144.92 ± 13.80 66.85 ± 5.93 0.52 ± 0.01 17.81 ± 0.61

I-0.05PRP 134.38 ± 11.11 54.38 ± 2.64 0.45 ± 0.02 b 17.97 ± 0.51
I-0.5PRP 163.08 ± 12.85 61.15 ± 4.47 0.47 ± 0.01 a 19.34 ± 0.71

I-0.05PRP/L 106.85 ± 9.80 a 58.00 ± 4.22 0.46 ± 0.01 b 17.76 ± 0.54
I-0.5PRP/L 184.69 ± 10.52 a 58.31 ± 3.05 0.45 ± 0.02 b 19.65 ± 0.41 a

Subcutaneous
S-OVX 185.75 ± 19.16 71.00 ± 9.67 0.44 ± 0.01 16.80 ± 1.04

S-0.5PRP 137.00 ± 17.61 73.13 ± 4.75 0.48 ± 0.01 18.53 ± 0.52
S-0.05PRP/L 191.38 ± 17.11 69.50 ± 4.59 0.45 ± 0.01 16.84 ± 2.24
S-0.5PRP/L 182.38 ± 15.15 70.50 ± 3.65 0.44 ± 0.02 15.18 ± 1.39

All value presented as mean ± SE, a p < 0.05; b p < 0.01, compared to respective OVX group. All groups undergo
ovariectomy. Reference value for SGOT is 10–301(U/L); for SGPT is 46–72 (U/L); for creatinine is 0.2–0.8 (mg/dL),
and for BUN is 15–21 (mg/dL).

3. Discussion

Osteoporosis is characterized by decreased bone mass and deterioration of bone architecture,
resulting in higher risk of fragility fractures which clinically present with the main consequence
of osteoporosis [32]. To re-balance the shifted coupling of bone remodeling in the elderly and the
postmenopausal woman, therapies for osteoporosis can be aimed at reducing the rate mineralized
bone resorption and/or at enhancing the rate of bone formation. On the other hand, fabrication
of lipid-based nanoparticles as drug carriers, such as liposomes, can display a number of merits,
including minimum toxicity of the carrier, relatively low-cost and ability of increasing drug of interest
to cross the skin barrier. In our previous work, pure PRP enhanced primary human osteoblast
replication and OPG expression [13] while the stimulatory effects of PRP and liposomal PRP on the
proliferation and differentiation in human osteoblastic cells [27]. Both studies support the proposal that
the pure PRP and prepared liposomes-encapsulated PRP possess anabolic effects on bone formation
in vivo so liposomal PRP potentially plays protective roles against bone loss in animal osteoporetic
models [27]. Therefore, in this study we examined the effects of pure and liposomal PRP at high and
low doses on bone administered via different delivery methods in osteoporetic OVX rats. Iontophoretic
liposomes-encapsulated PRP at low dose was found to efficiently increase bone volume both in the
proximal tibia and spine in the current study.

β-Blockers, including PRP, have main drawbacks such as first-pass metabolisms and higher
frequency of administration. Transdermal delivery system like iontophoresis potentially circumvents
these disadvantages [16]. Without liposomes as drug carrier, water soluble PRP alone is unable
to effectively penetrate into the animal body via iontophoresis. The development of carriers for
the delivery of PRP constitutes a promising approach to improving its therapeutic activities and
reducing its side effects [23]. It is well known that liposomes are small, sphere-shaped, and
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enclosed compartments which separate an interior aqueous space from another by amphipathic
phospholipid bilayer [23,33]. Such characteristics promote liposomes becoming an important role in
transdermal drug delivery system. Liposomes themselves raise stability of encapsulated drug and
increase pharmacokinetic effects and therapeutic index of drugs [25]. The combination of liposomal
encapsulation with iontophoresis is thus able to potentially maximize therapeutic effects of PRP and
rationally decrease its side effects. On the other hand, several epidemiological investigations have
shown that β-blockers are related with decreased fracture risk or BMD [8,10,11,34], or decreased levels
of the bone resorption marker, C-telopeptide [35]. We have previously shown pure PRP and liposomal
PRP possess stimulatory effects on the proliferation and differentiation in human osteoblastic cells [27].
The current study is the first report to reveal that liposomes-encapsulated PRP at the dose 0.05 mg/kg
(lower than therapeutic range 0.1–5 mg/kg [36–38]) and with less dosing frequency (twice a week, less
than that of clinically therapeutic medication) in combination with administration of iontophoresis
exerted anti-osteoporetic effects. This demonstrates that the crucial advantages on enhancing efficacy
of drug in vivo achieved by liposomal encapsulation and transdermal iontophoresis. Yet, the controlled
release behavior of PRP-loaded liposomes remains challenging in this study, which would require
a more complex liposomal formulation.

We have successfully used micro-CT and these crucial parameters to find that the green tea phenol
(-)-Epigallocatechin-3-gallate (EGCG) increases bone volume and trabecular thickness in tibia and spine
in OVX rats [31]. In the current study, we further evaluated the anabolic effects of pure and liposomal
PRP administered via iontophoresis and subcutaneous injection on osteoporetic bones using micro-CT
analysis in OVX rats. Administration of PRP in animals is commonly delivered via subcutaneous
injection. Our results indicated that such treatment route presented with insignificant changes in the
trabecular bone mass in both tibia and spine. Meanwhile, a less invasive and transdermal drug delivery
method, iontophoresis, was compared in this study in which PRP was delivered across the dermal layer.
Direct injection of the drug offers immediate presence of drug effects whereas iontophoresis provide
slow and continuous delivery of drug into body. Moreover, encapsulation of liposomes may further
render PRP extended effects since the gradual release of PRP from liposomes within 48 h, which we
found in vitro drug release assay [27] may be attained in vivo while our current data certainly validate
so, at 0.05 mg/kg lower than commonly-used therapeutic doses and further prolong dosing duration
to twice a week. Both pharmacological merits of drug delivery and modification describe above should
be beneficial for improving this rapidly metabolized drug and for developing more effective treatment
against metabolic and progressive diseases like osteoporosis in which pathophysiologically prolonged
efficacy of treatment may result in better outcomes after the therapy was administered.

The release of water soluble PRP from DSPC liposome was basically by diffusion mechanism.
Thus, higher drug encapsulation in liposome leads to higher release rate. Moreover, the flow of electric
current used in iontophoresis might trigger or facilitate the release of PRP, as reported by D’Emanuele
and Staniforth [39]. According to the present data, lower dosage of PRP (0.05 mg/kg) consistently
have significant improvement on bone microarchitecture than higher dosage, which is similar with
results shown by Rodrigues and Bonnet [9,12,38], although high dose 0.5 mg/kg PRP in the current
study accounts for approximately medium-to-low dosing level in previous studies. In particular, in the
current study the liposomal encapsulation and iontophoretic delivery showed beneficial properties for
administration of low-dose PRP in vivo. In comparison with the treating recipes and the previous data
via subcutaneous injection in the OVX rats [9,38], using less administrative frequency (twice a week)
and lower dose of PRP than its general therapeutically cardiovascular recommendations brought to
significant increases in bone formation in terms of BV/TV percentage, mean trabecular number, mean
trabecular thickness and BMD in tibia and spine in the low-dose iontophoretic liposomal PRP group.
These results suggested that liposomal encapsulation combined with iontophoresis is highly likely
capable of increasing bioavailability and facilitating PRP pharmacologically anabolic efficacy on bone
formation in vivo. Thus, the effective dose of PRP for enhancing bone formation at osteoporotic status
can be further decreased and the dosing duration can be extended in vivo. Meanwhile, compared
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to subcutaneous or intravenous injection conducted in previous studies, iontophoresis used in our
study is non-invasive, much safer and more convenient when administered in humans. Also, the
present results somewhat resembled the previous data that higher doses (≥0.5 mg/kg) of pure
or liposomal PRP administered via subcutaneous injection or iontophoresis that presented with
lower anabolic effects against osteoporotic bone or even a decrease in BV/TV in OVX rats [9,38].
The reasons could be associated with that PRP plays as a role of partial agonist particularly at high
concentration [7,40,41], resulting in catabolic effects of adrenergic β-agonist on bone in vitro and
in vivo [13–15], although anti-bone resorptive effects of PRP were reported in a study using rat model
of experimental periodontal disease [12]. The mechanism of partial agonist for PRP action, a β-blocker
and inverse agonists for Gs-stimulated adenylyl cyclase, has been shown to also induce response for
mitogen-activated protein kinases extracellular signal-regulated kinase (ERK) 1/2 therefore acting as
dual efficacy ligands [40]. Moreover, it is noteworthy that since the low but effectively anti-osteoporotic
dose (0.05 mg/kg) of iontophoretic liposomal PRP in the current study is lower than its therapeutic
values (range 0.1–5 mg/kg) [36–38]. Therefore the generally used in adult and the pediatric for treating
arrhythmias, hypertension, hemangioma and angina pectoris, the cardiovascular and other systemic
effects of PRP on the tissues or organs beyond bone in vivo would be decreased as desired.

In addition, the current data revealed that liposomes-encapsulation cooperated with transdermal
iontophoresis displayed most stable and systemic effects of PRP against bone loss in terms of
BV/TV, mean trabecular thickness, mean trabecular number and BMD compared with subcutaneous
injection with or without liposomal encapsulation. Subcutaneous injection resulted in inconsistent and
insignificant effects on proximal tibia and spine in OVX rats. High-dose pure PRP given subcutaneously
led to an insignificant increase in BV/TV in tibia and spine compared to the treatments administered
with identical route (Figures 2B and 4B). The subcutaneous groups with both dosage forms did
not display any significant changes in BMD in tibia or spine (Figure S1 and 2). As to the other
assessment parameters of bone, subcutaneous injection with low-dose liposomal PRP showed highest
but insignificant enhancement in trabecular thickness and trabecular number in tibia (data not shown).
These results indicated that liposomes-encapsulation united with transdermal iontophoresis is able to
render low-dose liposomal PRP to stably and more systemically exert significant anabolic effects against
bone loss in both tibia and spine in the OVX rat model. Our in vivo data are therapeutically valuable
since with application of liposomal encapsulation and iontophoretic administration, the systemic
adverse effects of PRP can be decreased and catabolic effects of PRP on bone can be avoided due to the
decreased effective dose while systemic anabolic effects of PRP on bone formation were apparently
retained and exhibited. Therefore, the current results of lower dosage, longer administrative duration
and effective in enhancing bone formation implicated the liposomal form of PRP with iontophoretic
route may be applied to clinical use.

The effects of administration of iontophoretic-PRP and subcutaneous-PRP at high (0.5 mg/kg)
and low (0.05 mg/kg) doses on body weight, serum calcium, serum phosphorous, serum cholesterol,
as well as liver and kidney functions were assessed. A decrease in weight loss was observed
in the iontophoretic group compared to respective subcutaneous group with identical conditions.
The possible reasons may be stress and side effects due to anesthesia twice a week for the iontophoretic
groups. However, this would not be seriously concerned since anesthesia is not necessary for humans
who independently adopt iontophoresis. Meanwhile, people can adjust iontophoretic parameters
like current density as their demands and the administration time is easily turned on and off.
Despite statistically significant decreases in iontophoretic-liposomal PRP treated groups at both high
and low doses, the changes in serum calcium were relatively small (0.4~0.5 mg/dL within the normal
range of 5.3–13.0 mg/dL) and should not cause pathological effects. These results are coherent with
the finding of decreased serum calcium in the patients received PRP four times per day in the previous
study although the mechanisms are not clear [42]. Enhancement in intestinal calcium absorption
and correction of calcium balance was also shown [42] when using PRP in humans previously to
convince our proposal that slight decrease in serum calcium should not lead to pathological effects.
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However, larger decreases in serum phosphorus were found in low-dose liposomal-PRP/pure PRP
iontophoretically and subcutaneously treated groups. The reasons might be related to the demand of
phosphorus for increased body bone formation caused by anabolic effects of PRP on bones. Supplement
of calcium and vitamin D is necessary as routine osteoporosis treatment to prevent hypocalcemia and
hypophosphatemia when the effective low-dose liposomal-PRP is iontophoretically administered. In
addition, a mild increase in BUN in I-0.5PRP/LP group coupled with slight decreases of creatinine in
iontophoretic-liposomal PRP/pure PRP administered groups might be due to inhibitory actions of
PRP on β-adrenergic (β1 and β2-adrenergic) receptors on renal arteries resulting in a slight decrease of
blood volume renal arteries and increase in reabsorption of blood urea nitrogen.

4. Methods

4.1. Materials

Cholesterol, octadecylamine, 1,2-distearoyl, L-α-phosphatidylcholine (DSPC, molecular weight
(MW): 790.15 Da), propranolol hydrochloride (MW: 295.8 Da), chloroform, and methanol were obtained
from Sigma (St. Louis, MO, USA). All chemicals used in this study were of reagent grade.

4.2. Production of DSPC Liposomes

The liposomes were prepared by evaporation sonication method with some modification [43].
Briefly, the phospholipids used for the liposomes were a mixture of DSPC, cholesterol and
octadecylamine at the molar ratio of 1:1:0.5. Powder form of DSPC, cholesterol and octadecylamine
was dissolved in methanol: chloroform (1:1, v/v) and loaded into round bottom flask. The flask was
placed in laminar flow hood and air dry for 24 h to form a thin layer of film. Nitrogen gas was further
used to remove any remaining trace of organic solvent. Rehydration of the thin film with deionized
water or PRP solution and followed by 20 minutes of sonication.

4.3. Experimental Animals and Pre-Clinical Study Design

The animal use protocol has been reviewed and approved by the Institutional Animal Care and
Use Comitee (IACUC), approval number IACUC 103111. A total of 97 female Spray-Dawley (SD)
rats used in this study were purchased from BioLASCO (Taipei, Taiwan). The animal study was
approved by the Institutional Animal Care and Use Committee (IACUC, approval number: 103111).
Rats were kept in a temperature controlled room (±25 ◦C) and raised on a 12-h light/12-h dark cycle
(lights on at 6:00 AM). Food and water were provided ad libitum throughout the experiment. At three
months of age, bilateral ovariectomy was performed under anesthesia using Zoletil® (50 mg/kg, i.p.)
and xylazine (10 mg/kg, i.p.). Three months after OVX (age of rats: 6 months), the animals were
divided into different experimental groups, categorized by PRP concentration, pure compound or with
liposomal carriers and delivery methods (as shown in Table 5). Two types of drug delivery pathway,
subcutaneous injection and iontophoresis, were adopted. In vivo anti-osteoporotic experiments were
performed for 3 months. A schematic diagram was plotted to show the differences between the two
administrative methods (Figure 6A) and the general principle of iontophoresis (Figure 6B). At the end
of experiment (animal aged 9 months), the weight of rats was measured and blood was collected for
serum biochemical analysis. Following on, rats were euthanized by an overdose of CO2. In all rats,
tibias and spines were excised and cleared of fat and connective tissue, followed by immediately fixed
in 10% formaldehyde.
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Table 5. Experimental groups and their abbreviations.

Treatment Iontophoresis (n = 13) Subcutaneous (n = 8)

OVX I-OVX S-OVX
OVX + PRP (0.05 mg/kg) I-0.05PRP NA
OVX + PRP (0.5 mg/kg) I-0.5PRP S-0.5PRP

OVX + PRP (0.05 mg/kg)/liposome I-0.05PRP/L S-0.05PRP/L
OVX + PRP (0.5 mg/kg)/liposome I-0.5PRP/L S-0.5PRP/L

n: number of rats in respective experimental group.
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Figure 6. (A) Schematic diagram comparing iontophoresis and subcutaneous injection of PRP; (B) The
theoretical principle of iontophoresis in this study.

4.4. Iontophoretic Parameters

Pure PRP and liposomal PRP at high (0.5 mg/kg) and low (0.05 mg/kg) doses were administered
via transdermal iontophoretic delivery or subcutaneous injection. The voltage and current for
iontophoresis were generated by a current power generator (GS610, Yokogawa, Japan) combining a set
of transdermal patch (PF 383 and PF 384, Perimed, Järfälla, Sweden). The current density of 0.1 mA
was applied to stimulate the permeation of PRP or PRP encapsulated liposomes. The location of
anode and cathode was placed according to the investigation on β-blocker iontophoresis accomplished
by Tashiro et al. [44]. The duration of each experiment was conducted for 2 h per day, 2 days
per week, for 12 weeks. The doses of PRP were based on the previous description [37,38] and
the well-known potentials of liposomes to decrease administrative doses. The treatment duration
and current density used in this study were determined on the basis of our previous findings of
PRP release from its liposomes-encapsulated form and the iontophoretic liposomal PRP protocol by
Conjeevaram et al. [27,45].
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4.5. Serum Biochemical Analysis

Serum samples were harvested and sent to Union Clinical Laboratories (UCL, Taipei, Taiwan)
for biochemistry tests including analyses of SGOT, SGPT, BUN, creatinine, and electrolytes calcium,
inorganic phosphorous as well as cholesterol.

4.6. Measurement of Bone Porosity by Micro-Computed Tomography (Micro-CT)

The proximal tibia and the fourth lumbar spine of rats (Figure 7) were scanned with
a high-resolution micro-CT (Skyscan 1076, Bruker, Belgium). The operating condition was set at a source
voltage of 50 kV and a current of 200 mA. Data were acquired at every 0.5◦ rotation step through 180◦.
The micro-CT scanning width was set as 34 mm as the height was 17 mm. After scanning, images
were re-constructed using CT-analyser (CTAn) computer software (Skyscan, Bruker, Belgium) to assess
the trabecular microstructure starting from the region of interest in the binary images. With defined
and established threshold in the gray-scale, CTAn software analyzed bone morphometric data such as
the ratio between bone volume (BV) and total tissue volume (TV) (BV/TV; %). Trabecular thickness
(TbTh; µm), trabecular number (TbN; mm−1), trabecular separation (TbSp; µm) and BMD were also
determined. The coefficients of variation used for morphometric parameters of BV/TV, TbN, TbTh
and TbSp were 2.0%, 1.1%, 0.66%, and 1.30%, respectively, based on the methods in our previous
studies [31,46].
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4.7. Statistical Analysis

Bone morphometric data, BMD and serum biochemical values obtained from each experimental
group are presented as mean ± standard error of mean. Results were statistically analyzed using
two-way analysis of variance (ANOVA) with Tukey–Kramer multiple comparisons test on SPSS
version 17.0 (SPSS Inc., Chicago, IL, USA), to determine whether there were significant differences
between the respective control category and experimental group (* p < 0.05, ** p < 0.01 and *** p < 0.001).

5. Conclusions

The current study provides convincing evidence that low-dose (0.05 mg/kg) PRP encapsulated
within DSPC liposomes in collaborated with iontophoretic administration twice a week caused
stable and greatest enhancement in bone formation in proximal tibia and lumbar spine. The present
study uncovered that the significance of cooperation of liposomal encapsulation and iontophoresis
accomplishes effects and efficiency of PRP on bone formation at lower dose and with longer
administrative duration than its current clinical application, previous therapeutic data in rodents
and those exerted in combination of pure or liposomal PRP with subcutaneously injective routes.
PRP given through liposomal forms and iontophoretic route is able to enhance bone formation at
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lower applied dosage and with longer administrative duration to pharmacologically reduce its side
effects and elevate its potential for clinical protection against bone loss. In order to stably, safely and
efficiently display anti-osteoporotic actions in vivo, the data demonstrated that the optimal manner
for PRP is liposomal encapsulation collaborated with transdermal iontophoresis.
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