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	 Background:	 It is well known that cerium oxide nanoparticles (CeNPs) have intense antioxidant activity. The antioxidant 
property of CeNPs are widely used in different areas of research, but little is known about the oxidative dam-
age of Cu2+ associated with Type II diabetes mellitus (T2DM).

	 Material/Methods:	 In our research, the function of CeNPs was tested for its protection of b-cells from the damage of Cu2+ or H2O2. 
We detected hydroxyl radicals using terephthalic acid assay, hydrogen peroxide using Amplex Ultra Red assay, 
and cell viability using MTT reduction.

	 Results:	 We found that CeNPs can persistently inhibit Cu2+/H2O2 evoked hydroxyl radicals and hydrogen peroxide in ox-
idative stress of b-cells.

	 Conclusions:	 CeNPs will be useful in developing strategies for the prevention of T2DM.
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Background

The number of people with Type II diabetes mellitus (T2DM) will 
reach 300 million by 2025, and T2DM is the most common form 
of diabetes, accounting for more than 90% of all diabetic cas-
es [1]. T2DM is characterized by hyperglycemia caused by insuf-
ficiency insulin secretion or insensitivity to insulin action in sec-
ondary tissues [2], including skeletal muscle, adipose tissue, and 
liver tissues, and is associated with certain comorbidities includ-
ing cardiovascular disease (CVD), obesity, and metabolic syn-
drome [3–5]. One of the major molecular mechanisms that has 
been proposed is hyperglycemia-induced oxidative stress which 
leads to deficits in b-cells and increased b-cells apoptosis [6,7]. 
In addition to the aforementioned hallmarks of T2DM, elevated 
serum Cu2+ levels are also commonly associated with T2DM [8]. 
Cu2+ is a cofactor for a number of enzymes such as cytochrome 
c oxidase and superoxide dismutase, which suggests an inter-
mediary role for glutathione (GSH) [9]. Cu2+ levels are also com-
monly associated with several diseases, including Wilson disease 
and Alzheimer disease [10,11]. Under reducing cell-free condi-
tions, particularly in the presence of the reducing agent GSH, 
Cu2+ tends to convert to the potent and reactive Cu+ ion that can 
produce H2O2 [12] rather than hA that has been found not only 
to produce but to also quench the H2O2 effect by several fold. 
Current research indicates that hA reduces the amount of H2O2 
and decrease hydroxyl radical formation produced by Cu2+ and 
GSH [13]. This suggests that for T2DM it may be more important 
that Cu2+ is protected from reduced cellular agents such as GSH.

From these oxidative injuries, all stimulated intracellular reac-
tive oxygen species (ROS) levels appear to cause nuclear and 
DNA damage resulting in apoptosis [14]. ROS and subsequent 
apoptosis correlate closely with the pathogenic mechanism and 
progression of T2DM. Antioxidative therapy has been the focus 
of clinical interest, however, antioxidants have had limited suc-
cess, which has been attributed to their short half-lives, daily 
dosing requirements, side-effects, etc. [15–18]. Hence, much 
attention has been focused on searching for more powerful 
medicines and therapeutic strategies.

Cerium oxide nanoparticles (CeNPs), a rare earth oxide element 
from the lanthanide series of the periodic table, are widely 
used in oxygen sensing, anti-inflammatory action, and auto-
motive catalytic converters [19,20]. The surface of the small 
size CeNPs exist in both Ce3+ and Ce4+ state attributing to a 
high surface area to volume ratio [21]. CeNPs reduce superox-
ide-produced hydrogen peroxide (H2O2) [22]. Then Ce4+ oxidiz-
es H2O2 to O2 and regenerates Ce3+, and Ce3+ is also oxidized to 
Ce4+. It can form an auto-regenerative redox cycle on the sur-
face of CeNPs between Ce3+ and Ce4+, and create oxygen de-
fects to scavenge the free radicals [23]. Although CeNPs have 
nearly ideal antioxidant activity, little is known about their in-
hibition of oxidative damage to b-cells.

Hence, in our study, we aimed to discover whether the anti-
oxidant activity of CeNPs protects b-cells from the damage of 
Cu2+ or H2O2 to the benefit of T2DM.

Material and Methods

Materials

CeNPs were purchased from Sciventions Inc., Canada as a 1.5 
mg/mL aqueous suspension of sizes ranging from 1 nm to 10 
nm, stabilized by polyacrylate sodium. Terephthalic acid (TPA) 
and MTT (thiazolyl blue tetrazolium bromide or (3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) were obtained 
from Sigma-Aldrich (USA). Amplex Ultra Red reagent was pur-
chased from Invitrogen (USA). Water with a resistivity of 18.2 
MΩ cm was obtained through a Milli-Q system and was used 
in all the experiments.

Cell culture

Rat insulinoma RINm5f cell line, which was derived from a 
rat islet cell tumor, was obtained from American Type Culture 
Collection (ATCC) (USA) and cultured in 5% CO2 in RPMI-1640 
medium (ATCC, USA) supplemented with 10% fetal bovine se-
rum (FBS) and 1% penicillin/streptomycin. Cells were maintained 
at 37°C in a humidified incubator and passaged bi-weekly.

Detection of hydroxyl radical

Hydroxyl radical production was detected by TPA [24]. The 
treatments were co-incubated with fresh 5 mM TPA in 0.2 M 
phosphate buffered saline (PBS, pH 7) at room temperature 
for 60 minutes, 120 minutes, and 180 minutes. Total fluores-
cent intensity was measured at an excitation of 326 nm and 
emission of 432 nm on the SpectraMax M5 spectrofluorom-
eter (Molecular Devices, LLC, USA). The fluorescence intensi-
ties of TPA are proportional to the amount of hydroxyl radi-
cals produced in the system.

Detection of hydrogen peroxide

H2O2 production by CeNP, Cu2+, and GSH was detected using 
the Amplex Ultra Red hydrogen peroxide detection assay. The 
indicator solution was mingled with 100 μM Amplex Ultra Red 
reagent and 0.2 U/mL horseradish peroxidase (HRP) in 0.01 
M PBS pH 7 or pH 5. Standard curve was made by concentra-
tions ranging from 100 nM to 20 μM of H2O2. Following treat-
ment, an equal volume of Amplex Ultra Red/HRP solution was 
reacted with each sample and incubated for 20 minutes at 
room temperature. Total fluorescent intensity was measured 
at an excitation of 530 nm and emission of 590 nm in the 
SpectraMax M5 spectrofluorometer (Molecular Devices, LLC, 
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USA). The obtained fluorescence intensities were converted to 
peroxide concentrations using the standard curve.

MTT reduction assay

The reduction of MTT was used to assess cell viability. Following 
treatments, 100 uL of MTT solution in PBS (1 mg/mL) was add-
ed to each well and incubated for 3 hours at 37°C. Following 
which MTT was replaced by isopropanol with 1% HCl and 
kept on the shaker for 15 minutes. Colorimetric measure-
ments of viable cell numbers were made at 570 nm against a 
background measurement of 690 nm with a Spectra Max M5 
spectrofluorometer.

Results

The effect of cerium oxide nanoparticles on Cu2+-evoked 
hydroxyl radical production

In this experiment, we tested the modulatory effect of CeNPs on 
Cu2+ catalyzed hydroxyl radical production. In the presence of H2O2, 
Cu2+ is known to catalyze hydroxyl radical production through the 
well-known Haber–Weiss chemistry [25,26]. In our study, CeNPs 
had a significant inhibitory effect on Cu2+/H2O2-induced hydroxyl 

radical formation (Figure 1). With the passage of time, the activity 
of CeNPs still maintained stabilization separately at 60 minutes 
(Figure 1A), 120 minutes (Figure 1B), and 180 minutes (Figure 
1C). Taken together, our results indicated that CeNPs reduced 
Cu2+/H2O2 producing hydroxyl radicals significantly.

The effect of cerium oxide nanoparticles on hydrogen 
peroxide scavenging

Interaction of Cu2+ with GSH produced an increase in H2O2 in the 
system, in contrast to the negligible stimulatory effect of Cu2+ on 
H2O2 production even at pH 5 (Figure 2B) and pH 7 (Figure 2C). 
The composition of the b-cells granule pH has been estimat-
ed to be 5-6 [27], close to the isoelectric point of insulin, and 
this is favorable for the solution of the hA. In conclusion, CeNPs 
had no significant effect on Cu2+/GSH evoked H2O2 formation. 
However, CeNPs at a concentration of 0.5 mg/mL caused a sig-
nificant reduction in only H2O2 (1, 10, and 100 μM) accumulation 
(Figure 2D). CeNPs worked better in pH 5 than pH 7 (Figure 2E).

The effect of the CeNPs and vitamin C on toxicity of H2O2 
in pancreatic insulinoma cells

We used the well-known MTT reduction assay to evaluate the 
effects of CeNPs (0.5 mg/mL) and vitamin C (40 μM) on H2O2 

60 MIN

TP
A 

Flu
or

es
ce

nc
e (

%
)

H
2
O

2
H

2
O

2
+Cu2+

100

80

60

40

20

0

CeNP 0.05 mg/mL

CeNP 0.1 mg/mL

CeNP 0.5 mg/mL
***

***
***

***

120 MIN

TP
A 

Flu
or

es
ce

nc
e (

%
)

H
2
O

2
H

2
O

2
+Cu2+

100

80

60

40

20

0

CeNP 0.05 mg/mL

CeNP 0.1 mg/mL

CeNP 0.5 mg/mL

*** ***
***

***

180 MIN

TP
A 

Flu
or

es
ce

nc
e (

%
)

H
2
O

2
H

2
O

2
+Cu2+

100

80

60

40

20

0

CeNP 0.05 mg/mL

CeNP 0.1 mg/mL

CeNP 0.5 mg/mL

*** ***
***

***

A

C

B

Figure 1. �Effect of CeNPs on Cu2+/H2O2-induced hydroxyl radical formation after (A) 60 minutes (B) 120 minutes (C) 180 minutes. The 
final concentration 10 μM of Cu2+, 50 μM of H2O2 and 0.5 mg/mL, 0.1 mg/mL and 0.05 mg/mL of CeNPs were dissolved in 
ultrapure water with 96-well plate using TPA fluorescent assay. The hydroxyl radical production was decreased by CeNPs. 
(*** p<0.01)
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(50 μM) on RIN-m5f cell viability (Figure 3A). CeNPs and vita-
min C protected cells from H2O2 induced toxicity. With the pas-
sage of time, CeNPs still maintained tremendous protection 
function, however, the effect of vitamin C was weakened by 
a quarter (Figure 3B). The mechanism of CeNPs protection of 
b-cells from apoptosis induced by ROS (such as hydroxyl rad-
icals and hydrogen peroxide) are shown in Figure 4.

Discussion

In previous studies, CeNPs had been reported to have the 
ability to counteract H2O2 challenge and apoptosis in breast 
fibrosarcoma cells, exerting antioxidant and anti-apoptot-
ic effects on cardiomyocytes, neuronal cells, macrophages, 
and mice with autoimmune encephalomyelitis [23,28,29]. 
Although the antioxidant properties of CeNPs in biologi-
cal systems has been reported [29–31], nothing is known 
about Cu2+/H2O2, or Cu2+/glutathione in b-cells, although it 
has been reported that in T2DM, Cu2+/H2O2, Cu2+/glutathione 
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Figure 2. �Amplex Ultra Red hydrogen peroxide detection assay Amplex Ultra Red hydrogen peroxide detection assay standard curve 
(A). At pH 5 (B) and pH 7 (C), CeNPs did not inhibit H2O2 production. (D) While CeNPs inhibited accumulation of all the 
concentration of H2O2 (1, 10, and 100 μM). (E) CeNPs decreased the production of H2O2 (20 μM) more at pH 5 than pH 7. 
(** p<0.05; *** p<0.01)
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catalyzed formation of reactive oxygen species (ROS) and in-
duced cytotoxicity.

CeNP has been shown to be a superoxide dismutase mimetic 
enzyme [32]. Investigators established important parameters 
for CeNP, including that different synthesis methods and sur-
face chemical properties of CeNP show different catalytic ac-
tivity. Studies have analyzed the surface of CeNP and found 
that under trivalent oxidation environments, abundant ceri-
um atoms on the surface of CeNP could cause excess H2O2 
to restore to a lower reduction level of its chemical state. It 
was also proposed that CeNP had a simulative catalase na-
ture [33]. In mammals, there are many kinds of enzymes in-
volved in H2O2 level modulation, including glutathione perox-
idase, superoxide reductase, and catalase. Initially there was 
no correlation between catalase with high catalytic activity 
and CeNP with low activity. However research now suggests 
that peroxide is likely to be the most stable and abundant ac-
tive oxygen in the body, and thus a catalyst such that reduced 
peroxide levels may be a key to preventing inflammation and 

metal catalytic oxidation reaction. In addition, the catalase sim-
ulative activity of CeNP, which is reversible, is related to the 
activity of SOD simulation on the surface of cerium. In oth-
er words, when the surface of CeNP cerium atoms are in the 
higher concentration of trivalent oxidation state, catalase ac-
tivity is weak. Accidentally, an initial study discovered that the 
phosphate ion can affect the activity of CeNP. It showed that 
phosphoric acid can make CeNP from SOD to catalase mimetic 
enzyme conversed to each other in vitro closely tied with ce-
rium reduction status.

The reaction of the chemicals in the test tube was considered 
to mimic the chemical reaction of CeNP with phosphate in the 
body, despite only milligram molecular levels of phosphate 
in most biological systems. So in our experiment, the phos-
phate buffer acted as a solvent to observe antioxidant activ-
ity of CeNP. The experimental results showed that the CeNP 
removal of hydrogen peroxide in the phosphate buffer was 
significantly higher than in PBS (Figure 2). Visible phosphate 
made CeNP reflect the nature of the catalase mimetic enzyme.

In the present study, we showed that CeNP had a significant 
inhibitory effect on Cu2+/H2O2-induced hydroxyl radical forma-
tion and protected the b-cells from damage form H2O2. We fur-
ther tested whether Cu2+ can promote H2O2 production during 
interactions with GSH, which are pernicious to b-cells. Studies 
have shown that CeNP can only inhibit the apoptosis of oxi-
dative damage. In the mechanism of action, it was found that 
the expending of glutathione was an important indicator that 
CeNP inhibited apoptosis caused by oxidative stress. This sug-
gested that CeNP may have an impact on GSH metabolism, in 
particular where it is likely to have an impact is on transport 
proteins that transport glutathione to the extracellular fluid 
and on the control of REDOX in cell membranes. However, an-
ti-oxidation of CeNP was invalid in coexisting Cu2+ with GSH 
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Figure 4. �The mechanism of CeNPs protecting b-cells from 
apoptosis induced by reactive oxygen species (such as 
hydroxyl radicals, hydrogen peroxide, Cu2+).
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at either neutral pH or acidic pH. This was likely because Cu2+ 
acted as a catalytic agent to promote GSH enhancing the con-
centration of H2O2 and causing an irreversible reaction in the 
system. In our study, we also found that CeNP and vitamin C, 
both of which act as harmless materials in mammals, can pro-
tection against oxidative stress of b-cells. Furthermore, with 
the passing of time, the function of vitamin C became weak-
er than that of CeNPs, because the former is a relative unsta-
ble substance in b-cells.

In future studies, we intend to research the interaction of 
CeNP and GSH in vitro and anti-diabetic effect and mecha-
nism of CeNP in vivo.
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