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ABSTRACT
Background: Objective and reliable methods to measure dietary
exposure and prove associations and causation between diet and
health are desirable.
Objective: The aim of this study was to investigate if 1H-nuclear
magnetic resonance (1H-NMR) analysis of serum samples may be
used as an objective method to discriminate vegan, vegetarian, and
omnivore diets. Specifically, the aim was to identify a metabolite
pattern that separated meat-eaters from non–meat-eaters and vegans
from nonvegans.
Methods: Healthy volunteers (45 men and 75 women) complying
with habitual vegan (n = 43), vegetarian (n = 24 + vegetarians
adding fish n = 13), or omnivore (n = 40) diets were enrolled
in the study. Data were collected on clinical phenotype, body
composition, lifestyle including a food-frequency questionnaire
(FFQ), and a 4-d weighed food diary. Serum samples were analyzed
by routine clinical test and for metabolites by 1H-NMR spectroscopy.
NMR data were nonnormalized, UV-scaled, and analyzed with
multivariate data analysis [principal component analysis, orthogonal
projections to latent structures (OPLS) and OPLS with discriminant
analysis]. In the multivariate analysis volunteers were assigned as
meat-eaters (omnivores), non–meat-eaters (vegans and vegetarians),
vegans, or nonvegans (lacto-ovo-vegetarians, vegetarians adding
fish, and omnivores). Metabolites were identified by line-fitting
of 1D 1H-NMR spectra and the use of statistical total correlation
spectroscopy.
Results: Although many metabolites differ in concentration between
men and women as well as by age, body mass index, and body
composition, it was possible to correctly classify 97.5% of the meat-
eaters compared with non–meat-eaters and 92.5% of the vegans com-
pared with nonvegans. The branched-chain amino acids, creatine,
lysine, 2-aminobutyrate, glutamine, glycine, trimethylamine, and 1
unidentified metabolite were among the most important metabolites
in the discriminating patterns in relation to intake of both meat and
other animal products.
Conclusions: 1H-NMR serum metabolomics appears to be a possible
objective tool to identify and predict habitual intake of meat and
other animal products in healthy subjects. These results should be
confirmed in larger cohort studies or intervention trials. This trial was
registered at clinicaltrials.gov as NCT02039609. Am J Clin Nutr
2019;110:53–62.
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Introduction
Today, environmental concern has sparked interest in vege-

tarianism or “flexitarianism,” i.e., reducing the intake of meat,
especially red meat, or choosing a vegetarian diet plus fish.
Consequently, the “omnivore dietary group” today constitutes
a wide range of meat and fish consumption. Some vegetarians
substitute meat for full-fat dairy products such as cheese and
eggs (lacto-ovo-vegetarians); others adhere to an almost vegan
diet, exchanging dairy products with new substitutes based on
soy, rice, or oats, whereas a vegan diet excludes all food of
animal origin. These modern variations in actual food intake
may explain the inconclusive results on health outcomes in
studies comparing vegetarian and omnivore diets (1). In general,
vegetarians have been more health conscious and many studies
report lower BMI and improved blood lipids among vegetarians
compared with omnivores (1), for reasons that may not be related
to diet. Further, the mechanisms behind possible beneficial health
effects of vegetarian diets are not fully understood. Effects from
specific foods such as soy, whole grain, vegetable oils, and the
exclusion of meat have been discussed, as well as the overall
content of specific nutrients, fiber, and fat quality. More specific
information on exact dietary intake in the era of multiple modern
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diets will improve our understanding of why certain diets are
healthy. Thus, objective methods for evaluating the intake of
products of animal and nonanimal origin are important to further
understand likely protective effects against noncommunicable
diseases of vegetarian diets.

Metabolomics has emerged as a possible means to capture
habitual diet (2). To date only a few studies have been performed
to measure intake of meat or foods from animal sources in
urine and serum samples with a metabolomics approach (3–
6). 1H-nuclear magnetic resonance (1H-NMR) analysis in serum
has some advantages over urine in that the pH does not
fluctuate substantially, which complicates the peak identification
in urine. Also, urine may be more or less diluted, i.e., vary
in concentration, complicating comparison between samples.
Factors that may influence pH and dilution are medication and
coffee (6), which could lead to misclassification of individuals.
This seems less likely to occur in serum samples. On the other
hand, urine samples may contain a wider range of metabolites
and 24-h collections can be employed instead of only fasting or
spot serum samples. Previous results imply that the serum and
urine metabolomes in response to a meal partially overlap, but
are mainly complementary (7).

One study using mass spectrometry–based metabolomics
to discriminate between omnivores, vegans, and vegetarians
in serum has been published (3). The results are promising
but should be repeated in studies with more optimal sample
collection procedures and in fasting samples, because the last
meal is known to influence the metabolome and thus possibly
mask the “habitual” diet. Here we aimed for a high-quality
sample collection procedure to capture the habitual metabolites.
The primary outcome was to investigate if 1H-NMR analysis
of serum samples could be used as an objective method to
discriminate between individuals adhering to a habitual vegan,
vegetarian, or omnivore diet. Specifically, the aim was to find
metabolite patterns that separated meat-eaters from non–meat-
eaters and vegans from nonvegans, i.e., to evaluate if the NMR
metabolomics approach can be used to evaluate a subject’s intake
of meat or other products of animal origin.

Methods

Subjects

Volunteers were recruited by advertisement for healthy indi-
viduals complying with a habitual vegan, (lacto-ovo-)vegetarian,
or omnivore diet during April–May, 2013 and August–December,
2015. A fourth group—vegetarians adding fish or shellfish to their
diet—was also included because this emerged as a rather com-
mon habitual diet. Before entering the study (NCT02039609),
participants provided written informed consent. Subjects were
considered suitable if aged between 18 and 65 y, healthy [i.e.,
having a normal blood test including hemoglobin (Hb), vitamin
B-12, folate, serum electrolytes, creatinine, liver transaminases,
bilirubin, alkaline phosphatase, C-reactive protein, plasma glu-
cose, and thyroid status, with no regular use of medications
(contraceptives were permitted)], and having a BMI (in kg/m2)
of 18–30. Screening included clinical phenotype, a short lifestyle
questionnaire including a food-frequency questionnaire (FFQ)
and 2 questions on physical activity, and a 4-d weighed food
diary (the gold standard in nutritional assessment) for the

days preceding sampling. The short FFQ developed for this
study included 10 questions on food intake regarding soy
or soy products, legumes, vegetables, fruit and berries, milk
products, eggs and egg-based foods, fish and shellfish, poultry,
red meat, and cookies and confectionery. Body composition
was measured with bioimpedance analysis (ImpediMed Bioimp
version 5.3.1.1). Subjects who were pregnant, lactating, or used
nicotine products regularly were excluded. In addition, volunteers
were not allowed to drink alcohol the night before sampling or
consume food supplements 1 wk before sampling. No NMR-
metabolomics studies on habitual diet had been published, to our
knowledge, when planning the study and a sample size of >90
individuals was estimated to be sufficient because this was in line
with other metabolomics studies.

The project was approved by the Regional Ethical Review
Board in Gothenburg (reference number 561-12) and adhered to
the Helsinki Declaration.

Sampling and sample preprocessing

Fasting serum samples were collected at 1 time point. Venous
blood was drawn into a 5-mL BD vacutainer glass tube (BD
Hemogard, BD Vacutainer), turned ∼5 times, allowed to clot
at 4◦C for 30 min, and centrifuged at 4◦C at 2600 g for 10
min. The serum, once divided into aliquots, was stored at −20◦C
within 1 h and at −80◦C within 2 h. Samples were stored at
−80◦C until analysis. Before 1H-NMR analysis, serum samples
were thawed for 60 min at 4◦C, then 100 μL serum was mixed
with 100 μL phosphate buffer (75 mM Na2HPO4, 20% D2O,
0.2 mM imidazole, 4% NaN3, 0.08% TSP-d4, pH 7.4) in a deep
well plate. Next, 180 μL sample mix was transferred to 3.0-mm
NMR tubes (Bruker BioSpin, 96 sample racks for SampleJet)
using a SamplePro liquid handling robot (Bruker BioSpin).
Samples were kept at 6◦C in the SampleJet sample changer until
analysis.

NMR spectroscopy
1H-NMR spectra were measured at 800 MHz using a Bruker

Avance III HD spectrometer with a 3-mm TCI cryoprobe and
a cooled (6◦C) SampleJet for sample handling. All 1H-NMR
experiments were performed at 25◦C. NMR data (1D perfect
echo with excitation sculpting for water suppression) were
recorded using the Bruker pulse sequence “zgespe.” The spectral
width was 20 ppm, the relaxation delay 3 s, the acquisition
time 2.04 s, and a total of 128 scans were collected into 64k
data points resulting in a measurement time for each sample
of 12 min 4 s. All data sets were zero filled to 128k and
an exponential line-broadening of 0.3 Hz was applied before
Fourier transformation. All data processing was performed with
TopSpin 3.2pl6 (Bruker BioSpin) and TSP-d4 was used for
referencing.

Chenomx NMR suite 8.31 (Chenomx Inc.) was used for
annotation with the aid of the Human Metabolome Database
(8) and an in-house implementation of the statistical total
correlation spectroscopy (STOCSY) routine (9). Metabolic
pathway information was retrieved from the Kyoto Encyclopedia
of Genes and Genomes pathway database (10).
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Data processing
1H-NMR spectra were aligned using icoshift (11) and manual

integration of peaks was performed to a linear baseline on
all spectra in parallel using an in-house MatLab (MathWorks)
routine. In total 237 peaks were integrated within the chemical
shift range of 0.721–8.362 ppm. No sections of the spectra
were excluded. Data were nonnormalized and UV-scaled. Cross-
validation groups were set to 7 (the default in the SIMCA
software).

Dietary habits, i.e., vegan (consuming no food of animal
origin), vegetarian (including dairy and eggs), vegetarian adding
fish, or omnivore (consuming a mixed diet), were evaluated by
general questions about diet and the FFQ. For data analysis 2
new dietary groups were formed: nonvegan, including omnivores,
vegetarians, and vegetarians adding fish; and nonmeat, including
vegans and vegetarians. Food-frequency data on red meat,
poultry, fish and shellfish, eggs, and dairy were used to construct
a “grade of omnivore eating.” The original frequencies for dairy,
eggs, fish, poultry, and red meat (never, less than a few times
per month, 1–2 times/wk, >3 times/wk) were set to 0, 1, 2, and
3 points and added for each individual, resulting in a simple
index of 0–15 points. Due to well-known gender differences in
serum metabolites and a skewed distribution between men and
women in the dietary groups, the larger group of women was also
analyzed separately, to confirm that the separating metabolites
were due to the diet and not to gender. The number of men was
regarded as too few for separate multivariate modeling, so instead
all data from men were used as a test set and projected onto the
model created only with data from women.

Multivariate methods

A principal component analysis (PCA) model was used to
explore clustering patterns of observations, trends in the data, and
outliers. An orthogonal projections to latent structures (OPLS)
model was used to evaluate the impact of known metadata on
the metabolites and models. Separation of classes and variables
related to separation in the data according to classification of diet
(vegan compared with nonvegan, meat compared with nonmeat)
was evaluated using OPLS with discriminant analysis (OPLS-
DA). Receiver operating curve analysis was performed and the
AUC was used as an estimate of the predictive accuracy of
each dietary group in the OPLS-DA model. To select class-
discriminating variables of interest for annotation, loadings
(pq ≥ ± 0.1) and top-ranked variables in variable importance
scores in the OPLS-DA model were assessed. All multivariate
analyses were performed using SIMCA software version 15.0
(Umetrics AB).

Univariate methods

Statistical analyses were performed using SPSS version 25
(SPSS Inc.). Pearson’s chi-square test and Fisher’s exact test
were used for comparing categorical data such as level of
physical activity (low, medium, or high) between the groups.
Comparisons of other characteristics and outcome variables were
performed with 1-factor ANOVA with Tukey’s post hoc test
and Student’s t test. Nonnormally distributed data were log
transformed before statistical analysis. Data are presented as

Enrollment

Allocation

Analysis

Invited by advertisement
Showed interest for the study (n = 231)     
Met screening criteria (n = 130)  

• Did not complete screening (n = 4)   
• Not regarded as healthy, i.e., biomarkers 
outside normal range (n = 2)  

Vegan (n = 45)
Vegetarian (n = 26)
Vegetarian + fish (n = 13)
Omnivore (n = 40)
Total: n = 124

Total: n = 120,  45 men, 75 women
Vegan vs nonvegan n = 120 (43/77)
Meat vs nonmeat n = 107 (40/67)
Women n = 75 
Vegan vs nonvegan n = 75 (24/51)
Meat vs nonmeat n = 68 (24/44)

Excluded from 
analysis due to: 
BMI < 18.0 
Vegan (n = 1)
Vegetarian (n = 1)
Low quality 
NMR spectra 
Vegan (n = 1)
Vegetarian (n = 1)

FIGURE 1 Consolidated Standards of Reporting Trials (CONSORT)
diagram. NMR, nuclear magnetic resonance.

means ± SDs with significance set at α = 0.05. Student’s t
test and logistic multivariable regression analysis were used to
evaluate metabolites driving the separation in OPLS-DA models.
The logistic regression models were adjusted for age, gender,
BMI, and body fat mass percentage. To adjust for multiple testing
a Bonferroni correction was applied; the 237 variables represent
∼70 metabolites and with a margin we adjusted for 100 tests, i.e.,
P values < 0.0005 were regarded as significant.

Results

Participant characteristics

In total, 231 individuals showed interest to participate and
130 met the screening criteria, out of whom 2 were regarded
as not healthy, 2 were excluded because of BMI < 18.0, and 4
did not complete screening. Two NMR spectra displayed low
quality and were excluded from analysis. Thus, 120 healthy
volunteers, 45 men and 75 women, were included in the study
(Figure 1). The number of women and men in each dietary
group differed, although nonsignificantly (Table 1). Regular use
of supplements was high: 52% and 95% among nonvegans and
vegans, respectively (Table 1). Even so, vegans and vegetarians
had lower serum vitamin B-12 concentrations than omnivores.
Vegans and vegetarians had (as expected) lower serum creatinine
but higher folate concentrations. Only 8 subjects had a BMI > 25
and none had a BMI > 30. Fat mass percentage was significantly
higher in vegans and vegetarians than in omnivores, although
their serum cholesterol and lipoprotein concentrations were
significantly lower. Most participants were young (mean age 28–
30 y) and reported a high level of physical activity. Omnivores
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TABLE 1 Participant characteristics1

Participant characteristics Omnivore/meat Vegetarian adding fish Vegetarian Vegan Nonvegan Nonmeat

n 40 13 24 43 77 67
Sex, n men/women (% men) 16/24 (40) 6/7 (46) 4/20 (17) 19/24 (44) 26/51 (34) 23/44 (34)

Mean±SD Range Mean±SD Range Mean±SD Range Mean±SD Range Mean±SD Range Mean±SD Range
Omnivore index 15.2 ± 2.5 10–20 6.1 ± 1.2 4–8 3.6 ± 1.2 2–6 0.1 ± 0.4 0–2 10.0 ± 5.8 2–20 1.3 ± 1.2 0–6
Age, y 27.9 ± 7.7 19–53 29.9 ± 5.7 21–40 29.6 ± 8.1 19–57 29.3 ± 6.7 19–54 28.8 ± 7.5 19–57 29.4 ± 7.2 19–57
Weight, kg 66.3 ± 10.5 44.9–90.3 64.5 ± 9.9 48.0–78.1 62.4 ± 9.9 46.0–82.5 65.1 ± 10.5 41.3–89.8 64.7 ± 10.2 44.9–90.3 64.1 ± 10.3 41.3–89.8
BMI, kg/m2 22.2 ± 1.8 19.4–28.2 20.7 ± 1.9 18.6–24.0 21.8 ± 2.6 18.0–28.9 21.6 ± 2.2 18.2–26.2 21.8 ± 2.1 18.0–28.9 21.7 ± 7.2 18.0–28.9
Fat mass, %3 17.0 ± 7.1 4.0–29.7 20.1 ± 4.7 13.7–30.9 23.8 ± 6.62 8.3–32.6 21.3 ± 7.63 5.3–36.5 19.6 ± 7.2 4.0–32.6 22.2 ± 7.3 5.3–36.5
Fat-free mass, kg 55.3 ± 11.3 39.1–76.4 51.8 ± 9.4 36.6–64.3 47.5 ± 9.22 34.6–72.9 51.2 ± 9.4 30.9–77.6 52.3 ± 10.8 34.6–76.4 49.9 ± 9.52 30.9–77.6
Systolic blood pressure, mm Hg 119 ± 9 100–140 114 ± 9 100–128 117 ± 11 98–135 119 ± 10 100–140 118 ± 10 98–140 118 ± 10 98–140
Diastolic blood pressure, mm Hg 73 ± 6 62–88 68 ± 6 62–80 69 ± 6 60–79 71 ± 8 60–94 71 ± 6 60–88 70 ± 7 60–94
Serum cholesterol, mmol/L 4.9 ± 1.0 3.4–7.5 4.2 ± 0.7 2.8–5.2 4.1 ± 0.82 3.0–5.9 3.9 ± 0.72 2.8–5.6 4.5 ± 1.0 2.8–7.5 4.0 ± 0.72 2.8–5.9
Serum LDL, mmol/L 2.6 ± 0.9 1.4–4.9 2.1 ± 0.6 1.2–3.3 1.9 ± 0.72 1.0–3.3 2.0 ± 0.62 0.9–3.2 2.3 ± 0.9 1.0–4.9 1.9 ± 0.62 0.9–3.3
Serum HDL, mmol/L 1.8 ± 0.5 0.8–2.9 1.8 ± 0.5 1.2–3.1 1.8 ± 0.3 1.3–2.6 1.6 ± 0.42 0.9–2.4 1.8 ± 0.44 0.8–3.1 1.6 ± 0.42 0.9–2.6
Serum triglycerides, mmol/L 0.80 ± 0.28 0.43–2.00 0.71 ± 0.12 0.50–0.98 0.81 ± 0.35 0.34–1.70 0.84 ± 0.27 0.36–1.60 0.79 ± 0.29 0.34–2.00 0.83 ± 0.30 0.34–1.70
Hemoglobin, g/L 145 ± 13 127–175 138 ± 22 81–168 140 ± 14 112–172 141 ± 13 119–166 142 ± 15 81–175 141 ± 13 112–172
Creatinine, μmol/L 83 ± 11 61–111 72 ± 82 57–86 73 ± 112 57–104 73 ± 112 53–97 78 ± 125 57–111 73 ± 112 53–104
Folate, nmol/L 21 ± 5 14–35 23 ± 9 11–42 25 ± 72 13–39 27 ± 82 10–45 22 ± 74 11–42 26 ± 82 10–45
Vitamin B-12, pmol/L 343 ± 109 170–710 303 ± 94 150–500 241 ± 992 110–480 293 ± 1613 110–930 304 ± 111 110–710 274 ± 2432 110–930
Glucose, mmol/L 5.1 ± 0.4 4.1–6.2 5.2 ± 0.4 4.5–5.7 5.0 ± 0.4 4.2–5.9 5.0 ± 0.4 4.1–6.3 5.1 ± 0.4 4.1–6.2 5.0 ± 0.4 4.1–6.3
C-reactive protein, mg/L 0.9 ± 1.6 0–6 0.5 ± 1.3 0–4 0.5 ± 1.2 0–5 0.8 ± 2.5 0–15 0.7 ± 1.4 0–6 0.7 ± 2.1 0–15
Moderate physical activity

<30 min/wk, %
0 — 0 — 4 — 2 — 1 — 3 —

Moderate physical activity
>2.5 h/wk, %

68 — 31 — 58 — 61 — 65 — 60 —

Intense physical exercise
<30 min/wk, %

8 — 39 — 17 — 30 — 16 — 24 —

Intense physical exercise
>2 h/wk, %

63 — 31 — 50 — 47 — 53 — 48 —

Taking food supplements, % 53 — 62 — 50 — 95 — 526 — 797 —

1Values are means ± SDs and ranges unless otherwise indicated. Nonvegan includes omnivores, vegetarians, and vegetarians adding fish; nonmeat includes vegans and vegetarians. One-factor ANOVA
and Tukey’s post hoc test were performed between the 4 dietary groups. Nonnormally distributed data were log transformed before testing (vitamin B-12, BMI).

2Significantly different (P < 0.02) from omnivore.
3Significantly different (P < 0.05) from omnivore.
4Significantly different (P < 0.02) from vegan.
5Significantly different (P < 0.05) from vegan.
6Pearson’s chi-square test P < 0.02 compared with vegan.
7Pearson’s chi-square test P < 0.02 compared with omnivore.

reported a slightly, but not significantly, higher physical activity
level than others; ∼63% reported >2 h/wk of intense physical
activity compared with 48% in the nonmeat group. The reasons
for adhering to a vegan or vegetarian diet were related to ethical,
environmental, and health aspects in all cases but 2, where
cultural reasons were cited.

Four-day dietary records collected on the days preceding the
blood sampling were used to assess intake of red meat, processed
meat, poultry, fish and shellfish, eggs, and dairy products. All
omnivores reported consuming meat in the FFQ and only 1 did
not consume red meat according to the 4-d weighed dietary
record. In addition, 75% reported consuming processed meat,
63% reported consuming poultry, and 50% reported consuming
fish or shellfish once or more during the 4 d. All individuals
reported consuming dairy products and all except 2 individuals
consumed them on all 4 d. Among the vegetarians and vegetarians
adding fish, ∼60% reported consuming dairy products daily but
6 individuals reported not consuming dairy products at all. Five
of these 6 individuals reported also not consuming any eggs
during the 4 d. Eight of the 13 vegetarians adding fish reported
consuming fish during the 4 d.

Dietary effects on serum metabolomics

In a PCA model including all dietary groups (n = 120),
the fourth-largest variation in the data [5.3% of the explained
variation (R2X)] was related to habitual diet (Figure 2). The
third-largest variation [6.6% of the explained variation (R2X)]

was related to gender (Supplemental Figure 1). Other known
factors such as age, BMI, triglyceride (TG), HDL, and Hb did
not show clustering patterns or trends in the PCA model. An
OPLS model (n = 120) including age, length, weight, BMI,
fat mass percentage, TG, HDL, glucose, Hb, and omnivore
index is shown in Figure 3A, B. The permutation test was
regarded as good for all included y-variables except for age.
The model clearly separated by factors related to gender, i.e.,
it was driven by higher length, weight, and Hb for men and
higher fat mass percentage for women in the first component
[8.9% of the explained variation (R2X)]. The third component
[3.6% of the explained variation (R2X)] was separated by fat
mass percentage, TG, and glucose compared with HDL, i.e.,
factors related to health status. ANOVA testing of cross-validated
predictive residuals resulted in length (P = 3.4∗10−8), weight
(P = 2.3∗10−6), TG (P = 8.3∗10−4), HDL (P = 0.025), Hb
(P = 1.4∗10−6), and omnivore index (P = 2.6∗10−14) being
significant. BMI was nonsignificant, even when excluding related
covariates.

OPLS-DA models were used to investigate discrimination
between dietary groups and to identify variables responsible for
class separation (Figures 4 and 5). Statistics for the final OPLS-
DA models, including models with only women, are presented in
Table 2 and misclassifications for the main models in Table 3.
It was possible to correctly classify 97.5% of the samples in the
meat compared with nonmeat model and 92.5% of the samples in
the vegan compared with nonvegan model (Table 3, Figures 4A
and 5A).
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FIGURE 2 Principal component analysis model (n = 120) for component 4, showing the impact of habitual diet in the model.

The 3 misclassified nonmeat individuals in Figure 4A, B,
in both the FFQ and the 4-d weighed dietary record, reported
a relatively high intake of eggs and dairy compared with
other individuals classified as nonmeat consumers. One meat-
consuming individual was misclassified in the same model. This
individual was an omnivore, but reported low meat intake in the
FFQ and no meat or fish intake during the 4 d before sample
collection.

Figures 4C and 5C display class separation between meat
and nonmeat and between vegan and nonvegan consumers,

respectively, in women alone. These models, built on only
women participants’ data, were useful in predicting the metabolic
fingerprint of men; see Figures 4D and 5D. Classifying men in
the female meat compared with the nonmeat model (Figure 4C)
worked well with 1 exception (Figure 4D). Classifying men in
the female vegan compared with the nonvegan model (Figure 5C)
resulted in several misclassifications (Figure 5D). Classifying the
subjects according to diet using only the last day before sampling
from their 4-d dietary record did not improve the models (data
not presented). Excluding the 4 omnivores who reported only

FIGURE 3 Orthogonal projections to latent structures model (n = 120) describing the relation between known metadata and metabolites. Included metadata
are age, length, weight, BMI, FM percentage, TGs, HDL, glucose, Hb, and omnivore index. (A) The first component is shown separated by factors related to
gender, i.e., driven by higher length, weight, and Hb for men and higher fat mass percentage for women. Identities for a selection of metabolites are as follows:
light blue circles are citrate, brown 5-pointed stars are 3-hydroxybutyrate, pink diamonds are glutamine, green 5-pointed stars are glutamine + an unidentified
metabolite, brown boxes are ornithine and tyrosine, green 4-pointed stars are glucose, dark red 5-pointed stars are unidentified lipids or free fatty acids, light
blue 5-pointed stars are isoleucine, black inverted triangles are valine, and brown pentagons are leucine. (B) The third component is shown separated by factors
related to health status such as fat mass percentage, TG, and glucose and on the other hand HDL. FM, fat mass; Hb, hemoglobin; TG, triglyceride.
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FIGURE 4 Meat-eaters compared with non–meat-eaters in orthogonal projections to latent structures with discriminant analysis models. (A) n = 107
(40/67), colored by group; (B) n = 107 (40/67), colored by omnivore index; (C) model built on only women’s data, n = 68 (24/44), colored by group; (D) men
predicted in the women’s model in panel C, n = 39 (16/23), colored by habitual diet. FFQ, food-frequency questionnaire.

≤2 d consuming red meat, processed meat, and poultry during
these 4 d improved the meat compared with the nonmeat
model slightly (n = 103, cumulative R2X = 0.418, cumulative
R2Y = 0.822, cumulative Q2 = 0.622). Excluding the vegetari-
ans that could be classified as vegans from the 4-d dietary records
did not improve the vegan compared with the nonvegan model
(n = 115, cumulative R2X = 0.363, cumulative R2Y = 0.667,
cumulative Q2 = 0.443).

Discriminating metabolites

Metabolites that contributed to the separation in OPLS-DA
models are presented in Table 4. In NMR analysis, 1 metabolite
often generates several peaks. Thus, several of the unidentified
peaks may have arisen from the same metabolite or any of the
identified ones.

A number of selected discriminant metabolites in the 2 main
models (meat compared with nonmeat and vegan compared
with nonvegan) were identical (Table 4). This was true for
the branched-chain amino acids (BCAAs) isoleucine and
valine, which were higher in meat-eaters and nonvegans than
in non–meat-eaters and vegans. A peak that likely represents
3-hydroxyisobutyrate, an intermediate in valine metabolism,
followed the same pattern. Lysine and creatine were also higher
in meat-eaters and nonvegans. The meat compared with nonmeat
model differed from the vegan compared with nonvegan model in
that creatinine was among the discriminating metabolites and that
glutamine and leucine discriminated only in the vegan compared
with nonvegan model. Creatinine was significantly higher among
meat-eaters than among non–meat-eaters, glutamine was higher
among vegans than among nonvegans, and leucine was higher

among nonvegans than among vegans. Glycine, glutamine (in
a variable overlapping with an unknown metabolite), trimethy-
lamine (TMA), and 2-aminobutyrate (a tentative identification
not supported by 2D data) were higher among non–meat-eaters
and vegans than among meat-eaters and nonvegans, respectively.
In addition, 1 unidentified peak differed significantly in both
models. When analyzing models including only women, the
pattern was similar as for the mixed-gender models. However,
leucine and proline/taurine also were discriminant for meat-
eaters compared with non–meat-eaters in the women-only
model. In this women-only model, comparing vegans and
nonvegans, TMA and leucine/isoleucine were not discriminating
but they did discriminate in the mixed-gender model. In both
models including only women, there was 1 additional lipid peak
that was higher in non–meat-eaters and vegans than among meat-
eaters and nonvegans, respectively. There was also 1 additional
unidentified peak for the vegan compared with nonvegan
model.

Gender metabolic differences were investigated in a separate
OPLS-DA model (Table 2). Comparing all men and women,
BCAAs, creatinine, and TMA were discriminating and higher
among men. Interestingly, creatine was also significant and in
higher concentrations in women. Also glutamine, lysine, and
several lipid peaks discriminated between men and women (data
not shown).

When only including the discriminating metabolites in Table
4 in the OPLS-DA models, the ability to predict into the
correct category was decreased (data not shown), indicating
that a metabolomics approach including many metabolites
improves the predictability compared with using a few selected
ones.
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FIGURE 5 Vegan compared with nonvegan (omnivores, vegetarians, and vegetarians adding fish) eaters in orthogonal projections to latent structures with
discriminant analysis models. (A) n = 120 (43/77), colored by group; (B) n = 120 (43/77), colored by omnivore index; (C) model built on only women’s data,
n = 75 (24/51), colored by group; (D) men predicted in the women’s model in panel C, n = 45 (19/26), colored by habitual diet.

Discussion
This study shows that NMR metabolomics of fasting serum

may assess habitual intake of foods of animal origin. Although
the OPLS-DA models constitute the main results, the most
discriminating metabolites are discussed in the following section
to verify the models’ biological plausibility.

Discriminating patterns between diets have previously been
shown in both serum and urine (5, 6). Blood is highly controlled

by homeostasis and comprises both endogenous and exogenous
metabolites alongside inorganic salts and lipids, lipoproteins,
and proteins, whereas urine is constituted of inorganic salts
together with water-soluble waste products. Thus, we choose
to discuss our findings only in relation to other findings in
serum.

The most important metabolites that differed in concentration
in omnivores, vegetarians, and vegans were BCAAs such

TABLE 2 Model statistics1

Model LVs (n) n R2X R2Y Q2
CV-ANOVA

(P value)
ROC
AUC

Permutation
test2 (Q2)

PCA 7 120 0.578 — 0.398 — — —
OPLS 3 + 3 + 0 120 0.511 0.394 0.246 — — —
OPLS-DA meat vs. nonmeat all 1 + 3 + 0 107 (40/67) 0.411 0.805 0.583 1.1 × 10−15 1.00/1.00 − 0.578
OPLS-DA meat vs. nonmeat women 1 + 3 + 0 68 (24/44) 0.408 0.889 0.576 1.1 × 10−08 0.98/0.98 − 0.651
OPLS-DA vegan vs. nonvegan all 1 + 2 + 0 120 (43/77) 0.365 0.631 0.349 6.2 × 10−09 0.98/0.98 − 0.433
OPLS-DA vegan vs. nonvegan women 1 + 2 + 0 75 (24/51) 0.362 0.704 0.330 9.5 × 10−05 0.92/0.92 − 0.505
OPLS-DA men vs. women 1 + 2 + 0 120 (45/75) 0.360 0.708 0.559 4.2 × 10−18 0.99/0.99 − 0.441

1Meat includes omnivores; nonvegan includes omnivores, vegetarians, and vegetarians adding fish; nonmeat includes vegans and vegetarians. PCA,
Principal component analysis; OPLS, Orthogonal Projections to Latent Structures; CV-ANOVA, ANOVA testing of cross-validated predictive residuals; LV,
latent variable; Q2, cumulative fraction of the sum of squares of Y predicted by the selected latent variables, estimated by cross-validation; ROC, receiver
operating curve; R2X, cumulative fraction of the sum of squares of X explained by the selected latent variables; R2Y, cumulative fraction of the sum of
squares of Y explained by the selected latent variables.

2The intercept between real and random models, degree of overfit.
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TABLE 3 Classification of samples in the orthogonal projections to latent
structures with discriminant analysis model

Classification (n)

True intake
Meat

(n = 40)
Nonmeat
(n = 67)

Vegan
(n = 43)

Nonvegan
(n = 77)

Meat 39 (98%) 1 (2%) — —
Nonmeat 2 (3%) 65 (97%) — —
Vegan — — 41 (95%) 2 (5%)
Nonvegan — — 8 (10%) 69 (90%)

as leucine, isoleucine, and valine: all were higher in meat-
eaters and nonvegans than in non–meat-eaters/vegans. BCAA
concentrations in serum depend on dietary intake (12). However,
factors such as gender, fat-free mass, BMI, and changes in
BMI after weight reduction have also been reported to influence
BCAA concentrations (13–17). Because BCAAs are derived
from protein degradation in muscle tissue in the fasted state,
BCAA concentration in fasting serum correlates with fat-free
mass. In fact, leucine oxidation is paralleled by plasma leucine
concentrations in the fed state (18). BCAAs are in addition
regulated by insulin and glucagon. BCAA concentrations in-
crease with enhanced protein degradation but are also influenced
by dietary intake. Thus, BCAAs are not reliable biomarkers
for either muscle mass or dietary intake. However, our results
imply that valine and isoleucine could be used as dietary
markers if combined with other markers of meat or animal
products.

In our subjects, creatine concentrations in fasting serum
samples were higher in meat consumers than in vegans and
vegetarians also after adjustments, which is in line with previous
findings (19). We also confirm the dimorphisms for creatine being
higher in women and creatinine being higher in men (15). The
dietary source of creatine is muscle meat, including fish, and only
small amounts are found in dairy products. Thus, vegetarians
and vegans must synthesize creatine by de novo biosynthesis
from glycine, methionine, and arginine (20). It has been shown
that the muscle content of creatine is lower in muscle tissue
in vegetarians than in omnivores, indicating that the dietary
intake increases tissue content above the de novo synthesis (21),
which our study confirms. In addition, the concentrations of
other metabolites are influenced by dietary creatine intake; 5 d
supplementation with creatine in healthy young men and women
raised plasma concentrations of creatine, citrulline, valine, and
lysine, and decreased glycine, glutamine, and taurine (22). This
is similar to our findings with lower glycine and glutamine
and higher valine content in serum in meat consumers than
in non–meat consumers and in nonvegans than in vegans. In
addition, our results are consistent with the findings in the
metabolomics study by Schmidt et al. (3), which reported higher
serum concentrations of glycine in vegans, but also other studies
have reported an inverse relation between red meat intake and
the glycine concentration in biofluids (5, 23). Glycine has been
related to insulin resistance and oxidative stress by its essential
role in gluconeogenesis and the formation of glutathione (24) and
has been independently associated with decreased diabetes risk
(23).

TMA was higher in non–meat-eaters. The amino acid choline
can be converted to TMA, hence foods rich in choline, e.g., beef,

chicken, egg, and soy, are expected to increase the concentration
of TMA. However, significantly higher postprandial concentra-
tions of TMA in urine have only been confirmed after seafood
intake (25). About 80% of TMA N-oxide present in seafood
is estimated to be converted to TMA by the gut microbiota
(26). TMA conversion from choline and carnitine is estimated
to be lower (26). Accordingly, higher TMA in omnivores,
and especially in individuals with high fish consumption, was
expected. However, this was not the case and might be explained
by the microflora, as responsible for the conversion to TMA,
or by the variable rate of conversion of TMA to TMA N-oxide
that might differ in subjects with high or low intake of TMA
precursors. A difference in gut microflora was discussed as one
explanation for the finding that some individuals had more than
4 times higher TMA N-oxide concentration in plasma compared
to others, when investigating choline uptake and conversion to
TMA from eggs (27). To our knowledge there are no studies to
show that TMA in serum is a good marker for habitual meat or
even fish intake.

Several weaknesses of our study should be noted. In this
study, men and women were not evenly distributed within
dietary groups. The concentrations of many metabolites differ
by gender; thus, the larger group of women was also analyzed
separately to ensure that differences between groups were not
due to this gender skewness. In addition, P values for metabolites
driving the separation in OPLS-DA models were adjusted for
age, gender, BMI, and body fat mass percentage in a logistic
regression analysis (Table 4). The level of physical activity
has also been shown to influence the metabolome (28, 29).
Further, omnivores reported an overall higher level of physical
activity (although not significantly) and this may have affected
our metabolomics results. In addition, fat mass percentages and
vitamin B-12, cholesterol, folate, and LDL concentrations were
other factors that were not evenly distributed between groups
and therefore may have affected the present results. Still, these
factors likely were influenced by the diet and thus should be
regarded as concomitant outcomes rather than as confounders.
Finally, the study population comprised mainly young and
healthy individuals with a high level of physical activity and this
might limit the generalizability.

Our study has several important strengths. Fasting serum
samples were used and these were rigorously handled following
a strict protocol, resulting in high-quality NMR data. In the
study by Schmidt et al. (3), nonfasting samples were collected
at the participants’ local general practitioners, resulting in
significantly different times from last food or drink to collection
and times from collection to processing. They reported that
almost all amino acids were influenced by the sample collection
procedure. This emphasizes the importance of sample handling
in metabolomics research. Our subjective dietary data included
both food-frequencies data and 4-d weighed dietary records. This
aided us in interpreting the serum data and made it possible to
explain misclassifications in the multivariate models (6).

To conclude, 1H-NMR serum metabolomics appears to be a
possible objective tool to identify and predict habitual intake of
meat and other animal products in healthy subjects adhering to
a vegan, vegetarian, or omnivore diet. Discriminating patterns
reflecting the intake of meat and other products of animal
origin were identified. However, a number of metabolites
identified in increased concentration for the different diets
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TABLE 4 Differences in metabolites between meat-eaters and non–meat-eaters and between vegans and nonvegans1

Meat vs. nonmeat Vegan vs. nonvegan

1H chemical
shift region

All
(n = 107) (40/67)

Women
(n = 68) (24/44)

All
(n = 120) (43/77)

Women
(n = 75) (24/51)

ANOVA all
significance2Metabolite M NM P M NM P NV V P NV V P

(2-aminobutyrate) 0.88 ↑ ↓ <0.000013,4 ↑ ↓ 0.0011 ↑ ↓ <0.000013 ↑ ↓ 0.000263,4 V vs. all
(3-hydroxyisobutyrate) 0.98 ↑ ↓ 0.0000183,4 ↑ ↓ 0.00097 ↑ ↓ 0.0000253,4 ↑ ↓ 0.00059 V vs. O and Veg + F
Creatine 3.84 ↑ ↓ <0.000013 ↑ ↓ <0.000013,4 ↑ ↓ 0.000213,4 ↑ ↓ 0.0018 O vs. all
Creatine + lysine 2.94 ↑ ↓ <0.000013 ↑ ↓ <0.000013,4 ↑ ↓ <0.000013 ↑ ↓ 0.000143 O vs. all
Creatinine 3.96 ↑ ↓ 0.0000333,4 ↑ ↓ 0.0000713,4 — — — ↑ ↓ 0.0044 O vs. V and Veg
Glutamine 2.37 — — — — — — ↓ ↑ 0.0065 — — — —
Glutamine5 2.38 ↓ ↑ 0.041 ↓ ↑ 0.095 ↓ ↑ 0.0056 ↓ ↑ 0.02 V vs. O
Glutamine5 2.04 ↓ ↑ 0.0000133 — — — — — — — — — V vs. O and Veg
Glycine 3.46 ↓ ↑ <0.000013 ↓ ↑ <0.000013 ↓ ↑ 0.000223,4 ↓ ↑ 0.0098 O vs. all
Isoleucine 0.83 ↑ ↓ 0.0000113,4 ↑ ↓ 0.0037 ↑ ↓ 0.0000153 ↑ ↓ 0.000493,4 O vs. V
Leucine 0.87 — — <0.000013 ↑ ↓ 0.0000823,4 ↑ ↓ <0.000013 ↑ ↓ 0.0000183 O vs. V and Veg
Leucine + isoleucine 0.85 ↑ ↓ 0.0000423,4 ↑ ↓ 0.000453,4 ↑ ↓ 0.016 — — — O vs. V and Veg
Lysine + arginine 1.79 ↑ ↓ 0.017 ↑ ↓ 0.0000793,4 ↑ ↓ <0.000013 ↑ ↓ 0.000443,4 V vs. all
Proline + taurine 3.33 — — — ↑ ↓ 0.00033,4 — — — — — — V vs. O and Veg + F
Trimethylamine 2.80 ↓ ↑ 0.000153 ↓ ↑ 0.000453,4 ↓ ↑ 0.017 — — — O vs. V and Veg
Valine 0.94 ↑ ↓ <0.000013 ↑ ↓ 0.000363,4 ↑ ↓ <0.000013 ↑ ↓ 0.00062 O vs. V and Veg
Lipids 0.79 — — — ↓ ↑ 0.0058 — — — ↓ ↑ 0.0094 —
Unknown 3.26 — — — — — — — — — ↑ ↓ 0.0016 —
Unknown 0.99 ↓ ↑ 0.000323,4 ↓ ↑ 0.0037 ↓ ↑ 0.0000833 ↓ ↑ 0.0007 V vs. O and Veg + F

1Chemical shift region for the peak used for t tests. Shown are discriminating metabolites that have a loading score pq > ± 0.1. P for Student’s t test is presented for all discriminating metabolites. F, fish;
M, meat (omnivores); NM, nonmeat (vegans and vegetarians); NV, nonvegan (omnivores, vegetarians, and vegetarians + fish); O, omnivore; V, vegan; Veg, vegetarian.

2ANOVA analysis between omnivores, vegetarians + fish, vegetarians, and vegans, with Tukey’s post hoc test.
3Significant Student’s t test after Bonferroni correction (P < 0.0005).
4Nonsignificant in a logistic regression model when adjusted for age, gender, BMI, and fat mass percentage, Bonferroni corrected (P < 0.0005).
5In a variable overlapping with an unidentified metabolite.

were also associated with gender, age, BMI, and body com-
position. Accordingly, metabolic patterns in relation to diet
alone must be confirmed in intervention studies, controlling
for individual factors that could potentially influence metabolite
concentrations.
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