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As a deubiquitination (DUB) enzyme, ubiquitin-specific protease 13 (USP13) is involved in a
myriad of cellular processes, such as mitochondrial energy metabolism, autophagy, DNA
damage response, and endoplasmic reticulum-associated degradation (ERAD), by
regulating the deubiquitination of diverse key substrate proteins. Thus, dysregulation of
USP13 can give rise to the occurrence and development of plenty of diseases, in particular
malignant tumors. Given its implications in the stabilization of disease-related proteins and
oncology targets, considerable efforts have been committed to the discovery of inhibitors
targeting USP13. Here, we summarize an overview of the recent advances of the structure,
function of USP13, and its relations to diseases, as well as discovery and development of
inhibitors, aiming to provide the theoretical basis for investigation of the molecular
mechanism of USP13 action and further development of more potent druggable inhibitors.
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INTRODUCTION

Ubiquitination, as a crucial post-translational modification in eukaryotic cells, is involved in various
cellular activities, including DNA damage repair (DDR), cell signal transduction, cell cycle
regulation, and innate immune signaling pathways (Harrigan et al., 2018; Ciechanover, 2003;
Ravid and Hochstrasser, 2008; Luan et al., 2016). In the process of ubiquitination, the ubiquitin (Ub)
molecule is covalently attached to substrate proteins (or ubiquitin itself) through isopeptide bonds or
peptide bonds by the E1-E2-E3 ligase cascade (or LUBAC complex) (Ciechanover, 2003; Dittmar and
Winklhofer, 2019). Like other post-translational modifications, ubiquitination is reversible, and its
reverse process, deubiquitination, is catalyzed by DUBs(Dandrea and Pellman, 1998) (Figure 1).
DUBs can remove ubiquitins from substrate proteins (or poly-ubiquitin chains), edit ubiquitin
chains and process ubiquitin precursors (Komander et al., 2009). These two processes coordinate to
accurately maintain the proteostasis and ubiquitin balance in quantity.

To date, seven structurally distinct DUB families have been described, including ubiquitin-specific
proteases (USPs), ovarian tumor proteases (OTUs), ubiquitin C-terminal hydrolase (UCHs),
Machado–Josephin domain-containing proteases (MJDs), motifs interacting with the ubiquitin-
containing novel DUB family (MINDYs), JAB1, MPN, MOV34 family (JAMMs), and zinc finger
containing Ub peptidase 1 (ZUP1) (Kwasna et al., 2018; Cho et al., 2020; Wang and Wang, 2021).
JAMMs are zinc metallopeptidases, while the other six DUB families are cysteine peptidases. The
USPs family has the largest number of members with diverse functions, providing the potential for
developing drugs with more specific effects (Sippl et al., 2011; Yuan et al., 2018; Cruz et al., 2021).

USP13, belonging to the USPs family, is known to be extensively engaged in diverse cellular
processes, such as mitochondrial energy metabolism, autophagy, DNA damage response, ERAD and
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other processes, by deubiquitinating substrates α-ketoglutarate
dehydrogenase (OGDH) (Han et al., 2016), ATP citrate lyase
(ACLY) (Han et al., 2016), vacuolar protein sorting 34 (VPS34)
(Xie et al., 2020), topoisomerase IIβ binding protein 1 (TopBP1)
(Kim et al., 2021), receptor-associated protein 80 (RAP80) (Li
et al., 2017), and ubiquitin like 4A (UBL4A) (Liu et al., 2014).
Ample findings prove that USP13may also promote the initiation
or progression of various tumors. For example, the stabilization of
microphthalmia-associated transcription factor (MITF) by
USP13 was found to be associated with proliferation of
melanoma cells (Zhao et al., 2011); USP13 is abnormally
overexpressed in ovarian cancer (OVCA) and drives OVCA
metabolism to accelerate cell proliferation through
deubiquitinating ACLY and OGDH (Han et al., 2016); in
glioblastoma, USP13 promotes the proliferation of glioma
stem cells (GSCs) by antagonizing E3 ubiquitin ligase F-box
and leucine-rich repeat protein 14 (FBXL14), which inhibits
the ubiquitination and degradation of pro-oncogene c-Myc
(Fang et al., 2017); in non-small-cell lung cancer (NSCLC),
downregulation of USP13 impedes the growth of NSCLC
model cells A549 and H226 via suppressing AKT/MAPK
signaling pathway (Wu et al., 2019); in colorectal tumor cells,
USP13 has been identified as a microRNA-135b24 target that
promotes colorectal tumor cell proliferation and glycolysis
(Zhang et al., 2013).

Incompatible with the above findings, the recombinant
expression of USP13 exhibits only weak deubiquitination
enzyme activity in vitro (Liu et al., 2011; Zhang et al., 2011).
To decipher its activation mechanism for interpretating the
paradoxical phenomena, determining USP13 structure has
attracted considerable interest over the past few years. Albeit
the structures of full-length USP13, as well as its catalytic
structural domain have not been obtained, structures of
several functional domains are determined (Liu et al., 2011;

Zhang et al., 2011; Liu et al., 2014; Han et al., 2016). Given
the implications of USP13 in tumorigenesis, seeking compounds
that modulate the USP13 emerges an active area of research and
achieves impressive progress, with multiple selective compounds
being identified successively by both research institutions and
pharmaceutical companies (Liu et al., 2011; Liu et al., 2021a).

In this review, we discuss recent advances in our
understanding of the physiological roles, structure, and
USP13-related diseases. In addition, the appealing stories
regarding a range of representative small-molecule inhibitors
are listed to help track their evolution.

Structure and Activation Mechanism of
USP13
The usp13 gene is located on human chromosome 3q26.2–q26.3,
which encodes USP13, also known as isopeptidase T-3 (Zhang
et al., 2011; Timms et al., 1998). USP13 was first identified by
Timms et al. and consisted of 863 amino acids (Timms et al.,
1998). USP13 shares approximately 80% sequence similarity with
USP5(Zhang et al., 2011). They have the same domain
architecture, including the N-terminal domain, Zinc finger
(ZnF) domain (amino acids 209–281), and USP catalytic
domain (amino acids 336–861), between the C-box and H-box
(including a two-UBA insertion) (Zhang et al., 2011; Ning et al.,
2020) (Figures 2A,D). The N-terminal residues of USP13 might
be essential for physical interaction with other proteins, which
could be exemplified by interaction of the N-terminus of USP13
with myeloid cell leukemia sequence 1 (MCL1), a core member of
the anti-apoptotic B cell lymphoma 2 (BCL-2) family of proteins
(Zhang et al., 2018). As the ZnF domain is generally considered to
be a ubiquitin binding site, USP5-ZnF recognizes the C-terminal
glycine motif of free Ub chains and activates deubiquitination,
while USP13-ZnF domain is unable to bind Ub, although the

FIGURE 1 | Ubiquitin proteasome pathway and deubiquitination.
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sequences of the ZnF domains from these two USPs are
homologous (Zhang et al., 2011; Reyes-Turcu et al., 2006)
(Figure 2B, Supplementary Figure S1). The USP13 catalytic
domain contains a conserved C-box and H-box including a two-
UBA insertion (Timms et al., 1998; Zhang et al., 2011). Although
the experimental results showed that USP13-UBA could bind
ubiquitin, USP13 still exhibited only weak deubiquitination
enzyme activity, which is incompatible with the findings that
USP13 can deubiquitinate various important substrates
implicated in disease and tumor development (Liu et al., 2011;
Zhang et al., 2011). It is assumed that USP13 is constitutively in a
state of self-inhibition, whereas it can be activated when it is

modified or interacts with other proteins. However, the structure
of USP13 catalytic domain has not been available until now, at
large impeding interpretation of its active mechanism at the
atomic level.

Fortunately, the USP13-ZnF domain and the tandem UBA
domain have been obtained using NMR (Zhang et al., 2011). In
2011, Hu et al. reported the solution structure of USP13-ZnF
(PDB 2L80). As shown in Figure 2B, USP13-ZnF contains only
one zinc nucleus that coordinates with the peptide chain in C3H
mode. The USP13-ZnF domain consists of five anti-parallel β
sheets and two α helices located on both sides with a flexible
loop connecting them (named Loop 2, L2). In contrast with

FIGURE 2 | Structure of USP13 and comparison with USP5-ZnF. (A) Domain structure of USP13 and USP5. (B) Structure of USP13-ZnF (PDB 2L80), in which the
α helix is blue, the β sheet is yellow, the loop is green, and the zinc ion is gray. The close-up view shows that the zinc nucleus coordinates with the peptide chain in C3H
mode. (C) Structure of USP13-UBA (PDB 2LBC), in which the α helix is blue and the loop is green. (D) Structure of ubiquitin-USP5 complex (3IHP). nUBP is pink, ZnF is
orange, the USP catalytic domain is blue and UBA12 is yellow. Ubiquitin is purple. (E) Comparison of the structure between USP13-ZnF and USP5-ZnF (PDB
2G43), USP13-ZnF and USP5-ZnF are green and orange, respectively. (F) Electrostatic surface of the Ubiquitin-USP5-ZnF complex (PDB 2G45). Ubiquitin glycine motif
(71LRLRGG, purple) is inserted into the ubiquitin binding pocket of USP5-ZNF, and it can be seen from the close-up view that ubiquitin G75 and G76 form hydrogen
bonds interact with W209, R221, and Y261 on ZnF. (H) Electrostatic surface of the USP13-ZnF. (G) The residues of the combined Ub-G75 and Ub-G76 on USP5
(orange) are displayed in sticks, and the corresponding residues in USP13 (green) are displayed in sticks.
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USP13-ZnF domain, USP5-ZnF binds Ub with a comparatively
high affinity, echoing the distinct structures from two ZnF
domains (Reyes-Turcu et al., 2006). Structural comparison
revealed no significant difference (RMSD = 1.47) between
USP13-ZnF and USP5-ZnF, but there were some slight
differences between the two USPs (Figure 2E). Firstly,
USP13-ZnF and USP5-ZnF bind Ub with distinct pockets:
the pocket USP13-ZnF appears shallower and harbors few
positive charges than that of USP5-ZnF, which is not
conducive to the binding of Ub glycine (Figures 2F,G); the
L2 regions in the two ZnF domains are moderately different, and
Arg-Arg-Try motif (RRY motif) in L2 regions are likely
associated with ubiquitin binding (Figure 2E). In addition,
W209, R221 and Y261 on USP5 form hydrogen bonds with
Ub-75G and Ub-76G, which are key residues for Ub binding
(Figure 2F). However, it is speculated from the structural
alignment (Figure 2H, Supplementary Figure S1) that
W221, K233, and F273 corresponding to USP13 are not
completely conservative, especially since K233 is offset from
the pocket (K233 at L2 region) (Zhang et al., 2011). In
conclusion, USP13-ZnF failed to bind Ub for two reasons:
one is distribution of the binding pocket charge; and the
other is change of conserved ubiquitin-binding residues.

Both USP13 and USP5 contain tandemUBA domains inserted
between the C-box and H-box, and UBA contains the very
conserved Ub binding motif Met-Gly-Phe (MGF) (Timms
et al., 1998; Raasi et al., 2005). In 2011, Hu et al. reported the
solution structure of USP13-UBA (PDB 2LBC). Structural
analysis demonstrated that UBA consists of three α-helices,
and there was no direct interaction between the two UBAs,
which were linked by a long loop (Figure 2C). Albeit no
ubiquitin-bound UBA structure is resolved, sequence
alignment revealed that USP13-UBA contains an MGF motif
that presumably can bind Ub (Supplementary Figure S1),
consistent with results from pull-down and ITC experiments
(Zhang et al., 2011). In addition, NMR titration data reflected that
M664, F666, M739, and F741 might be the key residues
responsible for the binding of USP13-UBA to Ub (Zhang
et al., 2011). Except for binding Ub, USP13-UBA2 has also
been reported to be required for binding other proteins, such
as the E3 ubiquitin ligase glycoprotein 78 (gp78) (Liu et al., 2014).

In spite of the high similarity between USP13 and USP5 both
in sequence and domains structures, USP13 recombinant protein
exhibits weak deubiquitination activity in vitro, dramatically
different from its homolog USP5 with high activity both in
vivo and in vitro. In the Ubiquitin-7-amido-4-methylcoumarin
(Ub-AMC) hydrolysis experiment, USP5 showed high
deubiquitination activity at 1.5 nM, while USP13 only has
displayed extremely weak activity until protein concentration
increased to 500 nM(Zhang et al., 2011). In the ubiquitin chain
hydrolysis experiment, USP5 can hydrolyze into anchored
ubiquitin chains one by one from the near end until all
ubiquitin chains are cleaved into single ubiquitin chains, and
all polyubiquitin chains, Lys-48 and Lys-63 linear ubiquitin
chains, can be recognized and cleaved by USP5 (Amerik Ayu
et al., 1997; Reyes-Turcu et al., 2006; Reyes-Turcu et al., 2008).
However, the experiment proved that USP13 has no hydrolytic

activity to Lys-48 and Lys-63 chain diubiquitin but can slowly
hydrolyze Lys-63 chain tetraubiquitin to triubiquitin and
monoubiquitin (Zhang et al., 2011). Overall, the USP13-ZnF
domain cannot bind to Ub to activate USP13, whereas USP13-
UBA can bind, which may partially explain the reason why
USP13 displays only weak basal deubiquitination enzyme
activity: the binding sites of USP13 to Ub are less than that
other USP members, thus providing weaker binding affinity and
consequent cleavage activity towards ubiquitin chains; There
possibly exists constitutive self-inhibition for full-length USP13
supported by the interaction of UBA with ZnF domain, which is
hypothesized to be released by recruitment of other proteins or
modification, such as phosphorylation. However, no relevant
research progress is reported to verify this hypothesis at present.

CELLULAR FUNCTION OF USP13

USP13 in Energy Metabolism
The tricarboxylic acid cycle is the core pathway of energy
metabolism and the hub of carbohydrate, lipid and amino acid
metabolism, providing precursor molecules for the synthesis of
various lipids, non-essential amino acids and nucleotides
(Akram, 2014; Han et al., 2016; Salway, 2018). Studies have
demonstrated that USP13 can regulate the cellular levels of
two key proteins involved in mitochondrial energy metabolism
(Han et al., 2016). In normal cells, glucose is converted to acetyl-
CoA, entering into the tricarboxylic acid cycle and further
generating citric acid (Gameiro and Bell, 2011; Gameiro et al.,
2013). Part of citric acid is transported to the cytoplasm, where it
is converted to acetyl-CoA by ACLY and eventually supplied for
lipid synthesis (Hatzivassiliou et al., 2005). However, in most
cases, glutamate intake in tumor cells would markedly ascend in
order to provide more intermediates of the tricarboxylic acid
cycle, maintaining lipid synthesis (Han et al., 2016). Glutamic
acid is converted to α-ketoglutarate by glutaminase and glutamate
dehydrogenase, entering into the tricarboxylic acid cycle.
Subsequently, α-ketoglutarate is oxidized to succinic acid by
OGDH to ensure smooth operation of the tricarboxylic acid
cycle (Sun and Denko, 2014; Han et al., 2016) (Figure 3A).

Phosphatidylinositol-3-kinase (PI3K)/AKT is a well-
recognized signaling pathway related to energy metabolism,
and USP13 knockdown is demonstrated to enhance the
sensitivity of OVCA cells to AKT inhibitors, implying the role
of USP13 in PI3K/AKT-dependent energy metabolism
(Hanrahan et al., 2012; Han et al., 2016; Xie et al., 2019).
Consistently, ACLY and OGDH were identified as USP13
interacting proteins utilizing mass spectrometry (Han et al.,
2016). Meanwhile, protein-binding assay and deubiquitylation
experiments demonstrated that USP13 could interact with
OGDH or ACLY through N-terminal domain or C-terminal
domain, respectively, to remove K48-linked ubiquitin chains
from ACLY and OGDH, stabilizing their intracellular protein
levels. When WT-USP13 but not CA-USP13 (C345A-USP13
mutation, inactive mutation) was overexpressed, ACLY and
OGDH protein concentrations in OVCA cells were
upregulated, but mRNA levels were not significantly altered.
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Consistently, tissue microarray detected that USP13 knockdown
could reduce the ACLY and OGDH protein levels in cells,
reducing the synthesis of fatty acids from the source. As
expected, USP13 knockout evidently inhibited tumor cell
growth either in OVCA cells or xenograft tumor models in
nonobese diabetic/severe combined immunodeficiency (NOD/
SCID) mice (Han et al., 2016). In conclusion, inhibition of the
deubiquitination activity of USP13 can impair the energy
metabolism of tumor cells, hence providing novel insights into

interventions of tumor cells targeting on energy metabolism
pathway.

USP13 in Autophagy
Autophagy is a process where cells self-degrade and recycles their
intracellular organelles under stress or starvation. Disruption of
the autophagy system may trigger the occurrence of tumors and
autoimmune diseases (Levine and Kroemer, 2008; Glick et al.,
2010; Levy et al., 2017). Data demonstrated that VPS34 PI3K

FIGURE 3 |Cellular Function of USP13. (A) In energymetabolism, USP13 promotes cell energymetabolism by removing OGDH and ACLY degradation signals. (B)
In autophagy, USP13 is recruited by auto-ubiquitinated NEDD4-1 to remove VPS34 subunit degradation signal. On the other hand, USP13 deubiquitinated Beclin-1 and
removed the degradation signal of Beclin-1. Consequently, the VPS34 complex initiates autophagosome formation. K27-linked Ub chains are green, K48-linked Ub
chains are pink. (C) In DNA damage reaction, USP13 antagonizes E3 ubiquitin ligase hHYD to remove the TopBP1 degradation signal, then TopBP1 activates the
ATR signaling pathway and ultimately activates the G1-S phase checkpoint, making cells remain in the G1 phase. In addition, phosphorylated USP13 by ATM is recruited
to DNA damage sites to cleave the other Ub chains to facilitate K63-linked ubiquitin chains, which promotes RAP80 localization and ultimately activates the G2-M phase
checkpoint, making cells remain in the G2 phase. K48-linked Ub chains are pink. Phosphorylation is yellow. (D) In ERAD, hyper-ubiquitination of UBL4A can induce the
cleavage and inactivation of Bag6, causing ERAD inhibition and inhibiting the interaction of UBL4A with SGTA directly. USP13 interacts physically with gp78 and Bag6,
removing hyper-ubiquitination of UBL4A, controlling precisely the ERAD process. Unknown-linked Ub chains are orange.
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activity and its protein partners play essential roles in
harmonizing both autophagosome initiation and maturation
(Liu et al., 2011). VPS34 and Beclin1 are the core components
of the VPS34 complexes (Ohashi et al., 2019; Xie et al., 2020; Yang
et al., 2021).

In 2011, Yuan et al. found that USP13 could interact with the
C-terminal domain of Beclin-1 subunit in the VPS34 complex
and deubiquitinate Beclin-1, thereby enhancing the stability of
the VPS34 complex, which would contribute to the formation of
autophagosomes (Liu et al., 2011). Deubiquitination experiments
demonstrated that overexpression of USP13 could reduce the
ubiquitination level of Beclin-1, and this effect could be
counteracted by the USP13 inhibitor spautin-1. Interestingly,
Beclin-1 knockout also reduced USP13 protein abundance in
turn, indicating the two proteins are regulated reciprocally. In
addition, a recent study pronounced another implication of
USP13 in modulating autophagy through deubiquitinating
VPS34 subunit (Xie et al., 2020). When autophagy occurs,
neural precursor cells expressed developmentally
downregulated 4-1 (NEDD4-1) would form oligomer and
undergo K29-linked auto-ubiquitination at K1279. The auto-
ubiquitinated NEDD4-1 can then interact with USP13 and act
as a bridge connecting USP13 to VPS34, removing the K48-linked
ubiquitin chain on VPS34. Furthermore, it was demonstrated that
CA-USP13 is not able to cleave K48-linked ubiquitin chain,
suggesting that USP13 deubiquitination activity is necessary to
stabilize VPS34 (Figure 3B). Thus, modulating USP13 perhaps
offers an effective target in the management of diseases brought
by disfunction of the autophagy pathways. Consistently,
treatment with spautin-1, a selective inhibitor of USP13,
protected the brain from cerebral ischemia reperfusion injury
through blocking autophagy activation (Liu et al., 2021b). In
addition, upregulation of USP13 is proved to attenuate
intervertebral disc degeneration (IVDD) through promoting
autophagy (Dai et al., 2021).

USP13 in DNA Damage Response
DNA replication is an important process of genetic information
transmission, and imperfect replication processes lead to genomic
instability, which is a critical cause of tumors (Downs et al., 2007;
Anindya, 2020). Stimulus from external radiation, viral infection
and other stimuli can trigger DNA damage in cells, initiating the
DNA damage repair system to protect the DNA structure from
destruction (Li et al., 2017). It is indicated that USP13 can
exquisitely adjust several vital proteins involved in the DNA
damage response through deubiquitinating them, in degradation-
dependent and independent manner (Li et al., 2017; Kim et al.,
2021). Here, we take its regulation of RAP80 and TopBP1 for
instances to discuss (Figure 3C).

RAP80 exerts effects in myriad aspects of DNA damage repair,
including cell cycle checkpoint activation and chromatin
homologous recombination (Mailand et al., 2007; Silver and
Livingston, 2012). It is observed that USP13 deficiency
abrogates DNA damage-induced G2/M checkpoint and
renders cells sensible to irradiation and treatment of cisplatin
in a RAP80-dependent manner, underlying the implications of
USP13 in DNA damage repair through modulating RAP80 (Li

et al., 2017). The evidence establishes that the binding of RAP80
to K63-linked ubiquitin chain is essential for recruitment of itself
and other proteins to DNA damage sites (Kim et al., 2007;
Sobhian et al., 2007; Wang et al., 2007; Yan et al., 2007).
However, there are approximately 15 sites on RAP80 prone to
forming ubiquitin chains, and activation of multiple sites might
sterically block modification of RAP80 by K63-linked ubiquitin
chain. Following DNA damage, phosphorylated USP13 by ATM
is recruited to DNA damage sites to cleave the ubiquitin chains
from more than three sites of RAP80 (K75, K90, and K112),
releasing their restriction on the K63-linked ubiquitin chain,
improving the focus formation of the RAP80-BRCA1 complex,
and eventually facilitating DDR. Notably, this function of USP13
depends on deubiquitination activity, since CA-USP13 cannot
reduce RAP80 ubiquitination level (Li et al., 2017). Taken
together, USP13 has an impact on ubiquitination of RAP80,
instead of its protein degradation, to regulate its focus
formation and DDR-related function. In addition, depletion of
USP13 in OVCA cell line EFO-27 cells sensitized cells to the Poly
(ADP-ribose) polymerase (PARP) inhibitor, Olaparib, and
incubation with USP13 inhibitor Spautin-1 also conferred
EFO-27 cells sensitive to Olaparib. Furthermore, following
treatment of Spautin-1 in conjunction with Olaparib, effects
on OVCA models are remarkably enhanced, indicating that
USP13 may be applied to overcome the chemotherapy
resistance of cancer cells (Li et al., 2017).

Alternatively, USP13 can also modulate the ubiquitination
level of TopBP1, another key protein implicated in replication
stress-related DNA-damage responses (Kim et al., 2021).
Following DNA replication stress, TopBP1 is recruited near
single-stranded DNA to activate the ATR, thereby regulating
the G1-S phase checkpoint (Ma et al., 2020; Kim et al., 2021). In
normal cells, TopBP1 is ubiquitinated by the E3 ubiquitin ligase
human hyperplastic discs (hHYD) for degradation by the
proteasome (Honda et al., 2002). Under DNA damage, the
ubiquitination level of TopBP1 was pronouncedly reduced by
USP13, accompanied by accumulation of TopBP1 in cells.
Protein interaction experiments demonstrated that USP13
could co-immunoprecipitate with endogenous TopBP1, and
in vitro deubiquitination enzyme experiments showed that
WT-USP13 could deubiquitinate TopBP1, while CA-USP13
could not, highlighting the requirement for USP13
ubiquitination activity (Kim et al., 2021). The observations
that ATR phosphorylation was reduced in USP13-deficient
cells and can be restored by recombinant expression of
TopBP1 established that USP13 can regulate DNA replication
stress by controlling the degradation of the TopBP1. Importantly,
TopBP1 is proved to be correlated with multiple cancers and
exerts roles in chemotherapy resistance (Forma et al., 2012;
Chowdhury et al., 2014; Lv et al., 2016; Liu et al., 2021c; Laine
et al., 2021). Moreover, incubation with USP13 inhibitor spautin-
1 reduces survival of OVCA cell lines after replication stress
inducing agents, implying that the development of selective
USP13 inhibitors is feasible for treatment of these patients of
conventional cancer chemotherapy (Kim et al., 2021).

Conclusively, these data illustrate that USP13 can
deubiquitinate key proteins engaged in DNA damage response
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to induce their dysfunction or degradation, fine-tuning the DNA
damage repair system.

USP13 in ERAD
To control protein quality in cells, proteins are strictly monitored
in the endoplasmic reticulum. Those proteins that cannot be
correctly folded will be degraded by the ERAD pathway, where
the misfolded proteins should be moved by the process, named
retrotranslocation, from the endoplasmic reticulum across the
membrane to the cytosol for ubiquitination by ER-associated
ubiquitin conjugating systems (Hirsch et al., 2009; Ye and Rape,
2009). As a recognition signal, the polyubiquitin chains on the
substrates can enroll the p97/VCP ATPase and its cofactor Ufd1-
Npl4, releasing substrates from the ERmembrane into the cytosol
(Ye et al., 2001; Flierman et al., 2003). It is reported that USP13
and gp78 are two enzymes with opposing activity, but manipulate
in combination the ubiquitination of ER substrates, thus
coordinately promoting ERAD (Liu et al., 2014) (Figure 3D).
Gp78, as one of the well-described E3s in ERAD, plays a master
regulator of retrotranslocation, via mediating ubiquitination of
many ERAD substrates and interacting with ERAD machinery
proteins, such as BCL-2-associated athanogene 6 (Bag6)
multiprotein complex (Fang et al., 2001; Song et al., 2005; Jo
et al., 2011; Wang et al., 2011; Chen et al., 2012). On the luminal
side, a complex containing gp78 can recruit the misfolded
proteins recognized by molecular chaperone proteins for
ubiquitination and retrotranslocation (Brodsky and
McCracken, 1999; Wu and Rapoport, 2018). Bag6 with
chaperone “holdase” activity can improve the turnover of
retrotranslocated polypeptides through holding them in a
soluble state and facilitating the transfer of the substrate from
the gp78 containing complex to the proteasome for degradation,
owing to the weak interaction of Bag6 with the proteasome
(Minami et al., 2010; Wang et al., 2011). UBL4A is one of two
Bag6 partners, promotes association of Bag6 with a co-chaperone.
Hyper-ubiquitination of UBL4A can induce the cleavage and
inactivation of Bag6, causing ERAD inhibition (Chartron et al.,
2012; Xu et al., 2012). Therefore, ubiquitination chains on UBL4A
are essential for the ERAD pathway. It is reported that USP13 can
form a specific interaction with the Bag6 complex via the Bag6
UBL domain, and further remove ubiquitin conjugates from
UBL4, hyper-ubiquitination of UBL4 under USP13
knockdown conditions might inhibit the interaction of UBL4
with SGTA directly, and therefore disrupting this functional
connection between Bag6 and SGTA (Liu et al., 2014; Chu
et al., 2020). Data demonstrated that ubiquitin conjugates on
Ubl4A from either USP13 deficient cells or USP13 knockdown
cells accumulated more than that on UBL4 from control cells.
Similarly, ubiquitinated UBL4A can be significantly reduced after
treatment of with recombinant USP13, which can be blocked by
the specific DUB inhibitor ubiquitin aldehyde (Ub-Al) (Liu et al.,
2014). As a result, USP13 can inhibit the elimination of misfolded
proteins by the ERAD pathway. Notably, the impact of
deubiquitination enzyme USP13 on ERAD process needs the
assistance of gp78, and in turn improves the ubiquitination
specificity of gp78 substrates. USP13 interacts physically with
gp78 and Bag6, fine-tuning the ubiquitin dynamics of UBL4A in

the Bag6 complex. Gp78 adds ubiquitin chains into UBL4A,
whereas USP13 antagonizes this activity to limit UBL4A
ubiquitination. In conclusion, it appears that USP13 and gp78,
these two antagonized enzymes against each other, corporately
maintain the balance between ubiquitination and
deubiquitination, controlling precisely the ERAD process.

It is noteworthy that USP13 also can act in ERAD downstream
of retro-translocation through enhancing the solubility of
retrotranslocated substrates (Liu et al., 2014; Chu et al., 2020).
It is proved that USP13 knockdown has negative effects on the
solubility of several ERAD substrates, including model ERAD-
substrate TCRα. This phenomenon is postulated perhaps due to
mutual influence between USP13 and Bag6 (Yu et al., 1997;
Soetandyo et al., 2010). Lately, USP13 has been reported to
deubiquitinate under stress, which is also the substrate of
autocrine motility factor receptor (AMFR) E3 ligase, activating
CASP3 followed by Bag6 cleavage (Mitchell et al., 2007; Benhar
et al., 2008). Consequently, the produced N-terminal Bag6 is
converted from an ERAD regulator to an autophagy modulator
and apoptosis trigger.

USP13 in Other Cellular Activities
In addition to these cell functions as described above, USP13 is
also implicated in many other distinctive cell activities, albeit its
regulatory mechanism remains not elucidated clearly. For
instance, in non-small-cell lung cancer (NSCLC),
downregulation of USP13 inhibits MAPK/AKT signaling (Han
et al., 2016). In contrast, in breast cancer cells, silencing USP13
can facilitate AKT phosphorylation by downregulating PTEN
level, accompanied by tumor cell proliferation and glycolysis
(Zhang et al., 2013). As STING (also known as MITA), a
deubiquitination substrate of USP13, is pivotal for host
defense against viruses dependent on the NF-κB pathway and
USP13 is supposed to be involved in the NF-κB signaling pathway
and regulates innate immunity via deubiquitinating STING (Sun
et al., 2017). Consistently, it has been reported that deletion of
USP13 can activate the NF-κB signaling pathway in response to
herpesvirus infection, increasing resistance to the virus (Sun et al.,
2017). Moreover, phosphorylation of USP13 at Y708 by CDC-like
kinase 3 (CLK3) can facilitate the interaction between USP13 and
the proto-oncoprotein c-Myc, further suppressing tumorigenesis
(Zhou et al., 2020). Overall, USP13 is capable of affecting various
cellular processes, including protein localization or degradation
through regulating the ubiquitination levels of multiple protein
substrates, thereby the dysfunction of USP13 can relate to a wide
variety of diseases, even the occurrence of tumors, which
highlight the potency of USP13 as a therapeutic target.

USP13 and Tumors
A growing number of studies have demonstrated that USP13
overexpression is closely related to tumor grade, tumor invasion,
chemotherapy resistance and poor prognosis (Liu et al., 2014;
Han et al., 2016; Fang et al., 2017; Li et al., 2017; Kim et al., 2021;
Liu and Moussa, 2021).

The Cancer Genomics Atlas (TCGA) analysis detected
significant overexpression of USP13 in OVCA cells.
Immunohistochemical (IHC) assay exhibited USP13
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expression levels in OVCA cells upregulated at least 3.7 times,
compared with those in normal ovarian tissues (Han et al., 2016).
In addition, clinical data showed that USP13 overexpression led
to a short survival cycle and poor prognosis for OVCA patients
and is closely related to tumor grade. Consistently, knockout or
pharmacological inhibition of USP13 impeded tumor cell
proliferation and enhanced sensitivity to chemotherapeutic
agents in both cell lines and mouse models (Han et al., 2016;
Zhang et al., 2018). Mechanistically, USP13 promoted the energy
metabolism of tumor cells, and provided precursor substances for
the synthesis of sugar, lipids and non-essential amino acids in
cancer cells, through deubiquitinating and stabilizing ACLY and
OGDH (Han et al., 2016). These are necessary for tumor cell
proliferation and invasion. USP13, on the other hand, can
deubiquitinate and stabilize MCL1, which is not sensitive to
MCL-2 family inhibitors, and render tumor cells highly
resistant to BH3-type chemotherapy drugs (Oltersdorf et al.,
2005; Delbridge et al., 2016; Kotschy et al., 2016). Since the
effect of USP13 on maintaining this resistance, inhibition of
USP13 seems likely to be viewed as a practical way to
overcome drug resistance in the therapy of OVCA.

The c-Myc gene encodes a proto-oncoprotein, a widely
recognized transcription factor regulating approximately
10–15% of genes implicated in cell proliferation,
differentiation, apoptosis and other processes (Friedman et al.,
2017; Habib et al., 2020), and c-Myc mutations are often
associated with tumors (Berns et al., 1997; Brodsky and
McCracken, 1999; Hermeking et al., 2000; Morrish et al., 2003;
Wilson et al., 2004). Recently, it has been reported that USP13 is
co-overexpressed with c-Myc in many tumors, such as NSCLC
(Wu et al., 2019), cholangiocarcinoma (CAA) (Zhou et al., 2020),
GSCs (Fang et al., 2017), and hepatocellular carcinoma (HCC)
(Huang et al., 2020). Consistently, knockdown or
pharmacological inhibition of USP13 antagonized tumor cell
growth. For example, in non-small-cell lung cancer,
downregulation of USP13 suppresses ATK/MAPK signaling,
reducing c-Myc protein levels and retards tumor growth both
in tumor cells and nude mice (Wu et al., 2019). In
cholangiocarcinoma, TGF-β signaling triggers the
phosphorylation of CLK3, a serine/threonine kinase that
directly phosphorylates USP13 at Y708 and facilitates USP13
interaction with c-Myc (Zhou et al., 2020); in GSCs, USP13 can
enhance the stability through deubiquitinating c-Myc, activating
purine synthesis mediated by c-Myc and inducing the
tumorigenesis of GSCs (Fang et al., 2017); in hepatocellular
carcinoma, knockdown of USP13 by shRNA can markedly
downregulate c-Myc expression, resisting xenograft tumor
growth of HCC (Huang et al., 2020). Hence, inhibition of
USP13 might be beneficial for related cancer treatment.

Likewise, USP13 exerts an antitumor role in several types of
cancers. For example, USP13 prevents tumor cell growth by
deubiquitinating PTEN in breast cancer, OSCC and bladder
cancer. It is assumed that overexpression of USP13 can block
AKT signaling pathway, suppressing tumor cell proliferation,
invasion, and glycolysis through up-regulating PTEN protein
levels (Zhang et al., 2013; Xiang et al., 2015; Zhang et al.,
2018; Man et al., 2019).

In addition, USP13 is also involved in the development of
other diseases and tumors. In cell and animal models, USP13
participates in ubiquitination modifications of key targets in
Parkinson’s disease, such as tau, α-synuclein and E3 ubiquitin
ligase parkin (Liu et al., 2019a; Liu et al., 2019b). In melanoma,
MITF is essential for cell proliferation and differentiation via
regulating multiple genes transcription. USP13 has been
identified as a deubiquitination enzyme of MITF to modulate
the ubiquitination level of MITF, affecting the survival of
melanoma cells (Zhao et al., 2011). In gastric cancer, the high
expression of USP13 is associated with high invasion,
contributing to reduced survival rate of patients. It is supposed
that USP13 deubiquitinated and stabilized Snail protein,
promoting metastasis in gastric cancer cells (Zhang et al.,
2022). Collectively, due to its role in a variety of tumors and
neurodegenerative diseases, USP13 has emerged as a potential
therapeutic target for diverse tumors.

Inhibition of USP13
Owing to the significance of USP13 in the above cellular processes
and diseases, especially tumors, to seek and develop high potent
inhibitors presumably thus offer an attractive strategy for research
and treatment of related diseases targeting USP13. Currently,
spautin-1 is a widely acknowledged inhibitor of USP13(Liu et al.,
2011; Zhang et al., 2018; Guo et al., 2020) (Figure 4A). In 2011,
Yuan et al. discovered a more efficient autophagy inhibitor, MBCQ,
through high-throughput screening. Subsequently, they carried out
molecular optimization based on MBCQ and designed many of its
derivatives. Among them, C43 is themost superior at selectivity and
inhibitory activity, and is named spautin-1 (Liu et al., 2011).
Spautin-1 was identified to selectively inhibit the
deubiquitination enzymes USP10 and USP13 with an IC50 of
0.6–0.7 μM, and spautin-1 treatment can enhance the
ubiquitination-directed degradation of the Beclin1-VSP34
complex and reduce the intracellular concentration of
phosphatidylinositol 3-phosphate (PI3P), a crucial component in
autophagosomemembranes formation (Levine and Kroemer, 2008;
Glick et al., 2010; Levy et al., 2017). Remarkably, several studies have
successively demonstrated that the use of spautin-1 in combination
with chemotherapy can effectively increase tumor cell mortality and
attenuate tumor cell migration and xenotransplantation, both in cell
models and animal models, suggesting that spautin-1 may be a
potential lead compound targeting USP13 (Zhang et al., 2018; Liao
et al., 2019; Guo et al., 2020).

More lately, a new study on USP13 inhibitors was reported. Liu
et al. designed and synthesized six derivatives of spautin-1
(Figure 4B), which exhibit higher inhibition efficiency against
USP13 (Figure 4C) and capability of crossing the blood-brain
barrier (Liu et al., 2021a), compared to spautin-1, enabling the
development of inhibitors in neurodegenerative diseases. They first
treated neuroblastoma SH-SY5Y cells with six inhibitors at a
concentration ranging from 1 nM to 1mM, and detected USP13
activity utilizing ELISA assay. The IC50 values of USP13 for these
inhibitors ranged from 0.11 to 2.13 nM. Among them, bK50118-C
displays the highest inhibitory efficiency against α-synuclein, although
its IC50 is not the smallest. Therefore, BK50118-C is selected for the
next ADME research. Conclusively, the new USP13 inhibitor
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BK50118-C designed by Liu et al. is the first USP13 inhibitor that can
cross the blood-brain barrier, providing a powerful tool for research
on USP13-related neurodegenerative diseases in the future.

CONCLUSION

Given a decisive role of the ubiquitin–proteasome system (UPS) in
protein quality control in eukaryotes, UPS disorder is associatedwith
many diseases, even tumors (Ravid and Hochstrasser, 2008;
Harrigan et al., 2018). As a member of this system, the
deubiquitinating enzyme USP13 participates in many aspects of
cellular processes, as result dysregulation of USP13 gives rise to
plenty of diseases through deubiquitination of various critical
substrate proteins, including OGDH (Han et al., 2016), ACLY
(Han et al., 2016), VPS34 (Liu et al., 2011), TopBP1 (Kim et al.,
2021), RAP80 (Li et al., 2017), UBL4A (Liu et al., 2014), and STING
(Sun et al., 2017), highlighting that USP13 is emerging as appealing
targets for the therapy of the diseases. Consistently, knockdown or
pharmacological inhibition of USP13 by spautin-1 retards the
growth, differentiation and invasion of many tumors, providing a
possibility for antagonizing the drug resistance of tumor cells.
Furthermore, recent studies have shown that derivatives of
spautin-1 display better USP13 inhibition and the ability to cross
the blood-brain barrier, which is presumably beneficial for research
on USP13-related neurodegenerative disease (Liu et al., 2021a).
However, here a few critical issues are raised. Firstly, since the
recombinant expression of USP13 only exhibits weak
deubiquitination activity in vitro, it should be addressed whether
it is in a state of self-inhibition in vivo and needs to be activated by
other proteins, or its local solubility in the cells requires to be
increased for activation. In addition, as neither the structure of
the USP13 holoenzyme nor its complex structure with substrate

proteins or inhibitors has been determined, it is limited for us to
decipher its molecular mechanisms in cell activity. In future, the
structure and activity regulationmechanism of USP13 remains to be
further elaborated. Moreover, much attention should be paid to the
validation utilization of USP13 as a drug target in research on the
pathogenesis of diseases, in particular tumors.

We anticipate that this manuscript can supply information on
the structure, biology and physiology of USP13, particularly its
relation with malignant diseases, paving the way for the clinical
transfer of USP13 inhibitors to druggable compounds.
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GLOSSARY

DUB deubiquitination

USP13 ubiquitin-specific protease 13

ERAD endoplasmic reticulum-associated degradation

E1 ubiquitin-activating enzyme

E2 ubiquitin-conjugating enzyme

E3 ubiquitin ligase

LUBAC linear ubiquitin chain assembly complex

USPs ubiquitin-specific proteases

OTUs ovarian tumor proteases

UCHs ubiquitin C-terminal hydrolase

MJDs Machado–Josephin domain-containing proteases

MINDYs motifs interacting with the ubiquitin-containing novel DUB
family

JAMMs JAB1, MPN, MOV34 family

ZUP1 zinc finger containing Ub peptidase 1

OGDH α-ketoglutarate dehydrogenase

ACLY ATP citrate lyase

VPS34 vacuolar protein sorting 34

TopBP1 topoisomerase IIβ binding protein 1

RAP80 receptor-associated protein 80

Ubl4A ubiquitin like 4A

MITF microphthalmia-associated transcription factor

FBXL14 F-box and leucine-rich repeat protein 14

MAPK mitogen-activated protein kinase

ZnF Zinc finger

PTEN phosphatase and tensin homolog deleted on chromosome ten

UBA ubiquitin-associated

MCL1 myeloid cell leukemia sequence 1

BCL-2 B cell lymphoma 2

NMR Nuclear Magnetic Resonance

ITC isothermal titration calorimetry

gp78 glycoprotein 78

Ub-AMC Ubiquitin-7-amido-4- methylcoumarin

PI3K Phosphatidylinositol-3-kinase

OVCA ovarian cancer

CA-USP13 C345A-USP13 mutation

NOD/SCID nonobese diabetic/severe combined immunodeficiency

NEDD4-1 neural precursor cell expressed developmentally
downregulated 4-1

IVDD intervertebral disc degeneration

DDR DNA damage repair

BRCA1 breast cancer 1

PARP Poly (ADP-ribose) polymerase

hHYD human hyperplastic discs

VCP valosin-containing protein

Ufd1 ubiquitin fusion degradation 1

Npl4 nuclear protein localization protein 4

Bag6 BCL-2-associated athanogen 6

Ub-Al ubiquitin aldehyde

AMFR autocrine motility factor receptor

NSCLC non-small-cell lung cancer

STING Stimulator of interferon genes

CLK3 CDC-like kinase 3

TCGA The Cancer Genomics Atlas

IHC Immunohistochemical

CAA cholangiocarcinoma

GSCs glioma stem cells

HCC hepatocellular carcinoma

OSCC oral squamous cell carcinoma

PI3P phosphatidylinositol 3-phosphate

UPS ubiquitin–proteasome system.
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