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Abstract
The SARS-CoV-2 proteases Mpro and PLpro are important targets for the development of antivirals against COVID-19. The 
functional group 1,2,4-thiadiazole has been indicated to inhibit cysteinyl proteases, such as papain and cathepsins. Of note, 
the 1,2,4-thiadiazole moiety is found in a new class of cephalosporin FDA-approved antibiotics: ceftaroline fosamil, cefto-
biprole, and ceftobiprole medocaril. Here we investigated the interaction of these new antibiotics and their main metabolites 
with the SARS-CoV-2 proteases by molecular docking, molecular dynamics (MD), and density functional theory (DFT) 
calculations. Our results indicated the PLpro enzyme as a better in silico target for the new antibacterial cephalosporins. The 
results with ceftaroline fosamil and the dephosphorylate metabolite compounds should be tested as potential inhibitor of 
PLpro, Mpro, and SARS-CoV-2 replication in vitro. In addition, the data here reported can help in the design of new potential 
drugs against COVID-19 by exploiting the S atom reactivity in the 1,2,4-thiadiazole moiety.
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Introduction

The global respiratory pandemic COVID-19 (coronavirus 
disease 2019) is caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), which remains afflict-
ing millions of people. Although the majority of infected 
people are asymptomatic or present mild symptoms [1–3], 
the severe cases can evolve to pneumonia, heart injury, kid-
ney failure, and central nervous system symptoms (encepha-
litis, seizures) and death [1, 4–6].

Cysteine proteases are one of the four main groups of 
peptide-bond hydrolases. They all use a S− anion (thiolate) 
of a cysteine (Cys) side chain as the nucleophile in the 
hydrolysis of the peptide bond [7]. The cysteinyl proteases 
are found in all forms of life and can also be codified by 
single-stranded RNA viruses. In vertebrates, cysteinyl pro-
teases can mediate a wide variety of physiological and path-
ological processes. In different viruses, cysteinyl proteases 
display important roles in the virion formation, release, and 
entry into the host cells. Typically the cysteinyl proteases 
metabolize the formation of critical viral proteins inside the 
host cells [8–10].

Coronaviruses (CoVs) are a large group of enveloped, 
single-stranded, positive-sense RNA viruses that encode 
large replicase polyproteins that are processed by viral pepti-
dases to generate proteins involved in viral replication [7, 
10]. The SARS-CoV-2 papain-like protease (PLpro or non-
structural protein 5, nps5) and 3C chymotrypsin-cysteine-
like peptidase or main protease (Mpro or nps3) process post-
translationally the viral pp1a and pp1ab polyproteins in 
non-structural proteins. The cysteinyl residues found in the 
catalytic moieties of the Mpro and PLpro are directly involved 
in the hydrolysis of specific peptide bonds presented in the 
large pp1a and pp1ab polyproteins [11, 12]. Consequently, 
the cysteine-proteases from coronavirus (MERS-CoV, 
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SARS-CoV, and SARS-CoV-2) have been considered tar-
gets for the repositioning of therapeutically approved drugs 
or for the development of new agents [13–17].

Since the beginning of the pandemic, extensive efforts 
have been done in the search for SARS-CoV-2 proteases’ 
inhibitors [15]. For instance, the organochalcogen drugs 
ebselen, disulfiram, and tideglusib have been demon-
strated to inhibit the Mpro from SARS-CoV-2 in vitro [15]. 
The inhibitory capacities of some of these molecules have 
also been analyzed and confirmed in silico [18, 19]. From 
the ~ 10,000 molecules investigated by Jin et al. [15], tide-
glusib was the only one containing the 1,2,4 thiadiazole 
group, and it inhibited the Mpro with a good potency [15]. 
However, the authors did not comment about the in silico 
or in vitro inhibition of Sars-Cov-2 Mpro by other molecules 
containing the 1,2,4-thiadiazole moiety.

The inhibitory mechanism of tideglusib against Mpro has 
not been investigated in detail. But the 1,2,4 thiadiazole 
moiety has been reported to inhibit cysteinyl proteases, for 
instance, papain and cathepsins B, L, and K [20–22]. The S 
atom of 1,2,4 thiadiazole behaves as an electrophilic center, 
while the thiol (–SH) of the Cys proteases attacks the sulfur 
atom of the ring to form a disulfide bond with concomitant 
ring opening (Fig. 1) [21–23]. Recently, Sarkar et al. demon-
strated that the compound RRA2 exhibited mycobactericidal 
activity against the intracellular satage Mycobacterium bovis 
and Mycobacterium tuberculosis at the micromolar range 
[24].

Recently, Kumar et al. [25] have performed an in silico 
search for potential repurposing candidate drugs in the Korea 
Chemical Bank drug reuse database (KCB-DR). They have 
indicated some putative inhibitors of Mpro, including cef-
taroline fosamil (a drug containing 1,2,4-thiadiazole func-
tional group) [25]. The virtual screening, molecular dynam-
ics (MD) simulations, and binding-free energy approaches 
demonstrated the interaction between ceftarolinefosamil, 
forming hydrogen bonds with active site residues in Mpro, 
such as His41. However, the authors did not investigate the 

possible mechanism of inhibition nor the interaction of the 
S atom from ceftaroline fosamil with the cysteinyl residue 
(Cys 145) in the enzyme’s active site.

Since the 1,2,4-thiadiazole-containing molecule tide-
glusib has been report to inhibit the SARS-CoV-2 Mpro in 
vitro [15], here we did a systematic search for compounds 
containing the moiety 1,2,4-thiadiazole. In the Drug Bank 
database, from searches for structural similarity of com-
pounds containing the functional group, 1,2,4-thiadiazole, to 
optimize the potential discovery of new antiviral drugs from 
previously approved therapeutic agents by the FDA (Food 
and Drug Administration) that could be further studied for 
the potential repositioning in the treatment of COVID-19.

Our search for drugs containing the 1,2,4-thiadiazole func-
tional group retrieved two approved drugs (ceftaroline fosamil 
and ceftobiprole) and one in the experimental phase (ceftobi-
prole medocaril) Fig. 2. They are a new generation of broad-
spectrum cephalosporins in late stages of development with 
activity against methicillin-resistant Staphylococcus aureus 
(MRSA) [26, 27]. The presence of the 1,2,4-thiadiazole moi-
ety has been reported to facilitate the antibiotic permeation 
inside Gram-negative bacteria and the transpeptidase activity 
[27, 28]. In addition, these drugs are already in clinical use 
for the treatment of human respiratory tract infections and 
pneumonias [26]. Of therapeutic significance, pharmacoki-
netic studies have indicated that intravenous administration 
of ceftaroline fosamil, ceftobiprole, and ceftobiprole medo-
caril resulted in micromolar plasma and epithelial lining fluid 
(ELF) concentrations of their active metabolites [29–32]. One 
of the advantages of repurposing drugs already approved for 
clinical use is the availability of data about their toxicity and 
their concentration found in relevant body fluids [33, 34].

Thus, in this work we perform in silico molecular docking 
analyses, density functional theory (DFT) calculations, and 
molecular dynamics (MD) to propose new Mpro and PLpro 
inhibitors, as well as to explain the mechanisms of enzyme 
inhibition at the molecular and atomic levels. The latter 
analyses are fundamental to assess the role of the distinct 
molecular moieties for improved and rational drug design.

Materials and methods

1,2,4‑thiadiazole containing drugs and metabolites

The Drug Bank (www.​go.​drugb​ank.​com) [35] was utilized to 
search for FDA-approved drugs containing 1,2,4-thiadiazole 
functional group [35]. The ceftaroline fosamil, ceftobiprole, 
and their respective metabolites were retrieved as approved 
drugs, while the ceftobiprole medocaril is still in the experi-
mental list. They were all considered in our in silico studies 
(including their Z and E isomers) to verify if they might be 
Mpro and PLpro potential inhibitors.

Fig. 1   General structure and proposed inhibitory mechanism of Cys 
enzymes (Enz) by1,2,4-thiadiazoles molecules. R1 and R2 are organic 
substituents
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Docking simulations

Auto Dock Vina was used for the docking simulations [36], 
with exhaustiveness of 50, according to a previous study 
[19]. The Mpro and PLpro crystallographic structures were 
obtained from the Protein Data Bank (PDB) with the codes 
6LU7 and 7JN2, respectively. Water, ions, ligands, and other 
molecules were removed from the protein structures; then, 
the hydrogen atoms were added using the CHIMERA pro-
gram, followed by 100 steps of energy minimization [37]. 
The Mpro grid box of size 25 × 35 × 25 Å was centered on 
the active site from chain A (− 14.04, 17.44, 66.22). For 

the PLpro, the docking grid box was centered on the active 
site (39.64, 30.68, 1.66; size: 20 × 20 × 20 Å) and in the Zn 
binding site (82.40 × 26.32 × − 0.62; size: 20 × 20 × 20 Å), 
both from chain A. The three-dimensional model of cef-
taroline fosamil, ceftobiprole, ceftobiprole medocaril, and 
their metabolites was created with Avogadro and MOPAC 
(PM6 method) [38–40], using the dielectric constant of 
water (78.4), and taking into account the physiological pH 
(7.0 to 7.4) as determined by in the Marvin Skecth 17.21.0, 
ChemAxon program (see Supporting Information (SI) 
Figs. S14–S16) (ChemAxon—Software Solutions and Ser-
vices for Chemistry & Biology [41]). In addition, both Z and 

Fig. 2   Chemical structure and 
isomers of 1,2,4-thiadiazoles 
drugs and their active metabo-
lites. The approved ceftaroline-
fosamil and ceftobiprole, and an 
experimental drug, ceftobiprole 
medocaril. For ceftarolinefosa-
mil and ceftobiprole medocaril, 
isomers Z1 and E1 are the most 
abundant protonation forms, 
at physiological pH between 
7.0 and 7.4, (determined in the 
Marvin Sketch program). The 
other forms, and proportions 
at physiological pH range, are 
presented in the Supporting 
Information
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E isomers of the drugs ceftaroline fosamil and ceftobiprole 
medocaril were considered in this study. These details are 
very important and can affect the predicted binding pose in 
molecular docking simulations. For each molecule, the 20 
best conformers (in terms of ∆G) were analyzed in the Dis-
covery Studio Visualizer program [19, 42]. Two conformers 
were chosen, i.e., the conformer with the largest negative 
binding energy [43] and the conformer with the shorter S···S 
interaction. The conformers of 1,2,4-thiadiazole-containing 
drugs and metabolites which displayed the best interaction 
with the Cys residues from Mpro and PLpro (in terms of S···S 
distances and ∆G) were highlighted. Specifically, the dis-
tance between the S atom (ligand) to the S atom (Cys) was 
considered an indicator of potential covalent bond formation 
between 1,2,4-thiadiazole compounds and metabolites with 
the enzymes.

In total, 14 molecules were tested, derived from the drugs 
ceftarolinefosamil, ceftobiprole, and ceftobiprole medocaril, 
including their isomers and protonated forms in their pre-
dominant pH states, SI Figs. S14–S16. Among them, 10 will 
be discussed in this article; the others are in the supplemen-
tary material section. Isomers (Z,E)1 indicate the most popu-
lous protonation state, and the (Z,E)2, the least populous.

Density functional theory (DFT) calculations

All density functional theory (DFT) calculations were car-
ried out using the Amsterdam Density Functional (ADF) 
program [44, 45]. Scalar relativistic effects were taken 
into account using the zeroth-order regular approxima- 
tion (ZORA) [46]. The OLYP density functional was  
used, in combination with the TZ2P basis set, according 
to the literature [47]. The softness (σ = 1/η,η = [E(LUMO
) − E(HOMO)]/2) was computed according to LoPachin 
et al. [48], using the Hirshfeld charges [49], which  
have a good overall reactivity prediction performance  
[50, 51].

Molecular dynamics

Molecular dynamics simulations were run for the two main 
compounds, namely, ceftaroline fosamil and ceftaroline 
fosamil dephosphorylated metabolite, employing AMBER 
2021 [52]. The complexes were treated using the AMBER 
ff14SB force field for the protein residues PLpro and the gen-
eralized AMBER force field (GAFF) to define the ligands’ 
parameters. To simulate the Zn2+ atom present in PLpro, 
the four cysteine residues directly bonded to zinc and the 
zinc atom itself were modeled employing the Zinc AMBER 
Force Field (ZAFF) [53]. The structures were solvated in 
an octahedral box of TIP3P water molecules. Starting from 
the best pose obtained via the docking procedure and after 
energy minimization, heating to 310 K at constant volume 

and temperature was performed over 60 ps using the Lan-
gevin thermostat.

Afterward, equilibration at constant temperature (310 K) and 
pressure (1 bar, Berendsenbarostat) was conducted for 60 ps 
using weak restraints (2 kcal mol−1 Å−2) on the protein–ligand 
complex and then for 2 ns without any restraint, followed by 
200-ns production runs from the MD trajectories, 1000 frames 
taken at 0.2-ns intervals were extracted and employed in the 
calculation of RMSDs and RMSFs.

Results and discussion

The docking of ceftobiprole and all the Z and E isomers 
of ceftaroline fosamil, ceftaroline fosamil dephosphoryl-
ated metabolite, ceftobiprole, ceftobiprole medocaril, and 
ceftobiprole metabolites in their conformations with the 
shortest S···S distance are presented in the main text, Fig. 4 
and Table 1. The data of the best energy conformers were 
included in the supplementary information (SI). The selec-
tion of conformers was based on the predominant conforma-
tions found between the pH values of 7.0 to 7.4 (the percent-
ages of occurrence of each conformer is presented in Table 
S2). Ceftaroline fosamil isomers (Z,E)2 and ceftobiprole 
medocaril isomers (Z,E)2 are depicted in the SI. It is empha-
sized that the Z and E isomers centered in the oxime group 
can interfere in the way drugs and metabolites interact with 
the active sites of the proteases under study. The configu-
ration of the E isomer is sterically closer to the functional 
group under study, 1,2,4-thiadiazole, Fig. 2.

Taking into consideration the proposed inhibitory mecha-
nism of 1,2,4-containing molecules against cysteinyl proteases 
(Fig. 1), which involves the nucleophilic attack of the thiolate 
of cysteinyl residues on the S atom of the 1,2,4-thiadiazole 
heterocycle (Fig. 2), here we have emphasized the in silico 
interaction of cysteinyl residues from the active site of Mpro 
and PLpro, and the 4 cysteinyl residues coordinating PLpro Zn 
(the Zn binding site) with the S atom of the 1,2,4-thiadiazole 
moiety in the new class of cephalosphorin antibiotics. Specifi-
cally, the distances between Cys S···S (1,2,4-thiadiazole) were 
evaluated to understand the potential role of the cephalosporin 
antibiotics as inhibitors of SARS-CoV-2 proteases Mpro and 
PLpro, Fig. 3.

Mpro Cys145 interaction with 1,2,4‑thiadiazole 
containing drugs and metabolites

Mpro is the main integrant of the proteolytic processing 
machinery of SARS-CoV-2 and is greatly conserved in 
coronaviruses [54]. The Mpro cleaves the polyproteins (pp) 
1a and 1ab from SARS-CoV-2 into 16 distinct proteins, 
which are essential for the formation of viral replication 
complexes [55]. Similar to other cysteine proteases, the 
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active site of Mpro contains a Cys-His catalytic dyad that 
has a critical role in the enzyme structure and coordinates 
the hydrolyzes of the peptide bonds at specific sites of the 
polyproteins 1a and 1ab chains [56]. The His41 accepts 
the proton from the thiol group of Cys145; consequently, 
the nucleophilicity of Cys145 residue increases consider-
ably [57]. The covalent blockage of the thiol/thiolate moi-
ety of Cys145 inhibits the Mpro proteolytic function. The 
binding poses obtained from the docking analyses on the 
Mpro active site demonstrated that the sulfur atom from all 
1,2,4-thiadiazoles-containing drugs and metabolites inter-
acted with the thiol/thiolate group of Cys145 and with 
surrounding residues (Fig. 4A–J).

The ceftaroline fosamil isomers (Z,E)1 showed similar 
bond position and S···S interactions (Fig. 4A, B), while 
the binding poses of ceftaroline fosamil dephosphorylated 
metabolites E and Z and S···S distances were different (3.8 Å 
and 4.7 Å, respectively (Fig. 4C, D). Thus the removal of 
the phosphate group influenced the binding poses of Z and 
E dephosporylated ceftaroline fosamil isomers in the active 
site of Mpro.

For the ceftobiprole isomers, comparable binding poses 
were predicted, but with a little different distances from 
the Cys145. In fact, the (Cys)S···S(thiadiazole) interaction 
was shorter for the Z isomer (4.8 Å) than for the E (5.2 Å) 
(Fig. 4E, F). For the ceftobiprole metabolite isomers, a 
similar binding pose of thiadiazole was observed. However, 
ceftobiprole metabolite Z (4.5 Å) presented a shorter S···S 
interaction than the isomer E (5.2 Å) (Fig. 4G, H).

For the ceftobiprole medocaril isomers, slightly different 
S···S distances were observed; the Z1 (5.0 Å) presented a lit-
tle longer interaction than did the isomer E1 (4.6 Å) (Fig. 4I, 
J). The analysis of the Cys145S···S1,2,4-thiadiazole com-
pounds interaction that the E1 isomer from the dephorylated 
ceftaroline fosamil presented the shortest distance (Table 1).

In addition, it is important to note that H-bonds between 
Ser144, His163, Gln189, Asn142, and Cys145 resi-
dues with the ligands participated in the stabilization of 
Mpro-ligand complexes. Hydrophobic interactions between 
the 1,2,4-thiadiazole can also have significant contribu-
tion for the stabilization of Mpro-ligand complexes, as a 
recently demonstrated by Kumar et al. [25]. They reported 
the in silico interactions between ceftaroline fosamil and 
the amino acid residues in or near to the active site of Mpro. 
In addition to the hydrogen bonds between Thr24, Thr25, 
His41, and Thr45 with the antibiotic, they indicated hydro-
phobic interactions between Cys44, Ser46, Met49, Met165, 
Arg188, Gln189, Thr190, Ala191, Gln192 with ceftaroline 
fosamil. In short, the secondary interactions between amino 
acid residues near the active site with the cephalosporine 
derivatives have also important contributions to the overall 
stability of the protease-compound complex.

Among the conformers with the largest negative bind-
ing energy (Table 2), only the dephosphorylated ceftaroline 
fosamil Z isomer, ceftobiprole E, ceftobiprole metabolite Z, 
and ceftobiprole medocaril isomer E1 showed S···S interac-
tion; however, their S···S distances were longer than those 
observed with the conformers presented in Table 1. A simi-
lar H-bond pattern was observed for these conformers, with 
distances varying from 1.8 to 3.0 Å with Thr190, Ser144, 
His163, Thr26, Asn142, Glu166, and Cys145.

1,2,4‑thiadiazole containing drugs and metabolites 
interaction with PLpro

In the PLpro, the Cys111 from the catalytic triad contains the 
nucleophilic center that directly participates in the cleav-
age of the peptide bond of polyproteins from SARS-CoV-2. 
The His272 and Asp286 residues participate in the catalysis 
as acid–base pairs that promote the thiol deprotonation of 

Fig. 3   Target cysteinyl residues 
in the SARS-CoV-2 Mpro active 
site (Cys145), PLpro active site 
(Cys11), and Zn binding site 
(Cys189, Cys192, Cys224, and 
Cys226) are depicted in the 
figure. A Mpro active site (6lu7), 
B PLpro active site, and C PL.pro 
Zn site (7jn2)
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Fig. 4   Mpro docking with 
1,2,4-thiadiazole containing 
drugs and their metabolites. A 
Ceftaroline fosamil isomer Z1. 
B Ceftaroline fosamil isomer 
E1. C Ceftaroline fosamil 
dephosphorylated metabolite 
isomer Z. D Ceftaroline fosamil 
dephosphorylated metabolite 
isomer E. E Ceftobiprole isomer 
Z. F Ceftobiprole isomer E. G 
Ceftobiprole metabolite isomer 
Z. H Ceftobiprole metabolite 
isomer E. I Ceftobiprole medo-
caril isomer Z1. J Ceftobiprole 
medocaril isomer E1. Distances 
are shown in Å
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Cys111. The resulting thiolate has enhanced nucleophilicity 
[11, 58]. The blockage of the thiol moiety of Cys111 is an 
important strategy to inhibit PLpro.

The binding poses obtained from the docking studies 
focusing on the PLpro active site demonstrated that the sul-
fur atom of 1,2,4-thiadiazole-containing drugs and metab-
olites can interact with the thiol group of Cys111 residue 
(Fig. 5A–J).

The ceftaroline fosamil isomers (Z,E)1 displayed similar 
bonding poses and a little difference in the distance of S···S 

interactions (Z1 ~ 3.6 Å and E1 ~ 3.8 Å). The distances of the 
S···S interactions in the dephosphorylated ceftaroline fosa-
mil metabolite were more favorable in the Z (3.7 Å) than in 
the E isomer (4.0 Å) (Fig. 5A–D).

The ceftobiprole isomers interacted with different bind-
ing poses and different S···S interaction distances with the 
active site of PLpro, where the Z isomer (3.9 Å) has a shorter 
distance than the E (5.6 Å) isomer (Fig. 5E, F). In the cefto-
biprole metabolite, the shortest interaction was observed 
for the isomer E (3.9 Å) (Fig. 5G, H). For the ceftobiprole 

Table 1   Predicted binding free energies (∆G, kcal·mol−1) between Mpro and PLpro and PLpro Zn binding site, with 1,2,4-thiadiazole containing 
drugs with the select conformer presenting the most favorable S···S interaction distances

aMpro bPLpro cPLpro Zn

Molecule ∆G

dist. (Å) 
S*∙∙∙S

∆G

dist. (Å) 
S*∙∙∙S

∆G

dist. (Å) 
S*∙∙∙S

(Cys 145) (Cys 111) (Cys 192)

Ceftaroline fosamil Z1 -7.3 4.1 -5.9 3.6 -5.0 4.8

Ceftaroline fosamil E1 -6.6 4.0 -6.3 3.8 -5.2 4.8
Ceftaroline fosamil metabolite Z -7.5 4.7 -6.3 3.7 -5.5 4.4

Ceftaroline fosamil metabolite E -5.8 3.8 -5.7 4.0 -5.1 4.7

Ceftobiprole Z -6.5 4.8 -5.4 3.9 -5.2 4.4

Ceftobiprole E -7.6 5.2 -5.5 5.6 -4.7 5.4
Ceftobiprole  medocaril Z1 -7.4 5.0 -5.9 5.4 -5.9 4.4

Ceftobiprole medocarilE1 -8.0 4.7 -6.0 3.4 -5.4 4.1

Ceftobiprole metabolite Z -7.4 4.5 -5.4 4.0 -5.2 4.7

Ceftobiprole metabolite E -7.1 5.2 -5.7 3.9 -4.4 4.7

S*···S indicates the distance interaction in (Å) of the electrophile center of the ligand (i.e., the sulfur atom of the 1,2,4 thiadiazole heterocycle 
with the sulfur atom of the cysteinyl residues of MPro. Distance (in Å) of the thiol from aCys145, bCys111, and cCys192 to the ligand of the 
S from the 1,2,4-thiadiazole heterocycle. The green, yellow, and red colors indicate a favorable, intermediate, and less favorable interaction, 
respectively

Table 2   Predicted binding free energies (∆G, kcal·mol−1) between Mpro and PLpro and PLpro Zn binding site, with 1,2,4-thiadiazole containing 
drugs with the largest negative ∆G binding energy

aMpro bPLpro cPLpro Zn

Molecule ∆G

dist. (Å) 
S*--S

(Cys 145) ∆G

dist. (Å)
S*--S

(Cys 111) ∆G

dist. (Å) 
S*--S

(Cys 192)

Ceftaroline fosamil Z1 -7.5 - -6.4 4.5 -5.4 -

Ceftaroline fosamil E1 -7.0 - -6.3 3.8 -5.8 4.8

Ceftaroline fosamil metabolite Z -7.6 - -6.6 5.1 -5.5 4.4

Ceftaroline fosamil metabolite E -6.9 4.0 -6.3 - -5.5 4.7

Ceftobiprole Z -7.4 - -6.3 - -5.3 -

Ceftobiprole E -7.6 5.2 -6.1 - -5.7 -

Ceftobiprole medocaril Z1 -8.2 - -6.1 - -5.9 -

Ceftobiprole medocaril E1 -8.4 - -6.3 - -5.7 -

Ceftobiprole metabolite Z -7.5 - -5.4 4.0 -5.4 -

Ceftobiprole metabolite E -7.6 - -6.9 - -4.8 -

S*···S indicates the distance interaction (in Å) of the electrophile center of the ligand (i.e., the sulfur atom of the 1,2,4 thiadiazole heterocycle 
with the sulfur atom of the cysteinyl residues of Mpro. Distance (in Å) of the thiol from aCys145, bCys111, and cCys192 to the ligand of the 
S from the 1,2,4-thiadiazole heterocycle. The green, yellow, and red colors indicate a favorable, intermediate, and less favorable interaction, 
respectively
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Fig. 5   PLpro docking with 
1,2,4-thiadiazole containing 
drugs and their metabolites. A 
Ceftaroline fosamil isomer Z1. 
B Ceftaroline fosamil isomer 
E1. C Ceftaroline fosamil 
dephosphorylated metabolite 
isomer Z. D Ceftaroline fosamil 
dephosphorylated metabolite 
isomer E. E Ceftobiprole isomer 
Z. F Ceftobiprole isomer E. G 
Ceftobiprole metabolite isomer 
Z. H Ceftobiprole metabo-
lite isomer E. I Ceftobiprole 
medocaril isomer Z1. J Cefto-
biprolemedocaril isomer E1. 
Distances are shown in Å
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medocaril, a shorter interaction was observed in the isomer 
E1 (3.4 Å) than in isomer Z1 (5.4 Å) (Fig. 5I, J).

In view of the proposed mechanism for the inhibition of 
the proteases depicted in Fig. 1, it is important to note that 
the H-bonds between His272 and Cys111 are critical for 
stabilizing the PLpro-ligand complexes. Indeed, the docking 
data here presented confirm the importance of the interac-
tion between His 272 and Cys111 (Fig. 5). Similar patterns 
of H bond interactions were observed for the energetically 
most stable conformers, with distances ranging from 1.8 to 
3.3 Å between amino acids surrounding the active site (for 
instance, Ans109, His272, and Cys111). The binding poses 
for these interactions are shown in SI Figs. S7 and S8.

1,2,4‑thiadiazole containing drug and metabolite 
interaction with PLpro Zn binding site

While the active sites of Mpro and PLpro have only one Cys as 
a potential target for electrophilic inhibitors, the Zn binding 
site in the PLpro is composed of a Zn ion coordinated with 
four Cys residues (Cys189, Cys192, Cys224, and Cys226). 
This type of Cys-rich motif structure is found in many metal-
loproteins, for instance, in zinc finger–containing proteins 
[59, 60]. Theoretically, the inhibition of the PLpro by the 
oxidation of the cysteinyl residues located at the Zn binding 
site by 1,2,4 thiadiazole containing molecules has not been 
elucidated yet.

The PLpro inhibition can occur via the ejection of zinc ion 
from the PLpro Zn binding site of SARS-CoV-2. Accordingly, 
the recent study of Sargsyan et al. has indicated that ebselen 
and disulfiram bind covalently to Cys residues of the PLpro 
Zn binding site [61]. In the present study, the binding poses 
obtained from the docking simulations focusing on the Zn site 
demonstrated that the sulfur atom of the 1,2,4-thiadiazole-
containing drugs and metabolites interacted preferentially 
with the thiol group of Cys192 (Fig. 6A–J).

The ceftaroline fosamil isomers (Z,E)1 exhibited similar 
binding poses and distances between the sulfur atoms from 
the 1,2,4 thiadiazole moiety and the Cys192 (4.8 Å), while 
the dephosphorylated metabolite isomer binding pose and 
S···S distances were a little different, ranging from 4.7 (E) 
to 4.4 Å (Z) (Fig. 6A–D).

The ceftobiprole isomers exhibited distinct binding poses 
and S···S distances. The interaction with Cys192 was shorter 
for the Z1 (4.3 Å) than for the E1 isomer (5.3 Å) (Fig. 6E, 
F). In the case of ceftobiprole metabolites, identical dis-
tances were obtained with the Z and E isomers (4.7 Å) 
(Fig. 6G, H). Regarding the ceftobiprole medocaril isomers, 
the sterical binding poses was different and the S···S interac-
tion distances in the Z (4.4 Å) and E isomer (4.1 Å) were 
slightly different (Fig. 6I–J).

It is important to note that the H-bonds with Thr225 and 
Cys192 help to stabilize the PLpro Zn-ligand complexes. 

Consequently, the interactions described here for the antibi-
otics and metabolites containing the 1,2,4-dithiazolee moi-
ety may be involved in the potential mechanism of inhibition 
of PLpro via the ejection of the Zn ion from the Zn binding 
site. Accordingly, the nucleophilic attack of the thiolate 
from Cys192 at electrophile sites found in “zinc ejectors” 
molecules can explain their inhibitory effects in the SARS-
CoV-2 PLpro as previously demonstrated by Sargsyan et al. 
[61]. Considering the conformers with the largest negative 
ΔG, ceftaroline fosamil E1, dephosphorylated ceftaroline 
fosamil metabolite Z, ceftobiprole Z, and ceftobiprole medo-
caril (Z,E)1 demonstrate optimal S···S interactions to form a 
covalent bond (Table 2 and Figs. S9 and S10).

The best conformers with better interactions (in terms 
of ΔG, value) with the PLpro Zn binding site exhibited 
(Cys192) S···S (1,2,4thiadiazole) distances ranging between 
4.8 and 5.1 Å (Table 2).

Reaction between a thiolate and 1,2,4‑thiadiazoles

According to the docking studies, the 1,2,4-thiadiazole 
ring might be the reactive center of the antibiotic drugs. 
Thus, we hypothesized that this moiety might react with the 
catalytic or structural Cys residues forming a stable adduct 
via a disulfide bond (S–S). We studied the reactivity and 
computed the reaction energies modeling the process with 
1,2,4-thiadiazole ring (tdz) and a methylthiolate (MeS−) (low 
molecular weight thiols are often used as a simple model of 
Cys residues or other biological thiols like GSH in DFT 
calculations [62–64]. The 3,5-dimethyl-1,2,4-thiadiazole 
(tdzMe2) and 3-methyl-1,2,4-thiadiazol-5-amine (tdzMeN) 
were used as models of the antibiotic drugs. Furthermore, 
the reactivities of the corresponding protonated molecules 
([tdzHMe2]+and [tdzHMeN]+) were also investigated.

To better understand the reactivity, Hirshfeld charges 
were computed and the softness analysis was done (Table 
3). The results suggest that the reactions of MeS− with pro-
tonated thiadiazoles ([tdzHMe]+ and [tdzHMeN]+) are more 
favorable than those with the neutral forms. Also according 
to the hard and soft, acids and bases (HSAB) theory, soft 
bases (MeS−) prefer to react with soft acids ([tdzHMe]+ and 
[tdzHMeN]+) [48]. The S partial charge analysis from the 
[tdzHMe2]+ indicated that this atom is more electrophilic in 
the protonated than in neutral form (Table 3).

As shown in Table 4, the reaction between the protonated 
[tdzHMe2]+ and MeS− produced an adduct with a disulfide 
bond and in an open ring conformation (entries A and B). In 
the gas phase, the reaction energy was more negative than in 
water because the charged reactants are much less stabilized 
in the gas phase than in water [65, 66].We studied this reac-
tion also using the cysteinate as a nucleophile (C and D), and 
the energy values in gas and condensed phase also presented 
this large difference.
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Fig. 6   PLpro Zn site docking 
with 1,2,4-thiadiazole contain-
ing drugs and their metabolites. 
A Ceftaroline fosamil isomer 
Z1. B Ceftaroline fosamil iso-
mer E1. C Ceftaroline fosamil 
dephosphorylated metabolite 
isomer Z. D Ceftaroline fosamil 
dephosphorylated metabolite 
isomer E. E Ceftobiprole isomer 
Z. F Ceftobiprole isomer E. G 
Ceftobiprole metabolite isomer 
Z. H Ceftobiprole metabolite 
isomer E. I Ceftobiprole medo-
caril isomer Z1. J Ceftobiprole 
medocaril isomer E1. Distances 
are shown in Å
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In the gas phase, using the neutral thiadiazole (tdzMe2) 
as substrate, we obtained a three-center intermediate 
(TCI) [tdzMe-SMe]− instead of the open ring product 
[tdzMe2-SMe]− which was recovered in water (E and F). 
The TCI-[tdzMe2-SMe]− presented negative reaction energy 
while the [tdzMe2-SMe]− formation in water shows positive 
reaction energies, suggesting an endergonic process.

Finally, we used the [tdzHMeN]+ model, in which the 
methyl group at position 5 of the 1,2,4-thiadiazole was 

replaced by an amine group (in similar way to that found 
in the antibiotic drugs), to compute the reaction energies 
(G and H). As previously observed, there was a signifi-
cant difference between the energies in gas and condensed 
phase. Anyway, they are both energetically favorable. In 
contrast, the reaction with the neutral tdzMeN molecule 
was found to be an endergonic process (I), suggesting that 
the protonation of the 1,2,4-thiadiazole ring is essential 
for the reaction.

In this sense, theoretical data from the [tdzHMe2]+ and 
[tdzHMeN]+ are in nice agreement with the hypothesis 
reported in literature, where it is described that the thi-
olate form of cysteine-containing enzymes can attack the 
S atom from protonated thiadiazoles forming a disulfide 
bond with concomitant ring opening and to the enzyme 
inhibition [21, 22].

Molecular dynamics simulation of PLpro 
with ceftaroline fosamil and metabolite isomer Z

Molecular dynamics (MD) simulations were performed on 
two selected systems, i.e., PLpro with ceftaroline fosamil 
and dephosphorylated metabolite isomer Z, respectively. 
The results indicated two different scenarios. The calcula-
tions on the PLpro complex with ceftaroline fosamil iso-
mer Z (PLpro-ceftaroline fosamil) clearly indicated that 
this structure is possibly not an efficient inhibitor of the 

Table 3   Hirshfeld charges, frontier orbital energies (eV), and softness 
(σ) of the reactants

Softness (eV−1): σ = 1/η; hardness (eV): η = [E(LUMO) − E(HOMO)]/2. 
Level of theory: (COSMO)-ZORA-OLYP/TZ2P

Phase Reactants S charge HOMO LUMO Softness

Gas MeS−  − 0.737 1.741 4.062 0.861
tdzMe2 0.150  − 6.293  − 1.804 0.445
[tdzHMe2]+ 0.322  − 11.976  − 7.652 0.462
tdzMeN 0.114  − 5.534  − 1.298 0.472
[tdzHMeN]+ 0.271  − 10.922  − 6.923 0.500

Water MeS−  − 0.847  − 4.776  − 0.375 0.454
tdzMe2 0.184  − 6.458  − 1.965 0.445
[tdzHMe2]+ 0.381  − 7.495  − 3.090 0.454
tdzMeN 0.130  − 5.662  − 1.421 0.471
[tdzHMeN]+ 0.307  − 6.461  − 2.462 0.500

Table 4   Reaction energies. 
Level of theory, ZORA-OLYP/
TZ2P

Reaction Phase ∆E(kcal·mol-1 )

A gas -130.44

B water -8.87

C gas -109.95

D water -3.67

E gas -12.31

F water 43.79

G gas -131.90

H water -9.21

I water 42.59
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PLpro. After 200 ns of MD, the interactions between cef-
taroline fosamil and the enzyme were not strong enough 
to maintain the antibiotic inside of PLpro active site. In 
fact, already after 50 ns, the ligand was not bonded any-
more to the protein structure, and it is moving freely in 
the simulation box. This was reflected from the very high 
RMSF attributed to the ceftaroline fosamil molecule, 
which was calculated to be 36.1 Å (Fig. 7A) (ceftaro-
line corresponds to the last residue in the RMSF graph). 
During the dynamics, there were two brief windows in 
which the ligand showed interaction with two different 
regions of the protein. From approximately 60 to 90 ns, it 
is found in proximity of Gln212 and Gln218 and from 190 
ns until the end of the simulation around Leu122   as it 
can be seen from the RMSD graph (Fig. 7A) that showed 
lower fluctuations in these intervals. Longer simulations 
and further analyses will be required to assess if any of 
these sites could be relevant to the inhibitory   action of 
ceftarolinefosamil (isomer Z).

Conversely, the MD simulations on the PLpro ceftaroline 
fosamil dephosphorylated metabolite isomer Z show that this 
ligand tends to remain the same region during the entire 
simulation (see, for instance, the structures extracted at 100 
and 200 ns in Fig. 7B). This reflected in the RMSD fluctua-
tions which are noticeably lower than those of ceftaroline 
fosamil in PLpro. The RMSF value for ceftaroline fosamil 
dephosphorylated metabolite (3.6 Å) was found to be com-
parable to other residues in the protein. Interestingly, during 
the dynamics there are two sudden changes in conforma-
tion of ceftarolinefosamil metabolite at approximately 25 
and 175 ns, which reflected in the abrupt changes in RMSD 
values. The structure, which is initially found to resemble 
that of a linear alkane, moved toward a more spherical geom-
etry around 25 ns as the outermost parts bent inward toward 
the center of the molecule. This configuration is seen for 
approximately 150 ns after which another distention toward 
a more linear structure was seen. These three conformations 
(linear/spherical/linear) can be seen in Fig. 7B at 0, 100 and 
200 ns, respectively. Nevertheless, during whole simulation 
dephosphorylated ceftaroline fosamil metabolite maintained 
its interaction with the initial binding site in the PL.pro. The 
effective interaction during the entire simulation may indi-
cate that the dephosphorylated ceftaroline fosamil metabo-
lite is a potential inhibitor of the enzyme.

Conclusions

In this work, we have studied the mechanism of inhibition 
of 1,2,4-thiadiazole containing drugs (ceftaroline fosamil, 
ceftobiprole, and ceftobiprole medocaril, and their metabo-
lites and isomers), combining molecular dynamics, dock-
ing, and quantum chemistry calculations. Our results sug-
gest that the PLpro enzyme may be a better target for these 
class of drugs than Mpro, indicating that these compounds 
and metabolites should be tested in in vitro/vivo assays to 
confirm their pharmacological action. We verified that the 
E isomers of the studied drugs and metabolites have more 
favorable S···S interactions with the protease Mpro. However, 
in the PLpro protease, the Z isomer compounds showed the 
most favorable interactions, with the exception of the drug 
ceftobiprole medocaril. These results help the understanding 
of the interaction mode and the design of new compounds.

These conclusions are based on the interactions, bind-
ing poses, and S···S distances (from 1,2,4-thiadiazole to 
Cys111). Specifically, the sulfur atom in the thiadiazole 
ring from the ceftaroline fosamil isomers and its Z active 
metabolite showed an adequate interaction with the thiol 
group of Cys111 from PLpro active site, as well the isomer 
metabolites of ceftobiprole and the isomer E1 of the experi-
mental drug ceftobiprole medocaril. This suggests that the 
inhibition might be covalent. In fact, by DFT calculations, 
we demonstrated that the adduct formation can be ergeti-
cally favorable. In this way, the use of these cephalosporin 
drugs and their metabolites might be an option in the search 
for antivirals against COVID-19. In addition, the approved 
drugs ceftaroline fosamil and ceftobiprole are widely used in 
cases of pneumonia and respiratory tract infections [30–32], 
and perhaps they may be also effective against coronaviruses 
(in addition to pulmonar bacteria).

We also demonstrated that cephalosporin drugs and their 
metabolites, containing the 1,2,4-thiadiazole moiety, have a 
potential to be explored experimentally against COVID-19 
and may bind to the SARS-CoV-2 Mpro and PLpro. According 
to MD and docking results, the dephosphorylated ceftaroline 
fosamil metabolites are able to interact with the Cys residues 
from and PLpro; those molecules might be a promising strat-
egy to find new antivirals.

Overall, these data suggest that antibiotic drugs, as well 
as their derivatives containing the 1,2,4-thiadiazole ring, 
could be an option to repurposing drugs and as a perspective 
of this work, should be tested in in vitro and in vivo to con-
firm the inhibitory and pharmacological potential against the 
coronavirus. Thus, in addition to their antibacterial effects, 
ceftaroline fosamil, ceftobiprole, and ceftobiprole medo-
caril may be also effective inhibitors of the thiol-containing 
enzymes of the SARS-CoV-2.

Fig. 7   A MD structures of PLpro-ceftaroline fosamil at 0, 100, and 
200  ns (top row), RMSD along the dynamics (bottom left), and 
RMSF by residue (bottom right); B MD structures of PL.pro- dephos-
phorylated ceftaroline fosamil metabolite at 0, 100, and 200 ns (top 
row), RMSD along the dynamics (bottom left), and RMSF by residue 
(bottom right)

◂
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