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Abstract

Editing operations such as cut, copy, paste, and correcting errors in typed text are often tedious 

and challenging to perform on smartphones. In this paper, we present VT, a voice and touch-based 

multi-modal text editing and correction method for smartphones. To edit text with VT, the user 

glides over a text fragment with a finger and dictates a command, such as “bold” to change 

the format of the fragment, or the user can tap inside a text area and speak a command such 

as “highlight this paragraph” to edit the text. For text correcting, the user taps approximately at 

the area of erroneous text fragment and dictates the new content for substitution or insertion. 

VT combines touch and voice inputs with language context such as language model and phrase 

similarity to infer a user’s editing intention, which can handle ambiguities and noisy input signals. 

It is a great advantage over the existing error correction methods (e.g., iOS’s Voice Control) 

which require precise cursor control or text selection. Our evaluation shows that VT significantly 

improves the efficiency of text editing and text correcting on smartphones over the touch-only 

method and the iOS’s Voice Control method. Our user studies showed that VT reduced the text 

editing time by 30.80%, and text correcting time by 29.97% over the touch-only method. VT 

reduced the text editing time by 30.81%, and text correcting time by 47.96% over the iOS’s Voice 

Control method.
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1 INTRODUCTION

Changing text input such as correcting errors and editing text is a core activity we perform 

daily on smartphones. Although such an activity is essential for messaging, emailing, 

searching, and social networking applications, it however is difficult to perform. The 

bottleneck lies in the need for precise and repetitive manual control. For example, the de 
facto cursor-based text correction technique requires accurately positioning the cursor at 

the error text, repeatedly pressing backspace to delete errors, and re-positioning the cursor 

back at its original location. Besides finger touch, voice input is another input modality we 

can leverage for editing text. However, voice input is prone to speech recognition errors, 

especially in noisy environments. It also is cumbersome to use voice for correcting errors in 

spoken text, mainly because voice input is unsuitable for specifying the location of the error 

[26, 42].

Both touch and voice input modalities have their respective strengths and weaknesses. 

The current text editing techniques fail to synergistically combine the strengths of both 

modalities to overcome the limitations of each modality. For example, although iOS’s Voice 

Control [21] allows a user to use voice and touch to correct an erroneous word in a text, 

the process is laborious: the user needs to precisely select the word with touch, and speak 

out the exact content for correction. There is little room for human imprecision, which 

makes it difficult for the error-prone voice and touch input. Potentially, the performance and 

experience of text editing can be improved by coordinated use of speech and touch together 

with an underlying intelligent inference model that can predict the user’s interaction intent. 

For example, if a user uses finger touch to point at the approximate location of an erroneous 

word and simultaneously speaks out the replacement word; the inference model should be 

able to determine the exact location of the erroneous word and replace it with the spoken 

word, thereby significantly reducing the user’s overall interaction effort.

In this paper we research and develop voice and touch input based multimodal text editing 

technique, called VT. To edit the text, the user glides the finger over the text on the 

touchscreen, and speaks out the editing command (e.g., “cut”, “copy”, or “bold”), or the 

user can just tap the target text then speaks a command such as “bold the paragraph” to 

edit the text. VT combines the input signals from both voice and touch input to infer a 

user’s editing intention, and then form and execute the corresponding editing operation. To 

correct errors such as inserting missing words or correcting words, the user points to the text 

to be corrected and speaks out the new text content. We developed a set of methods and 

algorithms in VT that can infer a user’s intention of correction by combing the voice input, 

touch input, and text context, and then directly execute the most likely correction operation. 

Our evaluation showed that VT significantly improved the efficiency of text editing and text 

correcting over the touch-only method and the iOS’s Voice Control method: VT reduced 

the text editing time by 30.80%, and text correcting time by 29.97% over the touch-only 

method, and reduced the text editing time by 30.81%, and text correcting time by 47.96% 

over iOS’s Voice Control. Overall, VT mitigates the weaknesses of touch and voice input 

AND leverage their strengths, hence improving the efficiency of text editing on mobile 

devices.
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2 RELATED WORK

As background of the current work, we review previous techniques for text editing, text 

correction, and multi-modal interactions.

2.1 Techniques for Editing and Correcting Text on Mobile Devices.

Text editing and correction is an essential part of the heavy process of text entry on mobile 

devices [28, 43]. The cursor-based method was widely studied in previous research. iPhone 

Keyboard [3] supports magnifying lens and hard-press cursor touchpad. Hackerskey-board 

[52] allows users to control the cursor with arrow keys. Previous work also adapted gestural 

methods for cursor positioning. For example, previous research explored cursor moving by 

horizontal gestures [15], “scroll ring” with four-direction gesture with swipe [55], swiping 

left or right from “space” [22], including both taps and gestures to be drawn on the top of the 

soft keyboard to move the cursor, select text, and use the clipboard [16].

Along with the cursor-based method, researchers have explored a number of facilitative 

methods for text selection. On Android devices, users could select a word with multiple 

different operations, including sliding finger, double-tap or long-press. Gestural methods 

such as clock-wise gesture [22] and two-finger gesture [15] have also been implemented in 

text selection. Gaze’N’Touch [44] explored gaze-based interaction on text selection.

For editing operations on selected text, current keyboards such as iPhone keyboard [3] and 

google keyboard generally work with a pop-up widget(menu) providing possible editing 

actions. There are also gesture-based command [2, 8, 16, 30] have been explored on the 

selected text.

Challenges of cursor-based editing and correction on mobile devices often come from small 

screen sizes and the fat finger problem [5, 20, 51]. Intelligent interaction techniques such 

as auto-correction were introduced to address these challenges. In modern input methods 

on smartphones, auto-correction is wildly implemented. It automatically corrects the word 

currently being entered [6, 17, 50]. However, the limitation of auto-correction techniques 

lies in the current input word which indicates that it is not suitable for editing the text that 

has already been entered. Arif et al. added intelligent sliding functions to the backspace 

in the Smart-Restorable Backspace [4]. This technique can predict correction position 

and restore the previously deleted text. It helps to reduce the operations on deleting and 

positioning operations in word correction. WiseType [1] introduced novel visualization to 

highlight errors to assist error correction. Besides, grammar checking methods on entered 

text such as Gboard [33] and Grammarly [23] support correcting words and revising text by 

providing possible text on the suggestion bar. However, these approaches offer operations 

without considering the user’s correction intention. Thus the results can be irrelevant. VT 

adopts a user-guided approach to perform more goal-oriented operations. Users can point 

at a location for error correction or dictate more context words around the error words for 

better correction.

The “Type, then Correct” technique [54] and “JustCorrect” [9] are recent techniques on 

reducing cursor operations by injecting intelligence into the post hoc text correction process. 
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Those methods are only for correcting a single word at a time, while VT is able to correct 

a whole phrase at once. And those methods are mainly for the scenario where there is only 

one input sentence, or correcting the last input sentence by typing on a keyboard. VT can be 

applied to anywhere the user points to in arbitrary text without any typing.

There are also voice-based editing method, such as Dragon NatuallySpeaking and Voice 

Typing in Google Docs [19, 37]. Targeted at accessibility applications, these methods 

transcribe the user’s dictated words into input texts or editing commands and allow users 

to dictate instead of typing on the text areas. However, these approaches do not support 

the multimodal interaction to combine the voice input with touch gesture operations. VT 

also has a larger scope than previous research systems such as WiseType [1], Gestures and 

Widgets [15], TouchTap [16], Gaze’N’Touch [44] and Gedit [55]. VT focuses on both text 

formatting and error correction, while those systems focus on only one aspect of text editing: 

Gestures and Widgets [15], TouchTap [16] and Gedit [55] were about text formatting 

only; Gaze’N’Touch [44] was about improving text selection; WiseType [1] introduced 

novel visualization to highlight errors to assist error correction. Additionally WiseType [1], 

Gestures and Widgets [15], TouchTap [16], and Gedit [55] involve only touch input, while 

VT integrates two modalities (touch and voice).

2.2 Multimodal Interaction Technologies on Smartphones

Prior research has shown benefits with multimodal interaction, such as being natural and 

and more error tolerant [29, 39, 40], flexible [41], i.e., letting users pick any input mode as 

needed, and accommodating people with different input capabilities [13]. Previous research 

has also shown improved performance using pen marks and handwriting to correct speech 

recognition errors[49]. The presented research is particularly inspired by previous work 

on leveraging multiple input modalities to improve text entry performance. Modern soft 

keyboards (e.g., Gboard [33]) support entering text via touch and voice input. However, 

these two modalities are often used in isolation.

Researchers have also explored fusing information from multiple modalities to reduce 

text entry ambiguity, such as combining speech and gesture typing [38, 47], using finger 

touch to specify the word boundaries to improve speech recognition accuracy [46], or 

using unistrokes together with key landings [24] to improve input efficiency. In desktop 

computing, combining eye gaze with keyboard typing has been shown to be an effective 

approach to text editing [48].

Previous research also explored the performance of multi-modal interaction both on single-

app tasks [14, 25] and cross-app tasks [53]. The combination of voice and touch enhanced 

the experience on the mobile devices. Besides, multimodal method were also implemented 

to enhance the performance on disambiguation interfaces [32, 35, 45].

Although iOS’s Voice Control [21] and Android Voice Access [18] enable users to edit 

and correct text with voice and touch input, these two methods are not error-tolerant as 

they require precise text selection, cursor manipulation, and precise text content for error 

correction. For example, in both iOS’s Voice Control [21] and Android Voice Access [18], 

substituting a text segment with touch and voice requires the user to first precisely select 
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the text segment with touch, and speak the exact new content to replace the selected 

text. In contrast VT is error-tolerant: VT can infer a user’s error correction intention by 

combining language model, Word2Vec, and Levenshtein distance between input text and 

existing content to resolve ambiguity in input. A user only needs to approximately indicate 

the location of error, and speak the content which may or may not include words that already 

exist in the content. Additionally VT supports flexibly blending voice and touch input for 

text formatting: the touch input (e.g., gliding over the text) could occur before, during, or 

after the voice input. In contrast, iOS’s Voice Control requires a user to select the text first 

and then issue the command. Touch and voice input must follow a strict order in iOS’s Voice 

Control.

3 USE SCENARIO

The following use scenario illustrates the goal of this project.

Bob often writes and edit text on smartphones. However he is unsatisfied with the interaction 

experience. Touch input is inefficient for editing text as it requires precise control over the 

cursor positions. Speech input is difficult to specify the editing location. Neither of these two 

modalities meets his interaction needs. Existing voice and touch based multi-modal systems 

such as iOS’s Voice Control is still not efficient enough because it still requires precise 

text selection before edit or correct the text. He had heard through the grapevine that VT 

combines voice and touch input modalities which could avoid the tedious and precise text 

selection process and is intelligent enough to infer the text span he intends to correct or edit. 

Bob got it installed on his smartphone. The scenario below illustrates how Bob utilizes the 

functionalities offered by VT.

It is a sunny Sunday afternoon and Bob is walking in the neighborhood. During his walk, 

Bob remembers that he should not forget to reply to the email his friend Jane had sent 

him yesterday. Bob opens the email apps and dictates “I will talk to you on Monday at 9 

am.” Bob, on a second thought, wishes to reschedule the meeting to Tuesday. Bob taps the 

word “Monday” and speaks “Tuesday”. VT infers that Bob intends to change “Monday” 

to “Tuesday” given the language context, the caret location, and the spoken utterance. It 

then changes “Monday” to “Tuesday” in the email. Bob also wants to make “Tuesday at 

9 am” bold as this meeting time is different from their usual meeting time. Bob then taps 

“Tueday” and speaks “bold four words”. VT then change the sentence to “I will talk to 

you on Tuesday at 9 am.” Note that in this illustration, Bob combined voice and touch 

input to correct an error and edit text in email, without any precise text selection. VT has 

considerably simplified Bob’s interaction with smartphone. He feels it has made him far 

more productive than before.

Next, we describe how VT supports multimodal text editing and correcting techniques.

4 MULTIMODAL TEXT EDITING AND CORRECTION TECHNIQUES

As shown in Figure 1, VT allows a user to combine voice and touch input to edit text such 

as highlighting, cutting, copying, and pasting text, or correcting errors such as correcting 
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“jimos” to “jumps”. It supports editing actions at word, sentence, and paragraph levels, and 

correction action at phrase level.

VT supported common touch input actions provided by the Android EditText view [11], 

such as tapping to reposition the caret position, or gliding the finger over a text segment to 

select it. The outcome of an touch input action is the new position of the caret, or the start 

and end positions of a selected text span.

VT supports voice input that starts before, during, and after those touch input actions. The 

user can signal the start of voice input by tapping or long clicking the text or tapping the 

microphone button.

Figure 2 shows the workflow of VT. A multimodal input event is represented as X =< t, s 
>, where t represents the outcome of a touch input, which could be the new caret position 

specified by tapping, or start and end positions of a text span specified by finger gliding, and 

s is the voice input.

After receiving X =< t, s >, VT first determines whether it is an editing or correcting 

operation as follows. It obtains top N (e.g., N = 20) voice recognition results T1, T2, …, 

TN by feeding the voice input s into a speech recognizer (e.g., Android built-in voice 

recognizer). If the first word in any of Ti is one of the six reserved editing commands 

(copy, cut, paste, highlight, underline, and bold), VT considers it as an editing command. 

Otherwise, the voice inputs will be viewed as content for error correction. This limitation 

prevents VT to correct content starting with the six reserved word, which is common for 

current voice-based editing systems. For example, iOS’s Voice Control reserves “copy that, 

cut that, bold that, etc.” for command input. The editing and correction operations are 

supported separately, described in Section 4.1 Editing Text and Section 4.2 Correcting Text, 

respectively.

4.1 Editing Text

VT supports six classes of common editing operations: copy, cut, paste, highlight, underline, 

and bold.

4.1.1 Representation of an Editing Operation.—VT first represents a text editing 

operation as a 2-tuple: c =< r, w >, where r is the operation name specified as a character 

string (“highlight”, “bold”, “underline”, “cut”, “copy”, or “paste”), w is the location 

parameter specifying the text segment which the named operation will be applied to.

Here are two examples showing how an editing operation is defined by a 2-tuple: c =< r, w 
>. For example, to highlight the words “tomorrow at noon” in the sentence “The event will 

take place tomorrow at noon”, the operation name r is “highlight”, the location information 

w is the text segment “tomorrow at noon”. Another example of operation is to cut the entire 

sentence “The event will take place tomorrow at noon.”. For such an operation, the operation 

name r is “cut”, the location w is the sentence.

Under this representation, the key of supporting multimodal text editing is to infer the 

intended text editing operation c* =< r, w > from the multimodal input X =< t, s >.
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4.1.2 Creating and Executing Editing Operation.—VT integrates the touch input t 
and voice input s in X to create and execute the intended text editing operation c* =< r, w > 

in the following steps, as specified in procedure GetEditingOperation (Algorithm 1).

One input to the algorithm is the touch input t, which could be the new caret position 

specified by tapping, or start and end positions of a text span specified by finger gliding.

The other input to the algorithm is T which is the voice recognition result that includes the 

command name command. T is determined as follows. VT examines the first word of Ti, 

which is one of the top N voice recognition results from the voice input s. If an editing 

command name command is found, we set T = Ti. If multiple voice recognition results 

include a command name of the first word, the one with the highest recognition score will be 

chosen as T.

The algorithm first set r = command, which is the operation name parameter of c*. VT then 

integrates the touch input t and the voice recognition result T to form the location parameter 

w for c*. VT supports two modes of forming w, namely Single Command and Compound 

Command mode:

• Single Command Mode: The user dictates a single editing command (e.g. bold), 

and selects the text with finger touch. The editing command will then be applied 

to the selected text. For example (Figure 3 left), to bold the phrase “tomorrow 

at noon”, the user selects the phrase by pressing and gliding the finger from 

“tomorrow” to “noon”, and dictates the command “bold” during the touch input. 

VT supports all the text selection action supported by Android EditText view, 

including double tapping or long pressing to select a word, or pressing and 

gliding to select a text segment.

• Compound Command Mode: A user combines voice and touch input to specify 

the text on which the spoken command will be applied. For example (Figure 

3 right), a user taps to place the caret within a paragraph and says “bold this 

paragraph”, to bold the entire paragraph where the caret resides, or places the 

caret to a sentence and says “highlight this sentence”, to highlight the entire 

sentence.

Whether an editing operation is in single or compound command mode depends on whether 

the voice recognition result T includes the words specifying the scope of the operation 

including numbers and scoping word which is one of the words in the set <“word(s)”, 

“sentence(s)”, “paragraph(s)”>. If no such a word is found, the editing is in the single 

command mode, otherwise in the compound command mode.

In the single command mode, the selected texts by touch input t is the location parameter w. 

In the compound command mode, w is determined by combining the location information 

specified by touch and scope information specified by voice input. For example, if the voice 

input includes “two paragraphs” and the finger touch lands on a specific paragraph, the w 
will include the paragraph that the finger points to and the following paragraph. After c* is 

created from X =< t, s >, VT will execute it. This algorithm to get the editing operation c* 

=< r, w > is formally summarized in Algorithm 1.
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Our techniques support a user to speak the editing command before, during or after the 

finger touch interaction, to accommodate different collaboration patterns between voice and 

touch input. The speech recognition is turned on as soon as a touch event occurs. Should a 

user want to speak a command before landing the finger on the text, she can click the voice 

input button on the screen. The speech recognition will wait for 5 seconds for the user to 

start the dictation, the duration of the dictation is up to 2 minutes.

4.2 Correcting Text

If a multimodal input event X is determined as a correction operation (i.e., none of the 

voice recognition result includes an editing command as the first word), VT will follow the 

procedure described in this section to correct text.

VT supports correcting existing text with touch and voice input, such as inserting missing 

words or replacing wrong or inappropriate words with new content. The user first specifies 

the location where correction will occur with the input finger by either tapping the error 

location, or selecting the erroneous text, and then dictates the new text content to be inserted, 

or to substitute the erroneous text. As shown in the use scenario (Section 3), Bob taps the 

word “Monday” and says “Tuesday” to correct “Monday” to “Tuesday”.

The user can also speak some context around the text to be corrected. For example, to 

correct the sentence “it waspada very nice” to “it was very nice”, the user can touch 

“waspada” and say “was”. But since “was” is a short word, without any context the speech 

recognition model may recognize it as “were”. Instead of saying “was”, the user can say 

“it was” or “it was very” or “was very nice”, etc. Adding context can help the speech 

recognition model to better recognize the speaking content, and VT would utilize the context 

to better locate the text to be corrected. Without adding context, VT would still infer user’s 

correction intention.

VT enables text correction in three steps. In step-1, it takes the multimodal input X =< t, s > 

and the sentence to be corrected L as input to generates 3 types of text correction candidates: 
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insertion-only candidates I, substitution-only candidates S and insertion-and-substitution 

candidates IS. In step-2, it assigns sentence score SenScore or substitution score SubScore 
to each candidate based on the speech recognition confidence score, an n-gram language 

model, and the similarity between the new and existing text. The SenScore or SubScore 
indicates how likely a candidate is the intended correction operation the user will perform. 

In step-3, it generates top 3 suggestions based on SenScore and SubScore of correction 

candidates. The top suggestion is executed by default, and the second and third candidates 

are provided as alternatives to user.

In the rest of this section we give more algorithmic details of each of the three steps.

4.2.1 Step-1: Forming Correction Candidates.—The objective of this step is to 

form correction candidates based on the multimodal input X =< t, s > and the sentence to be 

corrected L.

Given multimodal input X =< t, s > and the language context L, VT first obtains top N voice 

recognition results T1, T2, …, TN from a voice recognizer, where N is the total number of 

voice recognition results. We chose N = 20 in the current implementation.

VT then uses each of the recognition results Ti to generate three types of correction 

candidates: insertion-only, substitution-only, and insertion-and-substitution correction 

candidates. The three types of correction candidates are described as follows.

Insertion-Only candidates.: An insertion-only operation is an operation that inserts the 

voice recognition result Ti into a sentence. The location of the insertion depends on the 

the touch location t. To accommodate the imprecise touch operation, Ti could be inserted 

to the white space the t points to, or the space before and after the touched word. The jth 

insertion-only candidate of the ith speech recognition alternative Ti is defined as Iij.

For example, assuming a user selects the word “yoybgade” in the sentence “when do 

yoybgade to be there”, and says “do you have”, the ith recognition result Ti is “do you 

have”, although this example cannot be fixed by insertion-only candidates, VT would still 

generate two insertion-only candidates for Ti by inserting Ti in two possible locations 

indicated by the underlines: “when do_yoybgade_to be there” (also illustrated in Table 1).

Substitution-only Candidates.: A substitution-only correction is an operation that 

substitutes existing words in a sentence with the voice recognition results Ti. Assuming 

Ti includes n words: Ti =< w1, w2, …, wn >, the touch input t selects the phrase PH in 

the sentence, PH includes m words. VT would use Ti to replace n consecutive words in the 

sentence, under the constraint that in the replaced words at least one word is adjacent to 

or overlaps with words in PH. Such a constraint ensures that the substitution happens at or 

adjacent to the location specified by finger. If the finger just taps on a word, the PH only 

includes the single word tapped by the finger. The jth substitution-only candidate of the ith 

speech recognition alternative Ti is defined as Sij.
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For example, assuming that a user selects the word “yoybgade” in the sentence “when do 

yoybgade to be there”, the ith speech recognition result Ti is “do you have”, VT would 

create substitution-only correction candidates for Ti as shown in Table 1.

Insertion-and-Substitution Candidates.: An insertion-and-substitution correction is an 

operation that performs both insertion and substitution operations at the location specified by 

the touch input t. It works similar to the substitution-only operation. The only difference is 

that the number of words that are substituted in the original sentence is less than the number 

of words in voice recognition result Ti. The jth insertion-and-substitution candidate of the ith 

speech recognition alternative Ti is defined as ISij.

In the same example where the user selects the word “yoybgade” in the sentence “when do 

yoybgade to be there”, the ith speech recognition result Ti was “do you have”, VT would 

generate insertion-and-substitutin candidates for Ti as shown in Table 1. In Table 1, the 

candidates ISi1 to ISi4 are generated by replacing 2 words in the original sentence with “do 

you have”, the candidates ISi5 to ISi7 are generated by replacing 1 word in the original 

sentence with “do you have”.

4.2.2 Step-2: Computing Scores for Correcting Candidates.—The objective of 

this step is to compute scores of correction candidates, which are Iij, Sij and ISij generated 

from Step 1 (examples are illustrated in Table 1). The score of a correction candidate 

represents how likely the candidate is the intended correction operation.

For each insertion-only candidate Iij, VT computes the sentence score SenScoreij as follows:

SenScore(ij) = SCi * LSij, (1)

which is the product of speech recognition score SCi for the ith speech recognition 

alternative Ti and language score LSij.

VT computes the SubScoreij for each substitution-only candidate Sij or insertion-and-

substitution candidate ISij as follows:

SubScore(ij) = SenScore(ij) * PSij
= SCi * LSij * PSij,

(2)

which is the product of speech recognition score SCi, language score LSij, and phrase 

similarity score PSij.

The speech recognition score SCi, language score LSij, and phrase similarity score PSij in 

Equations 1 and 2 are computed as follows.

Speech Recognition Score.: The term SCi is the speech recognition confidence of the 

spoken text Ti. In our current implementation, it is between 0 and 1 and generated by the 

Android built-in speech recognizer [12].
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Language score.: The language score LSij reflects how likely a candidate Cij is a valid 

sentence. This score was computed similar to the “Sentence Channel” score described in 

the previous work [9]. More specifically, we trained a 3-gram language model using the 

KenLM Language Model over the Corpus of Contemporary American English (COCA) [10] 

(2012 to 2017), which contains over 500 million words. The fitted language model file was 

compiled into a binary file to accelerate processing.

This language model will take a candidate sentence Cij as input, and outputs its estimated 

log probability P(Cij). By normalizing P(Cij) in the range of 0 to 1, we get the language 

score LSij:

LSij = P Cij − min P Cij
max P Cij − min P Cij

(3)

where min(Cij) and max(Cij) are the minimum and maximum language scores among all the 

correction candidates.

Phrase similarity.: The phrase similarity score PSij is defined for substitution-only, and 

insertion-and-substitution corrections candidates. It reflects how similar the substituted n-

word phrase in the original sentence (denoted by Pj, which refers to the substituted n-word 

phrase of the j-th possible substitution candidate) is to the new m-word phrase, which is the 

voice recognition result Ti. The higher PSij, the more similar Pj is to Ti.

The phrase similarity score is computed as follows. For a word wi in Pj (i = 1, 2, …, n), we 

first find a matching word wi′ in Ti that has the highest similarity score. The similarity score 

of between two words wi and wi′, denoted by Score(wi, wi′), is computed as:

Score wi, wi′ = ES wi, wi′ + W S wi, wi′
2 . (4)

The term ES(wi, wi′) is obtained by dividing the Levenshtein [31] edit distance between 

wi and wi′ with max(L(wi), L wi′ ), where L(wi) and L wi′  are the length of wi and wi′ in 

characters. This term ES(wi, wi′) has a value between 0 and 1, reflecting how similar wi is to 

wi′ in spelling. The term WS(wi, wi′) is the cosine similarity between the word embeddings of 

wi and wi′, reflecting the semantic similarity between wi and wi′. Our word embedding model 

was learned over the “Text8” dataset [34] using the Word2Vec skip-gram approach [36].

The phrase similarity PSij is computed as the weighted average of word similarity score over 

all the words in the substituted phrase Pj:

PS = ∑
i = 1

n
αi * Score wi, wi′ , (5)

where wi is a word in Pj, wi′ is the word inTi that has the highest similarity score with wi, 

namely wi′ is the matching word for wi in Ti, and αi is a weight which reflects whether 
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the position of wi in the substituted phrase Pj is close to the position of wi′ in the new text 

content Ti.

The αi is calculated as follows. We first use a range [PStart(wi), PEnd(wi)] to represent the 

relative position of wi in Pj. Both PStart(wi) and PEnd(wi) are numbers between 0 and 1. 

Assuming Pj has n words, the index of its words are from 0 to n − 1, and k is the index 

of the word wi in Pj, we define PStart(wi) = k/n and PEnd(wi) = (k + 1)/n. Following the 

same method, we represent the position of wi′ in Ti which has m words as [TStart wi′ , 

TEnd wi′ ]. Assuming the length of the overlapped range between [PStart(wi), PEnd(wi)] and 

[TStart wi′ , TEnd wi′ )] is τ, we defined αi as αi = τ · Max(n, m), where Max(n, m) is the 

maximum value of n and m.

Under this definition of αi, if Pj and Ti has the same number of words (i.e., n = m), and 

the position of wi in Pj is the same with the position of wi′ in Ti, we have αi = 1. If τ = 0, 

which means the range [PStart(wi), PEnd(wi)] and [TStart wi′ , TEnd wi′ ] have no overlap, 

we have αi = 0. Such an αi value (αi = 0) reflects the condition where the position of wi is 

far different from the position of wi′.

With the above equations (Equations 1–5), we can compute a SenScoreij or SubScoreij for 

each correction candidate. Table 1 show scores for some examples.

4.2.3 Step-3: Generating suggestions.—The objective of this step is to order 

correction candidates by their scores and output top three candidates. VT orders the 

correction candidates as follows. It first merges the list S which contains all substitution-

only candidates with the list IS which contains all insertion-and-substitution candidates 

to a merged list denoted by M, and sort the merged list M by SubScore in descending 

order. Second, VT sorts the list I which contains all insertion-only candidates by SenScore 
in descending order. Third, it compares the top elements in both the merged list M and 

sorted list I by candidates’ SenScore, and pick the one with higher SenScore as the top 1 

suggestion. It then removes the picked correction candidate from the corresponding sorted 

list and performs the comparison again to obtain 2nd, and 3rd suggestions. We used the 

SenScore to compare candidates between I and M because SenScore is common score 

between all three types candidates while insertion-only candidates do not have Subscore, so 

using SenScore can compare candidates in M and I with the same metric.

The outcome of this step is the top 3 suggestions for correcting operation. The top candidate 

is the default outcome and the 2nd and 3rd candidates are suggested as alternatives which 

can be selected by tapping it with finger touch.

The algorithm for VT text correcting is summarized in Algorithm 2.

5 EXPERIMENT 1: COMPARING VT WITH TOUCH-ONLY METHOD

In this experiment, we compared VT with the state-of-the-art touch-only method for text 

editing and text correction tasks. We implemented the multimodal text editing and correcting 

techniques on an Android smartphone (Google Pixel with Android 9) and conducted a user 
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study to evaluate its performance. We used the Android built-in SpeechRecognizer class [12] 

for voice recognition.

5.1 Participants

We recruited 16 participants (five females) from 22 to 32 years old (Mean = 26.8, Std 

= 3.1). The self reported median familiarity (1: not familiar, 5: very familiar) with the 

existing touch-only text editing technique was 5. The participants were instructed to use 

their preferred hand posture throughout the study.

5.2 Apparatus

A Google Pixel device (Android version: 9, Processor: Qualcomm Snapdragon 821, GPU: 

Qualcomm Adreno 530, RAM: 4GB LPDDR4, Internal storage: 32GB) with a 5.0” display 

(AMOLED with 1080 × 1920 pixel resolution) was used for the experiment.

5.3 Design

The study was a within-subjects design. The independent variable was the text editing and 

correcting method, which has two levels: touch-only condition and VT condition.

• Touch-Only condition. The user used the existing touch-based method in 

Android OS to complete the task. More specifically, the user could manipulate 

the caret, and select text using the default touch gestures supported by Android 
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Text View, such as tapping to reposition caret, double tapping to select a word, 

and pressing and gliding to select multiple words. After a text segment was 

selected, a floating menu with common text editing operations was displayed 

near the text as shown in Figure 4 and the user could execute an editing 

command via the menu. The floating menu design followed the design in 

Android text editing application such as Google Keep. The top-level menu 

includes common operations such as “cut”, “copy”, and “paste”; tapping the 

three dot icon will reveal more operations including “highlight”, “bold”, and 

“underline”. In this condition a user used the Google’s Gboard to correct errors 

and type corrected content.

• VT condition. The participant used VT to edit text and correct errors. The 

touch-only method was kept as a fallback method. The user may choose to 

use touch-only method to finish the task if she failed on using VT. We kept 

touch-only method as a fallback method because VT is proposed to augment 

rather than replace the existing touch-only method.

The study included two tasks: Text editing task and text correction task, which are described 

in the next section. In the experiment, the order of the two tasks and the two conditions were 

counterbalanced across 16 users.

5.4 Tasks

5.4.1 Text Editing Task.—There were 5 classes of editing tasks in total: cut & paste, 

copy & paste, highlight, bold, underline. The editing tasks were applied to 3 levels of texts: 

words, sentences, and paragraphs. In the experiment, there was one trial for a editing class 

× level combination, so there were 1 × 3 × 5 = 15 trials in total. The orders of the 15 trials 

were randomized for each condition and each user. We created editing tasks on text chosen 

from the Enron Email Dataset [27], which contained a total of about 0.5M emails from about 

150 users. Some editing tasks are shown in Figure 5 as examples.

In total, the experiment included 16 participants × 2 methods × 15 trials = 480 trials.

5.4.2 Text Correction task.—Participants corrected text errors in this task. The 

sentences with errors were selected from Palin et al.’s mobile typing dataset [43]. This 

data set had entered text and their correct versions by 37,370 users on mobile phones. We 

focused on omission and substitution errors since the editing operation of VT was designed 

to handle these two types of errors. There were 28 testing sentences for this task, 5 have 

omission errors, 23 have substitution errors.

The difficulty of a correcting task was defined by the character-level edit distance between 

the target sentence and the sentence with errors. For the edit distance ranged from 1 to 6, 

we created at least three correcting trials for each edit distance. We also created 3 trials with 

edit distance larger than 6. Table 2 shows some example sentences used in the experiment. 

We excluded sentences with errors on numbers, names and acronyms due to the difficulty 

of recognizing these words with voice input. Each participant corrected the same set of 

sentences for each condition. The order of the sentences were randomized for different 

conditions and users.
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In total, the experiment included 16 participants × 2 methods × 28 trails = 896 trials.

5.5 Procedure

In each trial, a presentation page was first displayed to explain the editing/correcting task. 

For example Figure 6(a) and Figure 6(c) show the presentation pages for an editing and 

correcting trial respectively. Clicking the “start” button started the trial. Once the task is 

accomplished, a “Success!” would show on the top right of the screen as shown in Figure 

6(d), then clicking the “Next” button would start the next trial.

During an editing trial, a user could click the “Back” button located at the bottom-left of the 

screen to return to the presentation page to check the editing instruction, and then press the 

start button again to restart the trial. The “Undo” button on the bottom right would undo the 

last editing operation. In the VT condition, there would be a “microphone” button to start the 

speech recognition, in case a user wanted to start voice input before touch input.

Before the experiment, participants completed a warm up session to get familiar with VT 

condition and touch-only condition. They used VT and touch-only conditions to complete 

10 warm-up correction trials separately, and used touch-only condition, VT single command 

mode, and VT compound command mode to complete 8 editing trials separately. In the 

experiment, participants were instructed to complete each trial (from the moment “Start” 

button being clicked to the moment “Success!” was shown) as fast as possible.

5.6 Results

5.6.1 Error Rate.—Because participants were required to successfully complete a trial to 

move to next trial, there was no erroneous (or incomplete) trial left. The error rate was 0 for 

both VT and touch-only method in both editing and correction tasks.

5.6.2 Completion Time for Editing tasks.—The task completion time was the main 

metric for evaluating the performance of each method. We referred to task completion time 

as “editing time” for an editing trial, which was defined as the duration from the moment 

the “start” button was clicked on the task presentation page to the moment that “Success!” 

was shown on the editing page. This metric measures users’ operation time to accomplish 

the editing task.

The average editing time for all trials using the designated methods are shown on the left 

part of Figure 7. The mean ± 95% CI of the editing time was 10.28 ± 0.71 seconds for 

the touch-only method and 7.20 ± 0.44 seconds for the VT method. A paired-samples t-test 

indicates that the difference was statistically significant (t15 = 5.36, p < 0.001). VT reduced 

the average editing time by 30.80%.

To investigate the performance of VT on different levels of text, the average editing time 

for different text levels using the designated methods are shown in Figure 8. We can see 

that the editing time of touch-only method increases with levels while the editing time of 

VT method stays relative stable among levels. This is because there are more texts to be 

selected for the higher levels, touch-only method needs to select text by gliding and taps on 

the screen, while VT method can automatically select texts by compound voice commands. 
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In the word level, the mean ± 95% CI of text editing time with touch-only method and VT 

method was 8.10 ± 1.10 and 7.02 ± 0.85 respectively. In sentence level, the mean ± 95% CI 

of text editing time with touch-only method and VT method was 10.80 ± 0.87 and 7.21 ± 

0.74. In paragraph level, the mean ± 95% CI of text editing time with touch-only method and 

VT method was 11.94±1.48 and 7.38±0.67. In each level, the VT method performed faster 

than the touch-only method. Pairwise comparisons with Bonferroni correction showed that 

differences were statistically significant in sentence level and paragraph level (p < 0.001) 

and not significant at word level (p = 0.2076).

To investigate how VT and touch-only method complement each other in the VT condition, 

the percentage of different methods used per level are counted, as shown in Figure 10. We 

can see that for all trials (the first bar) users chose to use VT method for more than 90% 

of the operations. For VT method, the compound commands are more frequently used than 

single commands. For words level editing, the touch-only method is used more frequently 

than sentences level or paragraphs level, this is because VT saves more time for higher 

levels.

VT’s single commands support flexibly blending voice and touch input for text editing. The 

touch input (e.g., gliding over the text) could occur before, during, or after the voice input. 

For all the single commands used in this user study, 4.7% of touch inputs occur prior to the 

voice input, 91.6% of touch inputs occur during the voice input, and 3.7% of touch inputs 

occur after the voice input. Users prefer issuing the voice command during the touch input.

The editing time for trials using the touch-only method and VT method in different editing 

tasks are shown in Figure 9. In each task, the editing time of the VT method was lower than 

the touch-only method.

5.6.3 Method Usage Pattern in Text Editing Task.—Since touch-only method was 

kept as a fallback method in the VT condition, we examined the percentage of using 

this method. The percentage of using VT-single-command, VT-compound-command, and 

touch-only method to edit text in the VT condition is shown in Figure 11. We can see that 

for each operation VT was chosen for more than 80% of the operations. The “Paste” did not 

have VT compound commands by design, still its VT single command was chosen for nearly 

all the operations.

5.6.4 Completion Time for Correction tasks.—For correction tasks, the “correcting 

time” for each trial was defined as the duration from the moment the “start” button in the 

task presentation page was clicked to the moment that “Success!” was shown on the editing 

page. This metric measures users’ operation time to correct the errors.

The average correcting time for all trials using the designated method is shown on the right 

part of Figure 7. The mean ± 95% CI of the correcting time was 6.27 ± 0.33 seconds for 

the touch-only method and 4.34±0.23 seconds for the VT method. A paired-samples t-test 

indicates that the difference was statistically significant (t15 = 7.47, p < 0.001). VT methods 

reduced the average correcting time by 29.97%.
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To understand the effectiveness of the methods, we grouped all the correcting trials by edit 

distance between the target sentence and the incorrect sentence. The average text correcting 

time for different edit distances with the two methods are shown in Figure 12. When the 

edit distance is 1, the correcting time with VT method did not show better performance than 

touch-only method. The VT method were faster than the touch-only baseline for the rest edit 

distances.

5.6.5 Method Usage Pattern in Text Correction Task.—Figure 13 shows the 

percentage of different method used per edit distance for VT condition. We can see that 

VT was chosen by users for more than 90% of all trials (the first bar). For edit distance at 1, 

more users chose to use the touch-only method than other edit distances. It is understandable 

as Figure 12 shows that touch-only method was faster than VT when edit distance is 1, 

which means only one character is wrong in the sentence.

5.6.6 Subjective feedback.—At the end of the experiment , we asked participants their 

preferred method (VT, touch-only method or No preference) for the two kinds of tasks. For 

the editing tasks, 16 out of 16 participants preferred VT method. For the correcting tasks, 15 

out of 16 participants preferred VT, 1 participant prefer touch-only method.

We also asked the participants to provide a numerical rating (1: least demanding, 10: most 

demanding) on mental and physical demand for each method and each kind of tasks. Mental 

demand describes how much mental effort is required. Physical demand describes how much 

physical effort is required. The medians of subjective ratings are shown in Figure 14. For 

the editing tasks, the subjective ratings were in favor of VT for both mental and physical 

demands. Wilcoxon Signed-Ranks Tests indicated that the subjective mental (p < 0.001) 

and physical (p < 0.001) demands of the VT method were significantly lower than those of 

the touch-only method. In correction tasks, the subjective ratings were also in favor of VT 

for both demands. Wilcoxon Signed-Ranks Tests indicated that the subjective mental (p < 

0.001) and physical (p < 0.001) demands of the VT method were significantly lower than 

those of the touch-only method.

6 EXPERIMENT 2: COMPARING VT WITH IOS’S VOICE CONTROL

In this experiment, we compared VT with iOS’s Voice Control for voice and touch based 

multimodal text editing and correction.

6.1 Participants

We recruited 14 participants (two females) from 23 to 32 years old (Mean = 26.4, Std = 

2.5). 10 of them were Android phones users and 4 of them were iPhone users. Although 

none of them had experience of using iOS’s Voice Control for text editing and correction, 

each of them went through a 25-minute long training about iOS’s Voice Control prior to the 

experiment, as explained in Section 6.5 Procedure.
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6.2 Apparatus

We used an iPhone SE device (2nd generation, iOS version: 14.6, Processor: A13 Bionic 

chip, RAM: 3GB, Internal storage: 64GB) with a 4.7” display (LCD with 1334 × 750 pixel 

resolution), and a Google Pixel phone which was the same as the phone used in Section 5.

6.3 Design

The study was a within-subjects design. The independent variable was the text editing and 

correcting method, which has two levels: VT and iOS’s Voice Control conditions.

• VT condition. The participants used VT to correct and edit text on an Android 

phone.

• iOS’s Voice Control condition. Users used iOS’s Voice Control to edit text and 

correct errors on an iPhone.

Because the objective of this experiment is to compare the voice and touch based 

multimodal methods, participants were not allowed to use keyboards to enter text and the 

floating menus for editing, in either VT or iOS’s Voice Control.

The study included two tasks: Text editing task and text correction task. In the experiment, 

the order of the two tasks and the two conditions were counterbalanced across 14 users.

6.4 Tasks

6.4.1 Text Editing task.—The text editing tasks in this study were the same as Section 

5, except that 3 tasks using the “highlight” command were not included. Because iOS’s 

Voice Control does not have a voice command to highlight text.

6.4.2 Text Correction task.—The text correction tasks in this study are the same as 

Section 5.

6.5 Procedure

The procedures for VT condition are the same as Section 5. The experiment APP for 

the VT condition was in Android system. For iOS’s Voice Control condition, we made 

an experiment APP in iOS system to replicate the same experiment procedure as the 

VT condition. The procedures are the same as the VT condition, except that there is no 

microphone button in the iOS APP because iOS’s Voice Control keeps recognising speech 

all the time.

Before the experiment, participants are thoroughly instructed about how to correct and 

edit text under each condition. For the iOS’s Voice Control condition, participants were 

demonstrated about the touch gestures in iOS for text selection, such as double tap to 

select a word, triple tap to select a paragraph, etc. And they were demonstrated about the 

voice commands in iOS’s Voice Control, such as “replace {phrase} with {phrase}”, “insert 

{phrase} before/after {phrase}”, etc. Then participants completed a warm up session to get 

familiar with VT and iOS’s Voice Control. They used each method to complete 10 warm-up 

correction trials and 8 warm-up editing trials.
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6.6 Results

6.6.1 Error Rate.—Similar to Section 5, the error rate was 0 for both VT and iOS’s 

Voice Control in both editing and correction tasks, because participants must successfully 

complete a trial to advance to the next one.

6.6.2 Completion Time for Editing tasks.—The average completion times for editing 

trials using iOS’s Voice Control and VT are shown in Figure 15. The mean ± 95% CI of the 

editing time was 13.13±1.17 seconds for the iOS’s Voice Control and 9.09 ± 0.83 seconds 

for the VT method. A paired-samples t-test indicated that the difference was statistically 

significant (t13 = 7.05,p < 0.001). VT reduced the average editing time by 30.81%.

To investigate where the improvement of VT came from, we divided the task completion 

time into two parts, text-selecting time and text-changing time. The text-selecting time is the 

time to select text or move the caret. The text-changing time is the time to change the text 

after the text was selected or the caret was moved. The text-selecting time and text-changing 

time for iOS’s Voice Control and VT are shown in Figure 15.

VT significantly reduced text-selecting time over iOS’s Voice Control for editing tasks. 

The mean ± 95% CI of the text-selecting time was 9.30 ± 1.00 seconds for the iOS’s 

Voice Control method and 3.45 ± 0.50 seconds for the VT method. A paired-samples t-test 

indicated that the difference was statistically significant (t13 = 8.86, p < 0.001). VT methods 

reduced the average text-selecting time by 62.90%.

The mean ± 95% CI of the text-changing time was 3.83 ± 0.29 seconds for the iOS’s 

Voice Control method and 5.64 ± 0.46 seconds for the VT method. A paired-samples t-test 

indicated that the difference was statistically significant (t13 = 3.88, p < 0.002).

6.6.3 Completion Time for Correction tasks.—The average completion times for 

correction trials using iOS’s Voice Control and VT are shown in Figure 16. The mean ± 95% 

CI of the correcting time was 9.80 ± 1.52 seconds for the iOS’s Voice Control and 5.10 ± 

0.44 seconds for the VT method. A paired-samples t-test indicated that the difference was 

statistically significant (t13 = 4.62, p < 0.001). VT methods reduced the average correcting 

time by 47.96%.

The text-selecting time and text-changing time for iOS’s Voice Control and VT for the text 

correcting tasks are shown in Figure 16. VT significantly reduced the text-selecting time 

over iOS’s Voice Control for correcting tasks. The mean ± 95% CI of the text-selecting time 

was 6.00 ± 1.32 seconds for the iOS’s Voice Control method and 1.63 ± 0.27 seconds for the 

VT method. A paired-samples t-test indicated that the difference was statistically significant 

(t13 = 5.75, p < 0.001). VT methods reduced the average text-selecting time by 72.83%. The 

difference between the two methods’ text-changing times were not significant for correcting 

tasks. The mean ± 95% CI of the text-changing time was 3.80 ± 0.40 seconds for the iOS’s 

Voice Control method and 3.47 ± 0.25 seconds for the VT method. A paired-samples t-test 

indicated that the difference was not statistically significant (t13 = 1.07, p = 0.30).
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6.6.4 Subjective feedback.—At the end of the experiment, we asked participants to 

rate each method on a scale of 1 to 5 (1: least preferred, 5: most preferred) for each task. The 

medians of subjective ratings are shown in Figure 17. For editing tasks, the median rating 

for VT and iOS’s Voice Control were 5 and 3. A Wilcoxon Signed-Ranks Test indicated 

that the subjective ratings of VT was significantly higher than that of iOS’s Voice Control 

(Z = 2.4809, p = 0.01314). For correction tasks, the median rating for VT and iOS’s Voice 

Control were 5 and 3. A Wilcoxon Signed-Ranks Test indicated that the subjective ratings of 

VT was significantly higher than that of iOS’s Voice Control (Z = 3.0594, p = 0.0022).

We also asked the participants to provide a numerical rating (1: least demanding, 10: most 

demanding) on mental and physical demand for each method and each task. The medians of 

subjective ratings are shown in Figure 17. For each task, the subjective ratings were in favor 

of VT for both mental and physical demands.

7 GENERAL DISCUSSION

VT as a research project developed and studied novel text editing methods that 

synergistically combine touch and voice. Touch, being intuitive and direct at expressing 

spatial information, has been central to modern mobile computing but suffers from 

weaknesses such as imprecision. Speech is fundamentally fast (typical broadcasting speed 

is around 200 words per minute) but suffers from weaknesses such as expressing precise 

spatial information. Progress in deep learning has made speech recognition increasingly 

accurate and practical [7]. Our insight guiding the design of VT was to leverage the 

respective strength of touch and voice and avoid their respective weakness. In particular 

VT uses touch gestures to approximately indicate the editing or correction scope and uses 

voice to articulate the corresponding command or replacement text. Furthermore, by using 

the speech recognition APIs pre-installed on Android Pixel Phones and developing a set of 

relatively simple algorithms against the text editing task space, VT were able to infer the 

user’s intents from natural speech and touch input that is imprecise in timing (in relation to 

the voice utterance) and space (the text selection boundary can be fuzzy).

In our studies involving a set of common editing tasks and an error correction task, VT 

demonstrated marked improvements over the state-of-the-art touch-only baseline and the 

iOS’s Voice Control baseline. In the study comparing VT with the touch-only method, VT 

reduced the time for editing tasks by 30.80% and the time for error correcting tasks by 

29.96%. The users’ subjective preference was also overwhelmingly favorable toward VT 

than the conventional touch-only method. For editing tasks, the improved efficiency was 

mainly attributed to automatic text selection by VT. For error correcting tasks, the improved 

efficiency was mainly attributed to reduction of typing actions and moving the cursor by 

touch.

In the study comparing VT with the iOS’s Voice Control method, VT reduced the time for 

editing tasks by 30.81% and the time for error correcting tasks by 47.96%. For both editing 

and correcting tasks, the improvements of VT came from reducing the text-selecting time. 

For the editing tasks, the compound command of VT does not need precise selection of 

the text before issuing the editing command. For the correction tasks, VT could inference 
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the location to replace or insert the new phrase while iOS’s Voice Control requires precise 

selection of the erroneous phrase. Although iOS’s Voice Control has voice commands to 

correct text without touch input, such as “replace {phrase} with {phrase}” and “insert 

{phrase} before/after {phrase}”, those voice commands are not usable for mistyped phrases 

that do not have recognizable pronunciations. There are 53.6% correction trials in the study 

have this kind of mistyped phrases. When using iOS’s Voice Control, those trials require 

precisely selecting the erroneous phrases before correcting them by speech.

While the improvements were quite significant and clear cut, there are many limitations 

of the study and further improvements to be made for VT. VT could use a customized 

speech recognition model. The editing tasks tested were representative of, but nonetheless 

not literately, naturally occurring tasks in real world writing activities. Depending on the app 

context, there may be a need to extend the command set. How well the current set of simple 

algorithms can scale to the extended set remains to be explored. More complex algorithms 

could be proven necessary.

8 CONCLUSION

We researched and developed VT, a voice and touch based multimodal text editing and 

correcting method for smartphones. It allows a user to combine voice and touch input to edit 

text and correct errors. For text editing, the user can tap a text area then speak a compound 

command such as “bold the paragraph” to edit text, or the user can glide the finger over a 

text segment and speak out an editing command (e.g., “cut”, “copy”, or “bold”) to edit text. 

For text correction, the user can point to the approximate location of errors and speak the 

new word or phrase to correct them. VT can work without precise text selection because 

it can infer a user’s editing or correcting intention by combining the voice input, touch 

input, and text context. Our user study showed that VT greatly improves the text editing 

and correcting performance over the existing touch-only method and iOS’s Voice Control 

method. Compared to touch-only method, VT reduced the task completion time of text 

editing tasks by 30.80%, and the time for text correcting by 29.97%. Compared to iOS’s 

Voice Control method, VT reduced the task completion time of text editing tasks by 30.81%, 

and the time for text correcting by 47.96%. VT is also strongly preferred by participants. 

Overall, VT mitigates the weaknesses of touch and voice input by leveraging the strengths of 

the other, improving the efficiency of text editing and correcting on mobile devices.
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CCS CONCEPTS

• Human-centered computing → Human computer interaction (HCI); 
Interaction techniques.
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Figure 1: 
Demonstration of VT. (a): To edit a sentence, the user taps the sentence and speaks the 

editing command. (b) is the result of the editing operation. (c): To correct errors in a 

sentence, the user taps the position of the errors and speaks the new content for correction. 

(d) is the outcome of correction. The phrase “jimos ober” in the original sentence is 

corrected to “jumps over”.
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Figure 2: 
The workflow of VT. The multimodal input from a user is represented as X =< t, s > where t 
is the touch input, and s is the voice input. The algorithms and components in this figure are 

explained later in this section.
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Figure 3: 
Examples for Single Command (left) and Compound Command (right) modes. (a): in the 

Single Command example, the user is selecting the text “tomorrow at noon” by gliding the 

finger and dictating “bold” at the same time. (b): the selected text becomes bold. (c) in 

the Compound Command example, a user taps the first paragraph and dictates “bold this 

paragraph”. (d): the paragraph becomes bold.
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Figure 4: 
The floating menu for text editing task in the touch-only condition. (a) The menu is 

displayed after some text are selected. The “paste”, “cut” and “copy” are displayed as 

default, extra menu items will be displayed after clicking the three dots at the end of the 

menu. (b) Extra menu items are shown after clicking the three dots in (a). Clicking the back 

arrow in the menu will go back to the menu in (a).
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Figure 5: 
Examples of the editing tasks on different levels of text. Figure 5a is a task to highlight 4 

words (word-level task). Figure 5b is a task to make a sentence bold (sentence-level task). 

Figure 5c is a task to cut and paste a paragraph, the paragraph in the box needs to be cut and 

pasted at the location pointed by the arrow.
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Figure 6: 
The procedures of the experiment, (a) and (b) are for the text editing task, (c) and (d) are 

for text correction task. (a): the presentation page for a text editing task. (b): a participant is 

highlighting the text by voice command and gliding. (c): the task presentation page of a text 

correction task. (d): outcome of using VT method to correct the error. Two alternatives are 

shown under the editing text. The user can choose a suggestion by tapping it.
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Figure 7: 
The mean (95% CI) of completion time by task type × method.
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Figure 8: 
The mean (95% CI) of completion time by text level × method in text editing task.
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Figure 9: 
The mean (95% CI) of completion time by editing task type × method.
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Figure 10: 
In the VT condition, the percentage of using VT-single-command, VT-compound-command, 

and touch-only method to edit text by words, sentences and paragraphs level tasks in the text 

editing task. Note that in the VT condition, touch-only method was a fallback method.
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Figure 11: 
In the VT condition, the percentage of using VT-single-command, VT-compound-command, 

and touch-only method to edit text by task type, in the text editing task.
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Figure 12: 
The mean (95% CI) of completion time by edit distance × method.
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Figure 13: 
In the VT condition, the percentage of using VT and touch-only method to correct errors by 

edit distance in the text correction task.
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Figure 14: 
Median of subjective ratings. Lower rating means lower mental or physical demand.
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Figure 15: 
Mean (95% CI) of completion times for editing tasks for iOS’s Voice Control and VT. The 

mean text-selecting time and mean text-changing time are shown in different colors.
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Figure 16: 
Mean (95% CI) of completion times for correction tasks for iOS’s Voice Control and VT. 

The mean text-selecting time and mean text-changing time are shown in different colors.
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Figure 17: 
Median of subjective ratings for text editing and correction using VT and iOS’s Voice 

Control. For measure 1, 2, 4 and 5, a lower rating means lower mental and physical demand. 

For measure 3 and 6 (1: least, 5: most preferred), a higher score means the method is more 

preferred. VT received favorable ratings in all categories.
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