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Background: Cerebral small vessel disease (SVD) is a common cause of cognitive

dysfunction. However, little is known whether the altered reconfiguration pattern of brain

modular architecture regulates cognitive dysfunction in SVD.

Methods: We recruited 25 cases of SVD without cognitive impairment (SVD-NCI)

and 24 cases of SVD with mild cognitive impairment (SVD-MCI). According to the

Framingham Stroke Risk Profile, healthy controls (HC) were divided into 17 subjects

(HC-low risk) and 19 subjects (HC-high risk). All individuals underwent resting-state

functional magnetic resonance imaging and cognitive assessments. Graph-theoretical

analysis was used to explore alterations in the modular organization of functional brain

networks. Multiple regression and mediation analyses were performed to investigate the

relationship between MRI markers, network metrics and cognitive performance.

Results: We identified four modules corresponding to the default mode network

(DMN), executive control network (ECN), sensorimotor network and visual network. With

increasing vascular risk factors, the inter- and intranetwork compensation of the ECN

and a relatively reserved DMN itself were observed in individuals at high risk for SVD.

With declining cognitive ability, SVD-MCI showed a disrupted ECN intranetwork and

increased DMN connection. Furthermore, the intermodule connectivity of the right inferior

frontal gyrus of the ECN mediated the relationship between periventricular white matter

hyperintensities and visuospatial processing in SVD-MCI.

Conclusions: The reconfiguration pattern of the modular architecture within/between

the DMN and ECN advances our understanding of the neural underpinning in response

to vascular risk and SVD burden. These observations may provide novel insight into the

underlying neural mechanism of SVD-related cognitive impairment and may serve as a

potential non-invasive biomarker to predict and monitor disease progression.
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INTRODUCTION

Cerebral small vessel disease (SVD) is a significant contributor
to cognitive dysfunction (1). It is characterized by white matter
hyperintensities (WMH), lacunar infarcts (LI), microbleeds and
the Virchow-Robin space inMRI (1). Although the mechanism is
still incompletely understood, SVD is generally considered to
be the result causes of aging and vascular risk factors including
hypertension, diabetes, and smoking (2). More vascular risk
factors create an easier path to SVD (3). The Framingham Stroke
Risk Profile (FSRP) is a composite risk index of vascular risk
factors and has been used to identify the population at high risk
for SVD (4, 5).

Early identification of individuals at risk for cognitive decline
is important to the development of effective therapies for
cognitive decline or dementia in SVD. Previous publications have
indicated that the progression or location of WMH could induce
cognitive decline (6, 7). Currently, a promising brain functional
imaging technique, that is, resting-state fMRI has been widely
used in the human brain functional network researches, which
can show the metabolism in the different areas, spontaneous
activity in different mode regions, and intra- or inter-regional
connectivity among different brain networks (8).

Functional connectivities are not homogeneously distributed
across the whole network, but gather into subnetworks (i.e.,
modules) that are densely connected internally but only weakly
coupled externally (8). Overall, modular organization may be
conductive to the greater robustness and adaptability of the
brain network responding to internal and external changes (8).
Previous studies have observed modular reconfiguration of brain
networks. In patients with subcortical vascular mild cognitive
impairment, the executive control network (ECN) module was
notably rearranged; i.e., the posterior parietal regions were
separate from ECN as a new module (9). A gene-connectome
study demonstrated that APOE ε4 in patients with Alzheimer’s
disease led to the reconfiguration of the posterior default
mode network (pDMN) and ECN correlated with cognitive
performance (10). Furthermore, a task-state MRI study revealed
that normal individuals showed dynamic integration between
specialized brain modules at different cognitive loads (11).
Therefore, modularity analysis could provide further insights
into the SVD-related cognitive impairment.

In this study, we applied graph-theoretical modularity analysis
to resting-state functional MRI data and characterized the
brain modular network organization in subjects with SVD or
those at risk. Furthermore, we explored the relationship among
SVD burden, modular measures and cognitive performance.
We hypothesize that reconfiguration of modular architecture
emerges during the progression of SVD and mediates the
relationship between SVD burden and cognitive function.

MATERIALS AND METHODS

Participants
This is hospital-based Cross-study (Clinical Trial: ChiCTR-
OOC-17010562), which consists of 85 Han Chinese participants
(49 SVD subjects and 36 matched healthy controls [HC]) aged

between 50 and 80 years. SVD divided into SVD-non cognitive
impairment (SVD-NCI, n = 25) and SVD-mild cognitive
impairment (SVD-MCI n = 24) based on neuropsychological
assessment. HC was split up into HC-low risk (risk <15%, n =

17) and HC-high risk (risk >15%, n= 19), following Stroke Risk
Prediction Model (12). SVD criteria was defined by the presence
on neuroimaging: WMH (Fazekas scale 2 or higher) with or
without lacunar infarct (13, 14). Exclusion criteria included
intracranial hemorrhage; non-SVD-related WMH mimics (e.g.,
multiple sclerosis); cardioembolic source (e.g., atrial fibrillation);
intra/extracranial large artery stenosis >50%; dementia [Mini-
Mental State Examination (MMSE) ≤23] and other neurological
or psychiatric disorders (15). This research was approved by the
Ethics Committee of Nanjing Drum Tower Hospital, and signed
informed consent was obtained from all participants.

Stroke Risk Prediction Model
FSRP is a clinical and composite risk score of vascular risk
factors that predicts 10-year probability of stroke for individuals
who are free of stroke at baseline (12). This model is based on
the following risk factors: age, systolic blood pressure, use of
hypertensive medication, diabetes mellitus, cigarette smoking,
atrial fibrillation, cardiovascular heart disease, and left ventricular
hypertrophy. A higher FSRP indicates a higher risk of developing
a stroke event (12). The score ranges from 1 to 27 points for
women and 1–30 points for men. In this study, participants with
atrial fibrillation were excluded due to cardioembolic source. So,
we excluded points assigned for atrial fibrillation. The sex-specific
score is then converted to 10-year probability of strokes ranging
from 1 to 84% for women and 3–88% for men (12).

Neuropsychological Assessment
All participants underwent a standardized neuropsychological
evaluation protocol, which included the general cognitive
examination and multiple cognitive domain assessments
performed by an experienced neuropsychologist. General
cognitive function was evaluated by MMSE and Beijing version
of the Montreal Cognitive Assessment (MoCA-BJ). In this study,
we used MoCA-BJ to detect SVD-MCI. Since education is the
strongest non-cognitive factor influencing the assessment of
MoCA-BJ, the optimal cutoff points are determined according
to education level (or years of education). For subjects with no
formal education, the MoCA-BJ cutoff was 13/14; for subjects
with 1–6 years of education, the MoCA-BJ cutoff was 19/20; and
for subjects with 7 or more years of education, it was 24/25. The
raw examination scores were transformed to Z-scores so as to
calculate each cognitive domain performance. Episodic memory
is a compound score that includes the mean of the Z-scores of
Auditory Verbal Learning Test-delayed recall (AVLT-DR) and
Wechsler Memory Scale Visual Reproduction-delayed recall
(WMS-VR-DR). Visuospatial function (VPF) was calculated as
the mean of the Z-scores of Clock Drawing Test (CDT) and
Visual Reproduction-copy (VR-C). Information processing
speed (IPS) is a compound score of the average Z-scores of Trail
Making Test-A (TMT-A), Stroop Color and Word Tests A and
B (Stroop A and B). Language consisted of Category Verbal
Fluency (CVF) and Boston Naming Test (BNT). Executive
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Function was calculated as the average Z-scores of Digit Span
Test-backward (DST-backward), TMT-B, and Stroop C.

MRI Scanning
All of the subjects were scanned by a Philips 3.0-T scanner
(Philips Medical Systems, The Netherlands) with a homogeneous
birdcage head coil in order to reduce head movements. Prior to
the scan, all subjects were instructed to keep their eyes closed but
not fall asleep, think of nothing, and move as little as possible
during data acquisition. Finally, a simple questionnaire indicated
that all of the subjects had not fallen asleep during the scan.
The high-resolution T1-weighted sagittal images covering the
whole brain acquired by turbo fast echo acquisition as follows:
repetition time (TR) = 9.8ms, echo time (TE) = 4.6ms, flip
angle (FA) = 8◦, acquisition matrix = 256 × 256, number of
slices = 192, thickness = 1.0mm, FOV = 250 × 250 mm2.
The 3D fluid-attenuated inversion recovery (FLAIR) images were
acquired by the sequence: TR = 4,500ms, TE = 333ms, time
interval (TI) = 1,600ms, acquisition matrix = 270 × 260, voxel
size = 0.95 × 0.95 × 0.95 mm3, number of slices = 200.
The resting-state functional scans covering 230 volumes were
obtained with a gradient-recalled echoplanar imaging sequence:
TR = 2,000ms, TE = 30ms, FA = 90◦, acquisition matrix =

64 × 64, number of slices = 35, thickness = 4.0mm, FOV =

240 × 240 mm2. WMH automated segmentation and volume
quantification was processed in the Wisconsin White Matter
Hyperintensities Segmentation Toolbox version 1.3 (W2MHS
v1.3, https://sourceforge.net/projects/w2mhs) based on FLAIR
and T1 images. The total WMH included periventricular-WMH
(PWMH) and deep-WMH (DWMH). Intracranial volume was
calculated as a sum of gray matter (GM), white matter and
cerebrospinal fluid volume using automated segmentation on
T1 images in Statistical Parametric Mapping (SPM8, http://
www.fil.ion.ucl.ac.uk /spm). WMH volume was normalized to
the intracranial volume (16). Lacunes of presumed vascular
origin were defined as hypointense areas (>3mm and ≤15mm
in diameter) on FLAIR and T1 images, distinguished from
enlarged perivascular spaces and infraputaminal pseudolacunes
(1). Lacunes were counted by two trained raters blinded to the
participants’ clinical information.

Image Preprocessing
The resting-state fMRI data was preprocessed by the Graph
Theoretical Network Analysis Toolbox version 2.0 (GRETNA
v2.0, http://www.nitrc.org/projects/gretna/) based on SPM8.
After removing the first 10 volumes, the remaining functional
images were corrected for intravolume time offsets and
intervolume geometrical displacements. No subjects performed
a displacement >2mm or an angular rotation >2◦ in any
direction. Next, the obtained images were spatially normalized to
the Montreal Neurological Institute (MNI) space and resampled
to 3× 3× 3mm voxels. The resulting images were further band-
pass filtered within the frequency range of 0.01–0.08Hz to reduce
the low-frequency drift and high frequency physiological noise
(17). Linear trends were also removed. Finally, several nuisance
signals were regressed out, including the Friston 24-motion
parameter model (six head motion parameters, six head motion

parameters one time point before, and the 12 corresponding
squared items), global mean, whitematter and cerebrospinal fluid
signals (18).

Network Construction
In this study, functional brain networks were constructed at
the large-scale level with nodes for brain regions and edges
for interregional functional connectivity (FC). To define the
network nodes, we divided the brain into 1024 contiguous and
uniform regions of interest (ROIs) based on a high resolution,
randomly partitioning brain atlas (19). To define network edge,
we calculated Pearson correlation coefficients for each pair of
1024 ROIs between the regional mean time series. To improve
the normality, these correlation coefficients were translated to
z values by Fisher’s r-to-z transform. We restricted our analysis
to positive correlations because of the ambiguous interpretation
of negative correlations (20). As described in the previous
study, brain networks were not fully connected at lower sparsity
threshold and were less likely to remain small-world architecture
at higher sparsity threshold (11). In this study, the matrix was
thresholded at a set of sparsity (ranging from 0.10 to 0.30, with
steps of 0.01) to obtain a binary undirected network (21).

Modularity
A module is referred to as a collection of nodes that are densely
connected with each other but less connected with other nodes.
And the modularity Q of a network quantifies the efficacy
of segmenting a network into modules, which was defined
as follows:

Q =

Nm
∑

i=1

[

li/L−
(

di/2L
)2

]

(1)

where Nm is the number of modules, L is the total number of
edges in the network, li is the number of within-module edges in
the module i and di is the sum of the linked edges at each node
in the module i. In this study, we used a spectral optimization
algorithm to detect the modular community structure, which was
proposed by Newman (22). In practice, the network modularity
Q with a powerful modular structure typically ranges from 0.3 to
0.7 (23). Given that the sparsity threshold could have an effect on
modular partitioning, we performed the modularity analysis on
group-level brain networks, applying a threshold of 20% sparsity
at each group (9). According to prior investigations associated
with cognition (11, 24), DMN and ECN modules, which were
identified from the module partitioning at each group by visual
inspection, were of particular interest in our study. Notably, to
ensure comparability, we apply the module partitioning of HC-
low risk group as the unified standard in the following analyses at
module and nodal levels.

At the module level, we measured intramodule connectivity
density (Ds) and intermodule connectivity density (Ds,t)
as follows:
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Ds =

2
∑

i,j∈s
εi, j

Ns (Ns− 1)
(2)

where Ns is the number of nodes within module s, and εi,j are the
existing edges within module s.

Ds, t =

∑

i∈s,j∈t
εi, j

Ns ∗ Nt
(3)

where Ns is the number of nodes within module s and Nt is the
number of nodes within module t, and εi,j are the existing edges
between module s and module t.

At the nodal level, within-module degree (WD) and
participation coefficient (PC) were calculated as follows (25):

WDi =
ei− ēs

σ s
(4)

where ei is the nodal degree of a node i within module s and ēs
is the average nodal degree of all nodes in module s, and σs is the
standard deviation of the withinmodule nodal degree of all nodes
in module s.

PCi = 1−

Nm
∑

s=1

(

ki, s

ki

)

2

(5)

Where Nm is the number of modules and ki,s is the number of
connections between the node i and module s. ki is the total
number of connections of node i to all other nodes in the
Nm modules.

Statistical Analysis
Differences between groups in demographic, neuroimaging
characteristics and cognitive assessment were analyzed using a
Chi-squared (χ2) test or one-way analysis of variance (ANOVA)
in SPSS version 22 (IBM Corp., Armonk, NY). The significance
level was set at P < 0.05.

For module level metrics, we used ANOVA to investigate
whether there were significant group differences in modularity,
intramodule connectivity density and intermodule connectivity
density. The significant level was set at P < 0.05. For nodal-wise
measures (i.e., WD and PC), we applied GRETNA to investigate
the significantly different brain regions between groups, and
false discovery rate (FDR) was performed at an α level of 0.01
to correct for multiple comparisons. Then, a post hoc test was
used to determine the change pattern of nodal-wise metrics in
differential regions. In all analyses, age, gender, education level,
GM volume, and number of lacunes or WMH volume were
controlled for as confounding covariates.

To investigate the relationship among MRI markers, network
metrics and cognitive performance, a multiple regression analysis
and mediation analysis were performed by using SPSS while
controlling for relevant covariates (age, sex, education level, GM,
and number of lacunes or WMH volume).

RESULTS

Demographic and Clinical Characteristics
Demographic and clinical data for the HC subgroups (HC-
low risk and HC-high risk) and SVD subgroups (SVD-NCI
and SVD-MCI) are summarized in Table 1. There were no
significant differences in gender and years of education between
four groups. However, HC-low risk group showed significantly
lower age compared with other groups. In subsequent analyses,
we controlled for the age as a confounding covariate. WMH and
PWMH volume significantly differed among groups (P < 0.001).
Both of SVD subgroups had a higher WMH and PWMH volume
compared to each HC subgroup. The SVD-MCI group exhibited
poorer performances onMoCA-BJ (P< 0.001), episodic memory
(P < 0.001), VPF (P= 0.017), IPS (P= 0.002), language function
(P= 0.028) and executive function (P< 0.001) than other groups
(details of cognitive domain assessment in Table 1).

Brain Module Identification
All groups almost exhibited high modularity Q across the
sparsity range (0.1–0.3), showing a powerful modular structure
of brain network organization (Supplementary Figure 1). We
further conducted the following analyses on functional networks
constructed at the 20% sparsity threshold. We identified
four modules that corresponded to DMN, ECN, sensorimotor
network (SMN) and visual network (VN) detected from group-
averaged brain networks (Figure 1).

Module-Wise Alterations and its
Relationship With Cognition
We found the significant differences of intra-module connectivity
density within DMN among the four groups (F = 4.919, p =

0.004) (Figure 2A). The further analysis indicated that SVD-
MCI exhibited higher connectivity density than SVD-NCI (p =

0.004), while there was no significant difference between HC-
low risk and HC-high risk (Figure 2B). Moreover, we found
that IPS was positively associated with functional connectivity
density within DMN (β = 0.501, P = 0.022) in SVD-NCI
(Supplementary Figure 2A).

The group differences of intra-module connectivity density
within ECN was also observed (F = 66.169, p < 0.001). In
the HC group, the functional connectivity density within ECN
remarkably enhanced with the increase of risk for SVD (p
< 0.001), whereas in SVD group, the functional connectivity
density notably decreased as the appearance of cognitive decline
(p < 0.001) (Figure 2C). Multiple regression analyses indicated
that IPS was negatively related to functional connectivity
density within ECN (β = –0.432, P = 0.036) in SVD-NCI
(Supplementary Figure 2B).

The inter-module connectivity density between DMN and
ECN significantly differed in four groups (F = 3.671, p = 0.016).
The HC-high risk group showed the more closely connected
coupling between DMN and ECN compared with the HC-low
risk group (p = 0.002) (Figure 2D). In contrast, there was
no statistical difference between SVD groups. The FC density
between DMN and ECN correlated negatively with DST (β = –
0.587, P = 0.006) in HC-high risk (Supplementary Figure 2C).
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TABLE 1 | Demographic and neuropsychological data.

Items HC CSVD F/χ2/H p

Low-risk (n = 17) High-risk (n = 19) NCI (n = 25) MCI (n = 24)

DEMOGRAPHICS

Age (years) 55.47 ± 4.23 68.16 ± 5.32 64.52 ± 10.65 65.92 ± 9.11 8.260 <0.001b*

Education (years) 11.47 ± 4.09 11.84 ± 3.63 11.16 ± 4.11 12.67 ± 3.38 0.694 0.559b

Gender (male/female) 7/10 14/5 12/13 11/13 – 0.179a

NEUROIMAGING CHARACTERISTICS

GMV(cm3 ) 540.88 ± 56.93 541.77 ± 46.88 539.75 ± 38.88 538.08 ± 51.44 0.023 0.995b

WMV(cm3 ) 505.66 ± 53.69 467.19 ± 52.91 460.83 ± 44.00 463.95 ± 59.47 0.709 0.550b

WMH(mm3) 470.97 (184.91, 651.34) 719.00 (147.29, 892.00) 2978.46 (762.74, 4019.20) 4826.16 (760.99, 5639.67) 20.220 <0.001c*

PVWMH 287.38 (111.46, 500.42) 547.20 (107.91, 786.85) 2091.44(468.66, 2913.88) 3633.38 (317.13, 4862.83) 21.266 <0.001c*

DWMH 97.93 (31.34, 173.13) 41.25 (17.50, 283.61) 298.69 (54.30, 980.61) 431.76 (14.55, 1149.31) 6.056 0.109

Lacunes, number (%) – – 7 (28%) 13 (54%) – –

GENERAL COGNITION

MMSE 28.71 ± 1.26 28.58 ± 1.39 28.44 ± 1.29 27.75 ± 2.07 1.624 0.19b

MoCA-BJ 25.47 ± 0.60 25.73 ± 0.54 26.10 ± 0.45 21.41 ± 0.46 21.789 <0.001b*

COMPOSITION Z SCORES OF EACH COGNITIVE DOMAIN

Episodic memory 0.60 ± 0.54 −0.10 ± 0.56 0.11 ± 0.54 −0.53 ± 0.91 9.762 <0.001b*

AVLT-DR 6.53 ± 1.46 5.47 ± 1.47 5.52 ± 1.85 3.75 ± 2.05 9.061 <0.001b*

VR-DR (WMS) 8.65 ± 3.26 6.37 ± 2.79 7.08 ± 2.68 5.83 ± 3.58 2.964 0.037b*

Visuospatial processing function 0.18 ± 0.24 0.14 ± 0.21 0.26 ± 0.18 −0.503 ± 0.18 3.584 0.017b*

CDT 3.96 ± 0.16 3.82 ± 0.14 3.99 ± 0.12 3.35 ± 0.12 5.529 0.002b*

VR-C 13.71 ± 0.46 13.91 ± 0.41 13.88 ± 0.34 12.98 ± 0.35 1.514 0.217b

Information processing speed 0.36 ± 0.75 0.09 ± 0.89 0.18 ± 0.78 −0.51 ± 0.58 5.538 0.002b*

TMT-A 50.27 ± 5.74 51.15 ± 5.15 46.30 ± 4.27 68.67 ± 4.40 5.014 0.003b*

Stroop A 16.51 ± 2.15 14.63 ± 1.93 17.66 ± 1.60 24.14 ± 1.65 5.749 <0.001b*

Stroop B 20.45 ± 2.25 23.25 ± 2.02 19.97 ± 1.67 25.18 ± 1.72 1.816 0.151b

Language 0.26 ± 0.20 0.12 ± 0.18 0.12 ± 0.15 −0.4 ± 0.15 3.207 0.028b*

CVF 17.40 ± 1.01 17.17 ± 0.91 17.43 ± 0.75 15.55 ± 0.77 1.279 0.287b

BNT 52.31 ± 1.62 50.77 ± 1.45 50.33 ± 1.20 46.79 ± 1.24 2.999 0.036b*

Executive function 0.31 ± 0.53 0.36 ± 0.82 −0.12 ± 0.64 −0.38 ± 0.56 6.437 <0.001b*

DST-backward 5.29 ± 0.38 5.69 ± 0.35 4.80 ± 0.29 4.66 ± 0.29 2.231 0.091b

TMT-B 81.39 ± 12.06 79.22 ± 10.83 107.13 ± 8.98 131.21 ± 9.25 6.124 <0.001b*

Stroop C 29.33 ± 2.67 28.90 ± 2.39 33.47 ± 1.98 36.77 ± 2.04 2.885 0.041b*

Values are presented as the mean ± standard error (SE), median (interquartile ranges) or number (percentage).
athe p-value was obtained by χ2 test.
bthe p-value was obtained by one-way ANOVA and c the p-value was obtained by Kruskal-Wallis one-way ANOVA.

*indicates a statistical difference between groups, p < 0.05.

HC, health control; CSVD, cerebral small vessel disease; NCI, non-cognitive impairment; MCI, mild cognitive impairment; GMV, gray matter volume; WMV, white matter volume; WMH,

white matter hyperintensities. PVWMH, periventricular-white matter hyperintensities; DWMH, deep-white matter hyperintensities; MMSE, mini mental state examination; MoCA-BJ,

beijing version of the montreal cognitive assessment; AVLT-DR, auditory verbal learning test-delayed recall; VR-DR, visual reproduction-delay recall; WMS, wechsler memory scale; CDT,

clock drawing test; VR-C, visual reproduction-copy; CVF, category verbal fluency; BNT, Boston Naming Test; DST, digit span test; TMT-A and TMT-B, trail making test-A and B; Stroop

A, B and C, stroop color and word tests A, B, and C.

The alteration pattern of SMN and VN could be seen in
Supplementary Figure 6.

Nodal-Wise Alterations and its
Relationship With Cognition
Next, we investigate whether and how the node properties
within DMN and ECN were altered in SVD. The spatial
distribution of PC and WD in group-averaged network were
shown in Figure 3 and Supplementary Figure 3. Significant
effects of vascular burden on PC were observed in the

DMN (such as bilateral superior frontal gyrus [SFG], inferior
parietal lobule [IPL], and left posterior cingulate cortex [PCC],
medial orbitofrontal cortex [mOFC]) and the ECN (such as
bilateral inferior frontal gyrus [IFG] and right midcingulate
cortex [MCC]) (P < 0.01, FDR corrected) (Figure 3B).
The post hoc tests revealed that PC in the DMN mostly
tended to increase in subjects at high risk and decrease in
SVD-MCI, whereas the alterations of PC in the ECN showed
the increased pattern in SVD-MCI (Supplementary Figure 4).
Interestingly, PC in the left mOFC (i.e., anterior DMN
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FIGURE 1 | Modular architecture for each group. In each group, four modules were found in the mean functional brain network: the default mode network (yellow), the

executive control network (orange), the sensorimotor network (blue), and the visual network (green). HC, healthy control; SVD, small vessel disease; NCI, non-cognitive

impairment; MCI, mild cognitive impairment; DMN, default mode network; ECN, executive control network; SMN, sensorimotor network; VN, visual network.

[aDMN]) only exhibited the increased pattern in SVD-MCI
(Supplementary Figure 4A).

Group comparisons revealed that the WD was significantly
regulated in the regions of the DMN (such as bilateral mOFC,
middle temporal gyrus [MTG], and the right IPL) and the ECN
(such as bilateral ACC, IFG, and anterior insula [AI]) (P < 0.01,
FDR corrected) (Figure 3D). The post-hoc tests determined that
WD did not homogeneously change within DMN and ECN. WD
in the right IPL (i.e., pDMN) tended to increase, while WD in the
bilateral mOFC and MTG (i.e., aDMN) decreased in SVD-MCI
(Supplementary Figure 5A). In the ECN, WD of the bilateral
IFG showed the similar pattern with the ECN module, whereas
WD in bilateral ACC and AI had the increased tendency in SVD-
MCI (Supplementary Figure 5B). We further found that WD
of the right IPL negatively correlated with IPS (β = –0.494, P
= 0.030) in HC-high risk (Supplementary Figure 2D). In SVD-
MCI,WD of left AI was positively associated with IPS (β = 0.410,
P= 0.028) (Supplementary Figure 2E).

Right IFG Mediates PWMH-Induced
Visuospatial Function Decline
We then further investigated the relationship among MRI
markers, network metrics and cognitive performance. WMH
volumes, PWMH volumes, DWMH volumes, and numbers of

lacunes were selected as MRI markers for further mediation
analysis. In SVD-NCI, the PWMH positively correlated with
PC in the left PCC (β = 0.449, P = 0.001). In SVD-
MCI, the mediation analysis suggested that the PWMH was
associated with PC in the right IFG (a = –0.541, P =

0.019) and VPF (c = –0.778, P < 0.001; c′ = –0.560, P =

0.007) and PC of right IFG was related to VPF (b = 0.403,
P= 0.039) (Figure 4).

DISCUSSION

This study used graph-theoretical modularity for the first time
to indicate that: (1) there was a high FC density in both
the inter- and intra-network of the ECN and the DMN in
the high risk individuals for SVD; (2) SVD-MCI patients
showed a disrupted ECN intra-network and increased DMN
connections; and (3) inter-module connectivity of the left IFG
mediated the relationship between PWMH and visuospatial
processing. These findings have important implications for the
further understanding of the neural mechanism of SVD-related
cognitive deficits.

Firstly, we wondered whether and how the brain modular
architecture was altered in a population at high risk for
SVD. Both DMN and ECN networks were chosen. The
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FIGURE 2 | The reorganized pattern of intramodule and intermodule connectivity density within/between DMN and ECN. (A) The matrix showed the four modules

and interactions between these modules. The darker color mean the higher connectivity density (uncorrected). (B) The FC density within DMN in SVD-MCI was

significantly higher than it in SVD-NCI (*p = 0.004). (C) The FC density within ECN increased in HC-high risk compared with HC-low risk (*p < 0.001), whereas it

significantly decreased in SVD-MCI compared with SVD-NCI (*p < 0.001). (D) The FC density between DMN and ECN in HC-high risk showed an higher pattern than

it in HC-low risk (*p = 0.002). HC, healthy control; SVD, small vessel disease; NCI, non-cognitive impairment; MCI, mild cognitive impairment; DMN, default mode

network; ECN, executive control network; SMN, sensorimotor network; VN, visual network; FC, functional connectivity.

DMN (deactivated during tasks) is primarily involved in
episodic memory and self-monitoring processing, while the ECN
(activated during tasks) engages in the mediation of working
memory, cognitive control and decision making. At the module
level, our results revealed that connectivity density within the
ECN increased in a high-risk population for SVD, but it did
not within the DMN, which indicated that ECN (frontoparietal
network) may be more susceptible to the vascular burden than
the DMN and elucidated that the ECN supported cognitive
processes by increasing its own integration (11). We also found
increased intermodule connectivity density between the DMN
and ECN that correlated negatively with DST (subcomponent
of executive function), suggesting that the modular organization
could increase flexibility and facilitate adaptation in response
to environmental changes (8). By the evolutionary computation
approach, hyperconnectivity between the DMN and ECN during
recovery from traumatic brain injury reflected positive functional
plasticity (26).

Next, we investigated the brain functional network of SVD-
MCI patients. The results showed that the functional connectivity

density within the ECN was significantly decreased. This hints
that the frontoparietal network was particularly vulnerable to
SVD-related damages, and SVD could hamper network function
and impair cognition via a “disconnection syndrome” (27, 28).
A combined functional and structural imaging study indicated
that disrupted functional connectivity in the frontoparietal
network mediated the impact of reduced white matter integrity
in the bilateral superior longitudinal fasciculus on executive
dysfunction in hypertensive patients with WMH (29). These
functional alterations were closely associated with WMH and
specific neuropsychological deficits.

Furthermore, increased functional connectivity within the
DMN happened in SVD-MCI, which was positively associated
with IPS. These findings may also reflect that the DMN and
ECN played distinct roles in the progression of SVD, in which
the ECN had a compensatory effect in the early stage of disease,
and the DMN played a compensatory role in the late stage.
The differential associations of DMN and ECN on cognition
performance were also observed in other diseases. A resting-state
fMRI study demonstrated that depressed participants showed
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FIGURE 3 | The distribution of PC and WD in the whole brain. (A) The PC distribution in HC-low risk. (B) Significant effects of vascular burden on PC were observed

in the DMN (such as bilateral superior frontal gyrus [SFG], inferior parietal lobule [IPL], and left posterior cingulate cortex [PCC], medial orbitofrontal cortex [mOFC]) and

the ECN (such as bilateral inferior frontal gyrus [IFG] and right midcingulate cortex [MCC]) (P < 0.01, FDR corrected). (C) The WD distribution in HC-low risk. (D) The

WD was significantly regulated in the regions of DMN (such as bilateral mOFC, middle temporal gyrus [MTG], and the right IPL) and the ECN (such as bilateral ACC,

IFG, and anterior insula [AI]) (P < 0.01, FDR corrected). HC, healthy control; PC, participant coefficient; WD, within module degree.

decreased connectivity in the ECN and increased connectivity in
the DMN compared to non-depressed participants and that these
distinctive patterns of connectivity were associated with worse
cognitive performance. In more detail, functional connectivity
within the ECN was negatively associated with episodic
memory performance while connectivity within the DMN was
positively associated with episodic memory performance in the
non-depressed participants (30). This highlights the potential
importance of the DMN and ECN to adapt upon cognitive
demands at different stages of the disease.

Excitingly, we found that some nodes, such as the bilateral
ACC, AI, IFG, and right MCC within the ECN, exhibited
increased intra- and inter-module functional connectivity in
patients with SVD-MCI. However, regression analysis revealed
that only the intra-module connectivity of the left AI was

positively associated with IPS. Notably, we observed that, at the
nodal level, PC and WD did not homogeneously change across
the DMN; regions of the aDMN showed increased inter-module
connectivity, whereas regions of the pDMN exhibited increased
intra-module connectivity in SVD-MCI. Acutely, the aDMN
is often involved in perception or self-referential processing,
and the pDMN is more commonly related to episodic memory
retrieval (31). Based onmodularity analysis, the pDMN exhibited
decreased intra-module connectivity in the apolipoprotein E
ε4 carriers compared to that in the noncarriers, but the
aDMN showed no significant alterations (10). Patients with
schizophrenia showed increased posterior and decreased anterior
connectivity within the DMN compared with healthy controls
(32). Notwithstanding, the neurobiological mechanism behind
the differentiated pattern requires further investigation. Overall,
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FIGURE 4 | The mediation analyses in SVD-MCI. The PWMH was associated with PC in the right IFG (a = −0.541, P = 0.019) and VPF (c = −0.778, P <

0.001; c′ = −0.560, P = 0.007) and PC in the right IFG was related to VPF (b = 0.403, P = 0.039). PWMH, periventricular-white matter hyperintensities; IFG, inferior

frontal gyrus; VPF, visuospatial processing function; PC, participant coefficient.

our results suggested that patients with SVD-MCI displayed
complicated modular interactions with a parallel pattern of
disruption and compensation in the ECN and DMN.

To further explore the relationship between vascular burden,
network metrics and cognitive performance, mediation analysis
was applied. The result suggested that PWMH induced VPF
dysfunction regulated by the right IFG. VPF has been proposed
to be susceptible to age-related decline and is preferentially
disrupted in normal aging (33, 34). The visual processing-related
regions can be divided into ventral and dorsal streams. The
dorsal stream is involved in three major pathways, including
the parieto-prefrontal, parieto-medial temporal, and parieto-
premotor pathways (35). The parieto-prefrontal pathway is
an important component of the dorsal stream in visuospatial
processing (35). It sends input to the dorsal prefrontal region,
which is essential for top-down executive control in visuospatial
processing (35). The right IFG may play a central role in
promoting the global processing of visuospatial perception (36).
During the visuospatial working memory task, the fractional
anisotropy and axial diffusivity of the white matter bundles
connecting the IFG and fusiform were associated with processing
speed (37). In subjects with autism spectrum disorder, poorer
VPF was correlated with a disrupted white matter microstructure
in the right inferior fronto-occipital fasciculus (38). Additionally,
most of the investigations have revealed that the increasing
burden of PWMH, not DWMH, may play an independent
role in the decline of cognition (39). This evidence further
supports our result that PWMH could result in the decline
of visuospatial processing mediated by prefrontal functional
connectivity in SVD.

Several issues in our study need to be noted. First, as
a cross-sectional study, the data could not directly elucidate
the relationship between imaging characteristics and SVD-
related performance. Therefore, it is necessary to replicate

our findings in future longitudinal studies. Second, the
connectivity within/between different modules was binary
undirected matrices. Thus, weighted matrices might provide
more detailed information about network alterations. Third,
our functional data preprocessing steps included global signal
regression and we were only concerned with the positive
correlations in the subsequent analyses. Further exploration
of the effect of non-global signal regression and negative
correlations on modular alterations in SVD participants is
needed. Fourth, several modularity algorithms are currently
available with different advantages. Different algorithms need
to estimate the repeatability of our results. Finally, we only
examined functional brain networks in the current study.
It might be worth applying multimodal imaging techniques
(e.g., arterial spin labeling) to explore the correlation between
structural and functional networks.

CONCLUSION

The modular architecture showed an altered reconfiguration
pattern within/between the DMN and ECN and might
have a mediation effect during the progression of SVD.
These observations may provide novel insight into the
underlying neural network mechanism of cerebral SVD-related
cognitive impairment.

AUTHOR CONTRIBUTIONS

YX: conceived and designed the experiments. RQ, YG,
XC, XW, JZ, and YJ: performed the experiments. RL,
HC, and WL: analyzed the data. FB and BZ: contributed
materials/analysis tools.

Frontiers in Neurology | www.frontiersin.org 9 April 2019 | Volume 10 | Article 324

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Liu et al. The Modular Reconfiguration in CSVD

ACKNOWLEDGMENTS

This work was supported by the National Key Research and
Development Program of China (2016YFC1300500-504 and
2016YFC0901004), National Natural Science Foundation of
China (81230026; 81630028), Natural Science Foundation of
Jiangsu Province (BE2016610;), Jiangsu Provincial Key Medical
Discipline (ZDXKA2016020).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2019.00324/full#supplementary-material

Supplementary Figure 1 | The modularity Q across the sparsity range (0.1–0.3)

in each group. HC, healthy control; SVD, small vessel disease; NCI, non-cognitive

impairment; MCI, mild cognitive impairment.

Supplementary Figure 2 | The significant relationship between modular indexes

and cognitive assessments. (A) IPS was positively associated with functional

connectivity density within DMN (β = 0.501, P = 0.022) in SVD-NCI. (B) IPS was

negatively related to functional connectivity density within ECN (β = −0.432, P =

0.036) in SVD-NCI. (C) The FC density between DMN and ECN correlated

negatively with DST (β = −0.587, P = 0.006) in HC-high risk. (D) WD of the right

IPL negatively correlated with IPS (β = −0.494, P = 0.030) in HC-high risk. (E) WD

of left AI was positively associated with IPS (β = 0.410, P = 0.028) in SVD-MCI.

HC, healthy control; SVD, small vessel disease; NCI, non-cognitive impairment;

MCI, mild cognitive impairment; WD, within module degree; FC, functional

connectivity; DMN, default mode network; ECN, executive control network; IPS,

information processing speed; DST, digit span test; IPL, inferior parietal lobe; AI,

anterior insula.

Supplementary Figure 3 | The distribution of PC and WD in HC-high risk,

SVD-NCI, and SVD-MCI. HC, healthy control; SVD, small vessel disease; NCI,

non-cognitive impairment; MCI, mild cognitive impairment; PC, participant

coefficient; WD, within module degree.

Supplementary Figure 4 | The post-hoc tests of PC in significantly differentiated

brain regions involved in DMN (A) and ECN (B). HC, healthy control; SVD, small

vessel disease; NCI, non-cognitive impairment; MCI, mild cognitive impairment;

PC, participant coefficient; SFG, superior frontal gyrus; IPL, inferior parietal lobe;

PCC, posterior cingulate cortex; mOFC, medial orbitofrontal cortex; IFG, inferior

frontal gyrus; MCC, right midcingulate cortex.

Supplementary Figure 5 | The post-hoc tests of WD in significantly differentiated

brain regions involved in DMN (A) and ECN (B). HC, healthy control; SVD, small

vessel disease; NCI, non-cognitive impairment; MCI, mild cognitive impairment;

WD, within module degree; MTG, middle temporal gyrus; IPL, inferior parietal lobe;

mOFC, medial orbitofrontal cortex; IFG, inferior frontal gyrus; ACC, anterior

cingulate cortex; AI, anterior insula.

Supplementary Figure 6 | FC density within the visual network and sensorimotor

network. (A) The FC density within the visual network showed a significant group

difference (p = 0.041, ANOVA, controlled age, sex, and years of education). The

FC density within the visual network in HC-high risk was significantly decreased

compared to HC-low risk (p = 0.005). (B) There was no significant difference in

FC density within the sensorimotor network. FC, functional connectivity; HC,

healthy control; CSVD, cerebral small vessel disease; NCI, non-cognitive

impairment; CI, cognitive impairment.
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