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Acinetobacter baumannii is one of the main causes of nosocomial infections. Increasing
numbers of multidrug-resistant Acinetobacter baumannii cases have been reported in
recent years, but its antibiotic resistance mechanism remains unclear. We studied 9
multidrug-resistant (MDR) and 10 drug-susceptible Acinetobacter baumannii clinical
isolates using Label free, TMT labeling approach and glycoproteomics analysis to
identify proteins related to drug resistance. Our results showed that 164 proteins
exhibited different expressions between MDR and drug-susceptible isolates. These
differential proteins can be classified into six groups: a. proteins related to antibiotic
resistance, b. membrane proteins, membrane transporters and proteins related to
membrane formation, c. Stress response-related proteins, d. proteins related to gene
expression and protein translation, e. metabolism-related proteins, f. proteins with
unknown function or other functions containing biofilm formation and virulence. In
addition, we verified seven proteins at the transcription level in eight clinical isolates by
using quantitative RT-PCR. Results showed that four of the selected proteins have
positive correlations with the protein level. This study provided an insight into the
mechanism of antibiotic resistance of multidrug-resistant Acinetobacter baumannii.

Keywords: Acinetobacter baumannii, antibiotic resistance, proteomic, TMT, label free, glycopeptides
Abbreviations: MDR, multidrug-resistant; TMT, tandem mass tag; TEAB, triethyl ammonium bicarbonate; HCD, higher
energy collisional dissociation; PPI, protein-protein interaction; DEP, differential expressed proteins; GO, Gene Ontology;
MBL, metal b-lactamase; PBP, penicillin binding proteins; BAM, b Barrel Outer Membrane Protein; Omp, Outer membrane
protein; RHD, Rhodanese-Like Domain; SOD, Superoxide dismutase; Usp, Universal stress protein.
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HIGHLIGHTS

1) 164 proteins exhibited different expressions between drug-
resistant isolates and drug-susceptible isolates.

2) Classifying six groups of differential expressed proteins
between drug-resistant isolates and drug-susceptible isolates.

3) A specifically expressed polysaccharide on the S21 site of
adenylate kinase was found in most MDR strains.
INTRODUCTION

Nosocomial infections caused by multidrug-resistant (MDR)
bacteria strains are a serious problem worldwide in decades.
Acinetobacter baumannii has become one of the most common
species that cause nosocomial infections and healthcare-associated
infections such as bacteremia, pneumonia, meningitis, skin and
wound infections, and urinary tract infection due to its strong
biofilm formation ability and the ability to resist nutrient
deprivation and antibiotics (Dijkshoorn et al., 2007; Shin and
Park, 2015; Mujawar et al., 2019). The traditional first-line
treatment of A. baumannii uses carbapenem antibiotics such as
imipenem, but since the early 1990s, there have been reports of
outbreaks caused by imipenem-resistant A. baumannii (Tankovic
et al., 1994). Other therapeutic antibiotics include aminoglycosides,
sulbactam, polymyxin and tigecycline, etc., and combined
antibiotics are also being used. However, studies have shown that
MDR strains which are resistant to different antibiotics are reported
commonly (Li et al., 2006; Peleg et al., 2007; Göttig et al., 2014; Al-
Kadmy et al., 2020). Whether for developing new drugs or making
full use of old drugs to treat infections caused by MDR strains, it is
necessary to fully understand the antibiotic resistance mechanism.
A full understanding of the resistance mechanism is critical to
improve the eradication rate of A. baumannii. Studies have shown
that the antibiotics resistant mechanism mainly includes the
modification of the target site, inactivation or modification of the
drugs by producing enzymes such as b-lactamases, the activation of
the efflux pump and the changes of the membrane structure and
permeability of bacteria (Dijkshoorn et al., 2007; Zarrilli et al., 2013;
Lee et al., 2017; Ramirez et al., 2020).

Genomics and proteomics studies can explore the expression
of genes or proteins under various conditions thus to help
understand the different mechanisms of bacteria drug resistance.
At present, there have been extensive researches on A. baumannii
through proteomic analysis to explore the relevant mechanisms of
drug resistance, drought tolerance, biofilm formation, virulence,
and nutrient regulation (Kwon et al., 2009; Shin et al., 2009;
Nwugo et al., 2011; Long et al., 2013; Gayoso et al., 2014; Scribano
et al., 2019). Researches on drug resistance of A. baumannii have
studied the differences of a single strain pre and after the induction
of resistance (Fernández-Reyes et al., 2009; Hood et al., 2010; Hua
et al., 2017) or under different culture conditions (Yun et al., 2011;
De Silva et al., 2018), or the difference between susceptible strains
and resistant strains (Siroy et al., 2006; Vashist et al., 2010; Li et al.,
2015; Wang et al., 2016). However, the researches usually analyze
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
only one or two strains and focused only on a certain antibiotic.
Different proteomics methods have their advantages and
disadvantages. Using more than one proteomics method can
complement each other and enhance the reproducibility and
effectiveness of proteomics (Tiwari and Tiwari, 2014). In
addition, protein glycosylation is an important means of protein
modification, and different glycosylation modifications are critical
to protein function (Ahmad Izaham and Scott, 2020). In this
study, we intend to use the approach of label free and tandem
mass tag (TMT) labeling-based proteomics and glycoproteomes
to analyze the different proteins between MDR and drug-
susceptible A. baumannii to fully clarify the mechanism of the
antibiotic resistance.
MATERIALS AND METHODS

Bacteria Strains
Nineteen A. baumannii clinical strains (9 MDR and 10 susceptible
isolates) were isolated from different patients in the second affiliated
hospital of Nanchang University, China, during 2011–2019. The
isolates were identified by VITEK-2 compact system and 16S
ribosomal DNA identification. The 16S ribosomal DNA were
amplified with the primer (16s-PCRF and 16s-PCRR) showed in
Supplementary Table 1. The fragments were sequenced and blasted
in NCBI non-redundant database for species identification.
Antibiotic susceptibility of the following antibiotics were tested by
Kirby–Bauer test (KB-test): b-lactam antibiotics [piperacillin,
ceftazidime, ceftriaxone, cefotaxime, cefepime, imipenem, Unasyn
(ampicillin/sulbactam), and Tazocilin (piperacillin/tazobactam)],
aminoglycoside (gentamicin and tobramycin), tetracyclines
(minocycline and tigecycline), polymyxin B, fluoroquinolone
(levofloxacin, Ciprofloxacin), and paediatric compound
sulfamethoxazole tablets. Data of these isolates are shown in
Supplementary Table 2.

Protein Extraction
The experiment process is shown in Figure 1. All the isolates
were cultured in LB broth at 37°C with shaking until OD600 nm of
0.7–0.8 reached. The cells were collected and lysed by 8M urea in
50 mM triethyl ammonium bicarbonate (TEAB) and ultrasonic
breakage for 20 s. The protein samples were collected via
centrifugation at 16,000×g for 10 min at 4°C. The protein
concentration of the supernatant was determined using BCA
Protein Assay Kit (Thermo-Fisher Scientific).

Trypsin Digestions and Peptides
Purification
The proteins were reduced by incubation with TCEP (200 mM)
at 55°C for 1 h and alkylated by incubation with iodoacetamide
(IAA, 375 mM, Thermo Scientific) for 30 min in dark at room
temperature. TEAB (100 mM) was used to adjust the urea
concentration of less than 1M in all the protein samples, and
then the proteins were digested to peptides using trypsin
(Promega) at a trypsin/protein ratio of 1:50 (w/w) overnight at
37°C. The generated tryptic peptides were dried by speed
February 2021 | Volume 11 | Article 625430

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Wang et al. Acinetobacter baumannii Drug Resistant Proteins
vacuum at 4°C and desalted with C18 Spin column. For TMT
labeling, the resultant peptide mixture of 10 isolates were labeled
using TMT reagent kit (Thermo Scientific, USA) as resistant
strain-127 isobaric tag and susceptible strain-126 isobaric tag
(Chen et al., 2014). The combinations are as follows: A151 and
A9, A159 and A11, A160 and A21, A161 and A90, A162
and A132.

Nano-HPLC-MS/MS Analysis
The samples were reconstituted in 0.1% formic acid (FA) and
separated on a NanoAcquity Ultra Performance Liquid
Chromatography (UPLC) system (EASY-nLC 1000, Thermo
Scientific). Afterward, the samples were fitted with a nanoAcquity
Symmetry C18 trap column (100 mm × 2 cm, NanoViper C18, 5
mm, 100Å) and an analytical column (75 mm × 15 cm, NanoViper
C18, 3 mm, 100Å). The mobile phase A was 100:0.1 HPLC grade
water/FA, and mobile phase B was 100:0.1 ACN/FA. Each sample
was loaded on the trapping column with a flow rate of 2.0 ml/min,
followed by separation on the analytical column using a 100 min
3%–35%mobile phase B linear gradient at a flow rate of 0.8 ml/min.
Retention Time Calibration Mixture (Thermo Scientific) was used
to optimize LC and MS parameters and was used to monitor the
stability of the system.

The analytical column was coupled to a high-resolution Q-
Exactive Plus mass spectrometer (Thermo Fisher Scientific, San
Jose, CA) using a nano-electrospray ion source, which was
operated in positive ion mode. The source was operated at 2.0
kV with transfer-capillary temperature maintained at 250°C and
S-Lens RF level set at 60. MS spectra were obtained by scanning
over the range m/z 350–2000. Mass spectra were acquired in the
Orbitrap mass analyzer with 1 microscan per spectrum for both
MS and MS/MS. Resolving power for MS and MS/MS were set at
70,000 and 17,500, respectively. Tandem MS data were acquired
in parallel with MS, on the top 20 most abundant multiply
charged precursors, with higher energy collisional dissociation
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(HCD) at normalized collision energy of 30V. Precursors were
isolated using a 2.0 m/z window and dynamic exclusion of 60 s
was enabled during precursor selection. The data were
determined twice.

Proteome Data Analysis
For TMT labeling, Proteome Discoverer (version 1.4, Thermo
Scientific, USA) was used to search the UniProtKB/Swiss-Prot
database. The parameters were set as follows: integration
tolerance, 20 ppm; precursor mass tolerance, 10 ppm; fragment
mass tolerance, 0.02 Da. Dynamic modification Oxidation/+15.99
Da and carbamidomethyl/+57.02 Da) were set as dynamic and
static modifications. Proteins that were differentially expressed
were determined by peptide identifications with 95% confidence
interval. Meanwhile, TMT signal analyses showed at least two-fold
change in abundance, and its P value was <0.05 in unpaired
Student’s t-test.

For Label free, peptide identification and label free relative
quantification analysis were carried out using Peaks Studio 8.5
software (Bioinformatics Solutions Inc., Waterloo, ON, Canada).
Using A. baumannii UniProtKB database (326,258 sequences,
downloaded in June 2019). Input parameters: 20 ppm precursor
mass tolerance, 0.02 Da fragment mass tolerance. The false discovery
rates for protein and peptides were set at a maximum of 1%.

Only those protein groups which passed the filter are displayed
in the protein profile heatmap. The relative protein abundance is
represented as a heat map of the representative proteins of each
protein group. The representative proteins are clustered if they
exhibit a similar expression trend across the samples.

Intact Glycopeptide Enrichment via
Hydrophilic Interaction Liquid
Chromatography (HILIC)
Glycopeptides in the samples were enriched by HILIC (The Nest
Group, Inc.). Briefly, the tryptic and desalted peptides were
FIGURE 1 | The experiment process of this study.
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resuspended in 80% ACN. The appropriate amounts of HILIC
particle in 80% ACN were placed in Pierce spin columns
(Thermo Scientific) and equilibrated three times using 80%
ACN, which was followed by sample loading three times and
washing two times with 80% ACN. Then, glycopeptides bound to
the HILIC column were eluted three times with 100 ml of 0.1%
TFA. The samples were dried by a SpeedVac and stored at −80°C
until analysis.

The analytical column was coupled to a high-resolution Q-
Exactive Plus mass spectrometer (Thermo Fisher Scientific, San
Jose, CA) with a nano electrospray ion source operated in
positive ion mode. The source was operated at 2.0 kV with the
transfer capillary temperature maintained at 250°C and the S-
lens RF level set at 60. MS spectra were obtained by scanning
over an m/z range of 350–2000. Mass spectra in both MS and
MS/MS were acquired in an Orbitrap mass analyzer with 1
microscan per spectrum. The resolving power for MS and MS/
MS was set at 70,000 and 17,500, respectively. Tandem MS data
on the top 20 most abundant multiply charged precursors were
acquired in parallel with MS data, with higher energy collisional
dissociation (HCD) at a normalized collision energy of 30 V.
Precursors were isolated using a 2.0 m/z window, and dynamic
exclusion of 60 s was enabled during precursor selection.

Database searches were performed using Byonic software
(v2.13.17, Protein Metrics, Inc.). The following parameters
were set for the search: cleavage sites, RK; cleavage side, C-
terminal; digestion specificity, fully specific; missed cleavages, 2;
precursor mass tolerance, 10 ppm; fragmentation type, QTOF/
HCD; fragment mass tolerance, 0.02 Da, and protein false
discovery rate (FDR), 1% FDR (or 20 reverse counts). All the
other settings were set at their default values.

Byonic scores reflect the absolute quality of the peptide-
spectrum match and not the relative quality compared to other
candidate peptides. The Byonic score ranges from 0 to
approximately 1,000, with 300 being a good score, 400 a very
good score, and peptide-spectrum matches with scores over 500
almost certainly correct. The DeltaMod value indicates whether
modifications are confidently localized; DeltaMod values over 10
indicate a high likelihood that all modification placements are
correct. Therefore, a score over 300, a DeltaMod value over 10, a q-
value < 0.05, and an FDR < 0.1% were set as thresholds in this
study. Systematic and comprehensive analyses of specific
glycopeptides, glycoforms, and glycosylation sites related to our
samples from all the proteins identified by Byonic were carried out.

Bioinformatics Analysis
To further understand the functions of differential expressed
proteins (DEP) between drug-resistant and drug-susceptible A.
baumannii isolates, The DEPs were further submitted to NCBI
(National Center for Biotechnology Information) and Uniprot
(https://www.uniprot.org/) for GO enrichment analysis
(statistically significant differences of GO terms were defined
by P < 0.05), KOBAS 2.0 (KEGG Orthology Based Annotation
System; http://kobas.cbi.pku.edu.cn/home.do) for KEGG
pathway analysis and STRING database (https://string-db.org/)
for protein-protein interaction (PPI) analysis. The subcellular
localization and the specific information of the DEPs were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
identified by pSORTb version 3.0.2 (https://www.psort.org/
psortb/) and Pubmed, respectively. The potential glycosylation
sites were output from NetOGlyc 4.0 Server (http://www.cbs.dtu.
dk/services/NetOGlyc/).

RNA Extraction and Real-Time
Quantitative Polymerase Chain
Reaction (qRT-PCR)
Eight A. baumannii clinical isolates (four resistant strains and
four susceptible strains) from the same hospital (data shown in
Supplementary Table 3) were used to determine the transcription
of seven kinds of DEPs: Aminoglycoside (3’) phosphotransferase
AphA1 or APH (3’)-Ia (AFV53106), Beta-lactamase AmpC
(AFA35105/AFA35107), Outer membrane protein assembly
factor BamD (WP_000056810), MFS transporter (RSR57702),
ABC transporter (AXV52620), HlyD membrane-fusion protein
of T1SS (ENV25944), and Elongation factor Tu (KLT84190).
Primers are listed in Supplementary Table 1. All isolates were
grown overnight at 37°C in LB broth, and sub-cultured 1/100 into
fresh LB broth for 4 h. RNA extraction was performed using
RNAprep Pure Kit (TianGen). The extracted RNAwas reversed to
cDNA using the All-in-One™ First-Strand cDNA Synthesis Kit
(TaKara). Then qRT-PCR were performed using the 2*SYBR
Green qPCR Master Mix (Low Rox). The CT value was
obtained by using the 7500 Fast DX instrument, rpoB was used
as the internal parameter. The normalized relative expression
levels of the target genes were calculated by the comparative cycle
threshold (2-DDCT). The data obtained were analyzed and plotted
with Graphpad prism version 5.0. Error bars represent the SDs.
Significant differences were defined by P < 0.05 (*), P < 0.01(**),
and P < 0.001(***).
RESULTS AND DISCUSSION

Proteomics analysis uses non-targeted research to directly detect
the expression of a large number of proteins. In this study, we
used TMT labeling-based proteomics, label-free proteomics, and
glycoproteomics to analyze the differentially expressed proteins
between 9 MDR and 10 drug-susceptible A.baumannii isolates.
All MDR strains are resistant to Cefepime, imipenem, gentamicin,
tobramycin, levofloxacin, ciprofloxacin, and paediatric compound
sulfamethoxazole. Drug-susceptible isolates are only non-
susceptible to penicillins and cephalosporins of the eight
antimicrobial categories listed in Supplementary Table 2.

Analysis of TMT Labeling-Based
Proteomics
For the TMT labeling-based proteomics, we randomly selected
10 isolates (5 MDR and 5 drug-susceptible) and made them into
5 drug-resistant and drug-susceptible pairs. Each pair was
subjected to two biological replicates. The MDR isolates and
drug-susceptible isolates were labelled by 127 and 126 reagent,
respectively. In the first pair, 2,270 and 2,730 proteins were found
in two biological iterations, and a total of 3,884 proteins were
identified. In the second pair, 2,050 and 2,061 proteins were
February 2021 | Volume 11 | Article 625430
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found respectively, and a total of 3,150 proteins were found. In
the third pair, 2,695 and 2,200 proteins were found, and a total of
3,782 proteins were found. In the fourth pair, 1,953 and 1,874
proteins were found, and a total of 2,977 proteins were identified.
In the fifth pair, 2,021 and 1,927 proteins were found, and a total
of 3,051 proteins were found. In order to conduct an overall
analysis, we finally selected 127/126 ≥ 2 and ≤0.5 data for
analysis. As seen in Supplementary Table 4, a total of 70
proteins were obtained with the same expression trend in more
than 4 pairs, among which there were 23 kinds of proteins with
the same expression trend in 5 pairs. The relative molecular mass
of the protein is between 6 and 118 kda, a larger proportion is
between 10 and 50kda, and the isoelectric point is between 4.42
and 11.12. 58 up-regulated proteins (127/126 ≥ 2) and 12 down-
regulated proteins (127/126 ≤ 0.5) were expressed in MDR
isolates. Gene Ontology (GO) analysis can classify genes to
different groups according to their functions. Based on the GO
annotation analysis, the proteins were classified into three
categories: molecular function, cellular component, and biological
process. GO analysis with the largest number of proteins involved
were shown in Figure 2, up-regulated proteins are classified into 20
molecular function related proteins, 11 cellular component related
proteins, and 14 biological process related proteins; downregulated
proteins are classified into 7 molecular function related proteins, 3
cellular component related proteins, and 5 biological process related
proteins. The DEPs of MDR and drug-susceptible isolates focused
on catalytic activity and binding. There are 22 KEGG pathways
involved in the down-regulated proteins, most of which are
involved in metabolic pathways; 39 KEGG pathways are involved
in the up-regulated proteins, which are mostly involved in
metabolic pathways, carbon metabolism, and biosynthesis of
amino acids (Supplementary Figure 1). The PPI net showed the
interactions of the 59 proteins. The average node degree is 2.78 and
the interaction of ribosomal-related proteins is relatively dense
(Supplementary Figure 2).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Analysis of Label Free Proteomics
We analyzed 10 drug-susceptible isolates and 9 MDR isolates by
label free proteomics and obtained 102 proteins that are all
present in more than 8 resistant isolates and only in 1 or less
susceptible isolate (Supplementary Table 5). The number of
proteins involved in molecular function, cellular component, and
biological process are 52, 20, and 33, respectively (Figure 3).
DEPs mainly focused on catalytic activity, binding, cellular
process, metabolic process, and cellular anatomical entity. A
total of 48 KEGG pathways (input numbers) were involved in
Metabolic pathways (28), Carbon metabolism (11), Biosynthesis
of amino acids (10), Glycine, serine and threonine metabolism
(7), Valine, leucine and isoleucine degradation (6), Cysteine and
methionine metabolism (6), Glyoxylate and dicarboxylate
metabolism (5), etc. (Supplementary Figure 3). The PPI
network diagram showed a total of 87 protein interactions, with
an average node degree of 0.437 (Supplementary Figure 4). The
heat map of similar expressed proteins showed differences in the
expression of resistant isolates and susceptible isolates, differences
in strains would also lead to different expression levels of some
proteins in different bacteria (Figure 4).
Different Expressed Proteins (DEPs)
in Drug-Resistant Isolates vs. Drug-
Susceptible Isolates
The results from TMT labeling-based proteomics and label free
proteomics were combined and we found a total of 164 DEPs.
The subcellular localizations of these DEPs were mainly in the
cytoplasm, the proteins up-regulated or identified by label free
proteomics mainly on the periplasmic or outer membrane of the
cell (Figure 5). We further classified the proteins into six groups
with different functions. According to this classification, there
were 12, 20, 22, 14, 60, and 37 differentially expressed proteins of
A, B, C, D, E, and F group, respectively. As following:
FIGURE 2 | GO enrichment analysis of DEPs in TMT-labeling proteomics. The MDR isolates and drug-susceptible isolates were labelled by 127 and 126 reagent.
Up-regulated and down-regulated means 127/126 ≥ 2 and ≤0.5, respectively. Each column represented the number of proteins involved in GO annotation analysis
of DEPs in TMT-labeling proteomics. Statistically significant differences of GO terms were defined by P < 0.05.
February 2021 | Volume 11 | Article 625430
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Proteins Related to Antibiotic Resistance
In this study, we found 12 proteins more abundant in the MDR
isolates classified to group a (Table 1). These 12 proteins belong
to a variety of known antibiotic resistance proteins, such as beta-
lactamases and aminoglycoside phosphotransferase. The
resistance of Acinetobacter to b-lactam is mainly due to the
synthesis and enzymatic degradation of the species-specific b-
lactamase, all four types of b-lactamases have been identified in
A. baumannii (Lee et al., 2017), and the analysis of 23 MDR A.
baumannii clinical isolates in Taiwan has shown that all A.
baumannii can encode AmpC cephalosporins (Lin et al., 2011).
OXA-23 and OXA-72 belong to class D b-lactamases (Donald
et al., 2000; Evans and Amyes, 2014). Metal-dependent
hydrolases such as metal b-lactamase (MBL) are zinc-
dependent hydrolases that can cleave the b-lactam bond of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
most b-lactam antibiotics (Parimelzaghan et al., 2016; Kwapien
et al., 2017). In this study, both metal-dependent hydrolase-
related proteins and b-lactamase-related proteins were up-
regulated in MDR isolates. The resistance of Acinetobacter to
aminoglycoside antibiotics is mainly through N-acetylation,
adenylation or O-phosphorylation modification to inactivate
aminoglycosides (Seward et al., 1998; Shakil et al., 2008).
AphA1b is one of the modifying enzymes involved in
aminoglycoside resistance (Nigro et al., 2011). In this study, it
is uniquely expressed in MDR isolates, which can explain its
prevalence to tobramycin, gentamicin, and other aminoglycoside
antibiotics. DacD (D-alanyl-D-alanine carboxypeptidase)
belongs to penicillin binding proteins (PBPs) (Spidlova et al.,
2018), also called PBP6b in A. baumannii, which is involved in
the metabolism of peptidoglycans (Cayô et al., 2011). In addition,
FIGURE 3 | GO enrichment analysis of DEPs in label free proteomics. The proteins in label free proteomics are all present in more than 8 resistant isolates and only
in 1 or less susceptible isolate. Each column represented the number of proteins involved in GO annotation analysis of DEPs in label free proteomics. Statistically
significant differences of GO terms were defined by P < 0.05.
FIGURE 4 | Heat map of the representative proteins of each isolate. “R” means drug-resistant isolates and “S” means drug-susceptible isolates. The representative
proteins identified from label free proteomics are clustered if they exhibit a similar expression trend across the samples. The hierarchical clustering is generated using
neighbor joining algorithm with a Euclidean distance similarity measurement of the log2 ratios of the abundance of each sample relative to the average abundance.
February 2021 | Volume 11 | Article 625430
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studies have found that Cell division protein ZapA is related to
the resistance of b-lactam antibiotics (Knight et al., 2016). These
proteins are all up-regulated in the drug-resistant isolates in
this study.

Membrane Proteins, Membrane
Transporters, and Proteins Related
to Membrane Formation
The second category contains of 20 DEPs (Table 2) including 1
down-regulated protein and 19 up-regulated proteins. Thioredoxin,
which is a member of the thioredoxin superfamily, is involved in the
virulence of bacteria and also related to the expression of genes
related to the ABC transport system (May et al., 2019). This protein
is shown to be down-regulated in our results which are consistent
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
with the literature. The upregulated proteins in this group include
proteins that play a key role in the formation of the outer
membrane, proteins related to maintaining the integrity of the
outer membrane, pump proteins, and outer membrane proteins: b
Barrel Outer Membrane Protein (BAM) is related to bacterial
nutrient acquisition, protein secretion, signal transduction and
bacterial survival, and drug resistance (Sikora et al., 2018). Porin
has been shown to play an important role in the resistance
mechanism (Lee et al., 2017). Lipoprotein can act as a fusion
protein to promote the complete biogenesis of the cell membrane
(Melly et al., 2019). Studies have found that lipoproteins are
upregulated in MDR A. baumannii strains (Chopra et al., 2013).
SurA is a periplasmic chaperone protein involved in the folding of
outer membrane porins, and is closely related to the integrity of the
outermembrane (Bell et al., 2018). The alpha/beta hydrolase folding
superfamily is a class of hydrolase enzymes involved in lipid
metabolism, cell membrane maintenance, virulence, efflux, and
metabolism of cell (Johnson, 2017). Outer membrane protein A
(OmpA) is the outer membrane protein of bacteria, which is related
to the efflux pump and drug resistance of bacteria (Kwon et al.,
2017). The expression of OmpW is down-regulated in carbapenem-
resistant strains, and its down-regulation can make PBPs
unavailable (Tiwari et al., 2012). Study have also found that
OmpW has a higher expressed in MDR strains (Chopra et al.,
2013). The outer membrane protein CarO is associated with
carbapenem drug resistance (Xiao et al., 2016). The
multicomponent efflux pump system is widely present in bacteria
and it can make bacteria resistant to antibiotics by pumping out
antibiotics. Six superfamily of resistant pumps have been identified
in A. baumannii: major facilitator superfamily (MFS), resistance
nodulation division (RND), multidrug and toxic compound
extrusion (MATE), small multidrug resistance (SMR), ATP-
binding cassette (ABC), and proteobacterial antimicrobial
compound efflux (PACE) (Pérez-Varela et al., 2019). In our
study, we found that both ABC transporter, MFS transporter, and
RND transporter were up-regulated. MFS efflux pump and ABC
transporter have been found to be associated with quinolone
FIGURE 5 | The subcellular localization of DEPs in TMT-labeling proteomics
and label free proteomics.
TABLE 1 | Proteins related to antibiotic resistance.

Genbank
accession

Uniprot
accession

Subcellular
localization

Protein name Classification

TPU58603 A0A335ECA6 Unknown Beta-lactamase OXA-23 TMT up-regulated & Label-free
AJZ68886 A0A0D5W3B6 Unknown Carbapenem-hydrolyzing beta-

lactamase OXA-72 (Fragment)
Label-free

AFI94694 A0A454ATR7 Unknown D-alanyl-D-alanine carboxypeptidase Label-free
EEY77424 D0S1V7 Periplasmic Beta-lactamase Label-free
ALY01035 A0A0E4HMD5 Periplasmic Beta-lactamase Label-free
AFV53106 K4P0R4 Cytoplasmic Membrane Aminoglycoside (3’) phosphotransferase

AphA1 or APH (3’)-Ia
Label-free

EOQ64883 R8Y658 Periplasmic Beta-lactamase Label-free
ADX04518 A0A335L319 Unknown Metal-dependent hydrolase of the

aminoacylase-2/carboxypeptidase-Z
family

Label-free

VAX45430 A0A0A8XI29 Unknown Cell division protein ZapA Label-free
ANA37603 A0A334SNB2 Cytoplasmic Zn-dependent hydrolase Label-free
AFA35105 A7Y416 Periplasmic Beta-lactamase Label-free
AFA35107 A7Y413 Periplasmic Beta-lactamase Label-free
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resistance and beta lactam resistance (Correia et al., 2016; Xiao et al.,
2016; Lari et al., 2018; Pérez-Varela et al., 2018). T1SS is formed by
HlyB (ABC transporter), HlyD (membrane fusion protein), and
TolC (outer membrane). Its C-terminal can carry a secretion signal,
and the deletion of the C-terminal will cause secretion blocked
(Holland et al., 2016). In our study, both the C-terminal target
domain and the hypothetical protein F962_01862 encoding HlyD
were up-regulated.

Stress Response-Related Proteins
We found there were 22 stress response-related proteins
differentially expressed between MDR and drug-susceptible
isolates (Table 3), among them, the expression of Antibiotic
biosynthesis monooxygenase which can oxidize and inactivate
antibiotics (Minerdi et al., 2016; Koteva et al., 2018) is
interestingly down-regulated. The expression of heat shock
proteins and acid shock proteins were upregulated. Heat shock
protein is generally used as a molecular chaperone or protease to
repair damaged proteins, and its expression increases during
stress response such as antibiotic induction. Bacteria with heat
shock proteins induced are more resistant to antibiotic
environments (Cardoso et al., 2010). Acid shock protein can
improve the acid resistance of bacteria (Villarreal et al., 2000).
Other proteins related to the stress response and resistance to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
environment were also upregulated as following: Trigger factor
(TF) can play a key role as a molecular chaperone, also related to
the resistance to the external environment (Lee et al., 2009).
Heavy metal-associated (HMA) domain proteins can give
bacteria the ability to resist high metal environments
(Maynaud et al., 2014). Rhodanese-Like Domain (RHD)
Protein participates in biological processes such as sulfur
metabolism and environmental adaptability (Cipollone et al.,
2007). Superoxide dismutase (SOD) can effectively catalyze the
conversion of superoxide free radicals and protect bacteria from
reactive oxygen. It has been shown to be related to the oxidative
stress response of Acinetobacter baumannii and its resistance to
antibiotics (Heindorf et al., 2014). Catalase catalyzes the
degradation of hydrogen peroxide and is closely related to the
defense of bacteria against related environments (Sun et al.,
2016). Universal stress protein (Usp) helps bacteria adapt to
oxidative stress, high temperature, pH, etc. (Elhosseiny et al.,
2015). Aldehyde dehydrogenase (AldA) is related to a variety of
metabolic processes such as redox regulation of bacteria, and can
participate in environmental stress defense such as hypochlorite
stress (Imber et al., 2018). Cysteine synthase CysK can be used to
synthesize cysteine (Bogicevic et al., 2016), and cysteine related
products are important molecules required for the oxidative
stress response of bacteria (Hicks and Mullholland, 2018).
TABLE 2 | Proteins related to membrane proteins, membrane transporters, and membrane formation.

Genbank
accession

Uniprot
accession

Subcellular
localization

Protein name Classification

OIG07664 A0A1S2FR42 Cytoplasmic Thioredoxin (Fragment) TMT down-regulated
WP_000056810 A0A009Q2E5 Outer Membrane Outer membrane protein assembly

factor BamD
TMT up-regulated & Label-free

EXC53439 A0A009SK97 Cytoplasmic Membrane Ubiquinol oxidase subunit 2 TMT up-regulated
CAP01694 B0VSC6 Outer Membrane Putative lipoprotein TMT up-regulated
EXC52624 A0A009SI69 Unknown Chaperone SurA TMT up-regulated
PZM13340 A0A3F3MK29 Outer Membrane OmpA family protein TMT up-regulated
SSU67456 A0A334ZIV7 Unknown Surface antigen TMT up-regulated
KCY23168 A0A062IZ25 Outer Membrane Porin subfamily protein TMT up-regulated & Label-free
EXC51784 A0A009TK41 Outer Membrane Peptidoglycan-associated protein TMT up-regulated
RSR57702 A0A3R9S2V0 Cytoplasmic Membrane MFS transporter (Fragment) TMT up-regulated
AXV52620 A0A2P1B3I7 Periplasmic ABC transporter, phosphonate,

periplasmic substrate-binding family
protein

TMT up-regulated

EXB00312 A0A009H862 Outer Membrane OmpW family protein Label-free
ENV25944 A0A158LU97 Cytoplasmic Membrane Uncharacterized protein(HlyD

membrane-fusion protein of T1SS;
cl25633)

Label-free

AFX97596 K7Z0V1 Cytoplasmic Membrane Kinase sensor (AdeS) Label-free
ABR18859 A0A2Z5ZA15 Outer Membrane Carbapenem-associated resistance

outer membrane protein (Fragment)
Label-free

SSM96339 A0A333EPN9 Unknown Putative surface antigen Label-free
KCY66385 A0A062MBU0 Extracellular Type I secretion C-terminal target

domain protein
Label-free

OTL21614 A0A241YRY7 Cytoplasmic Membrane Efflux transporter periplasmic adaptor
subunit (Fragment)

Label-free

AFI94256 A0A454ASL3 Outer Membrane Outer membrane protein/
peptidoglycan-associated (Lipo) protein

Label-free

WP_024436048 A0A009T321 Outer Membrane Outer membrane protein assembly
factor BamA

Label-free
February 2021
 | Volume 11 | Article 625430

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Wang et al. Acinetobacter baumannii Drug Resistant Proteins
NAD(P)H-quinone oxidoreductase participates in quinone
detoxification and helps bacteria to survive under adverse
conditions (Ryan et al., 2014), which is also related to
resistance to oxidative stress (Kishko et al., 2012). Bacterial
proteases play an important role in the survival, stress
response, and pathogenicity of bacteria (Culp and Wright,
2017). Isochorismatase family protein is related to serum
resistance in A. baumannii (Jacobs et al., 2010). Response
regulators are related to the tolerance to dehydration and
resistance to oxidative stress (Farrow et al., 2018). The toxin
antitoxin system also regulates the response of SOS stress
(Fernández-Garcıá et al., 2016).These proteins all showed
upregulated or unique expressed in MDR isolates in this study.
The upregulated expression of these stress proteins that resist the
external environment may promote the resistance of bacteria by
making the resistance of bacteria more stable.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
Proteins Related to Gene Expression
and Protein Translation
The forth group is proteins that have important functions for gene
expression and protein translation or modification (Table 4). The
expression of Serine hydroxymethyltransferase in this class is
down-regulated. This protein is an iron inhibitory protein and
canbind tomRNAtocontrol gene expressionandparticipate in the
overall bacterial response (Nwugo et al., 2011). Up-regulated
proteins includes enolase, DNA breaking-rejoining elements,
ribosomal proteins, elongation factor Tu (EF-Tu), ribonuclease E
(RNase), Valyl-tRNA synthetase, NusA, and long-chain fatty acid
transport proteins. Enolase can play a central role in RNA
processing (Krucinska et al., 2019). DNA breaking-rejoining
enzymes play an important role in the transmission of genetic
elements (VanHoudt et al., 2012). The ribosomal protein S4 RpsD
is related to the assemblyof ribosomes (Olsson and Isaksson, 1979).
TABLE 3 | Stress response-related proteins.

Genbank accession Uniprot accession Subcellular localization Protein name Classification

KRI51357 A0A0R0RLL9 Unknown Antibiotic biosynthesis monooxygenase TMT down-regulated
AFI96375 A0A454AYE3 Unknown Heat shock protein TMT up-regulated & Label-free
EXC53193 A0A009SJR6 Cytoplasmic Trigger factor TMT up-regulated
ANA38542 A0A0D7TYF2 Cytoplasmic Chaperone protein DnaK TMT up-regulated
EXC50791 A0A009T8J5 Unknown Heavy-metal-associated domain protein TMT up-regulated
EXC53824 A0A009SLH6 Unknown Rhodanese-like domain protein TMT up-regulated
EXA83425 A0A009GB49 Periplasmic Superoxide dismutase (Fragment) TMT up-regulated
EXC50244 A0A009SB62 Cytoplasmic Protein GrpE TMT up-regulated
PHQ01889 A0A2G1TI69 Cytoplasmic Catalase TMT up-regulated
AFI95883 A0A454AX51 Cytoplasmic Catalase TMT up-regulated & Label-free
RSR19198 A0A3R9SYU8 Unknown Universal stress protein (Fragment) TMT up-regulated
AUT38163 A0A2I8CT30 Cytoplasmic Aldehyde dehydrogenase Label-free
EXA83546 A0A009FVR3 Cytoplasmic Peptidase M16 inactive domain protein Label-free
ANA36730 A0A0D5YN58 Cytoplasmic Cysteine synthase Label-free
POZ07170 A0A0M3FGT4 Cytoplasmic Chaperone protein HchA Label-free
OTL46319 A0A241YVG9 Cytoplasmic NAD(P)H-quinone oxidoreductase (Fragment) Label-free
AFI94331 A0A454ASQ3 Cytoplasmic Putative NAD(P)H quinone oxidoreductase, PIG3 family Label-free
PAM75163 A0A237TK91 Cytoplasmic Protease Label-free
SSU69655 A0A335SV40 Periplasmic Acid shock protein Label-free
EXB32044 A0A009KMD8 Cytoplasmic Chaperone protein HscA homolog Label-free
RSR52999 A0A429MNG9 Unknown Response regulator (Fragment) Label-free
KCY73957 A0A062N321 Unknown Antitoxin Label-free
February 2021
TABLE 4 | Proteins related to gene expression and protein translation.

Genbank accession Uniprot accession Subcellular localization Protein name Classification

EXH77350 A0A140QTL6 Cytoplasmic Serine hydroxymethyltransferase TMT down-regulated
PAM68667 A0A334GYE2 Cytoplasmic Enolase TMT up-regulated
PAM68199 A0A270N7U1 Unknown DNA breaking-rejoining protein TMT up-regulated
EXC51028 A0A009SW10 Cytoplasmic 30S ribosomal protein TMT up-regulated
WP_001273421 A0A454AZ45 Cytoplasmic 50S ribosomal protein L25 TMT up-regulated
KLT84190 A0A0J0ZQ10 Cytoplasmic Elongation factor Tu (Fragment) TMT up-regulated
EXC51023 A0A009SW05 Cytoplasmic 50S ribosomal protein L15 TMT up-regulated
EXC51011 A0A009T933 Cytoplasmic 50S ribosomal protein L16 TMT up-regulated
ANA36598 A0A0B9WR03 Cytoplasmic Ribonuclease E Label-free
EXB30595 A0A009KIU0 Cytoplasmic Valine–tRNA ligase Label-free
ANA37581 A0A0D8GW25 Unknown Nucleoid-associated protein Label-free
WP_000532247 A0A454B0H3 Cytoplasmic Transcription termination/antitermination protein NusA Label-free
KHO17349 A0A0B2XPD2 Unknown Long-chain fatty acid transporter Label-free
SSS41843 A0A334Z5E6 Unknown Long-chain fatty acid transport protein Label-free
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The 50S ribosomal proteins L15 and L16 are important
translation proteins (McNicholas et al., 2001; Dutton et al.,
2016). EF-Tu is also related to protein translation and can
interact with a variety of proteins to perform different biological
functions (Premkumar et al., 2014). EF-Tu and ribosomal protein
can help the production of bacterial protein, and some study have
found them upregulated in carbapenem-resistant strains (Tiwari
et al., 2012). RNase can perform different processing on RNA to
regulate gene expression (Mardle et al., 2019). Valyl-tRNA
synthetase is responsible for the aminoacylation of tRNA (Heck
and Hatfield, 1988). Nucleoid-associated proteins play an
important role in concentrating DNA and regulating gene
expression (Lee and Marians, 2013). Transcription termination/
antitermination protein NusA can bind to RNA polymerase or
nascent RNA to influence transcription (Qayyum et al., 2016).
Long-chain fatty acid transport proteins are involved in the
transport of fatty acids and can affect intracellular signal
transduction and gene expression (Dirusso and Black,
2004).These proteins may help the expression of drug
resistance-related proteins by influencing the progress of gene
expression or protein translation.
Metabolism-Related Proteins
The largest category contains 60 DEPs expressed differently
between the MDR isolates and drug-susceptible isolates. These
proteins are mainly related to metabolism (Supplementary
Table 6). This group includes seven downregulated
proteins, which are Serine hydroxymethyltransferase, NADH-
quinone oxidoreductase, Malate dehydrogenase, Non-heme
chloroperoxidase, 3,4-dihydroxy-2-butanone 4-phosphate
synthase, Ketol-acid reductoisomerase [NADP (+)] and Acetyl-
coenzyme A carboxylase carboxyl transferase subunit beta. They
participate in the biosynthesis of serine, tetrahydrofolate,
nitropyrrolidin, branched-chain amino acids, and fatty acids
which are related to cellular processes such as bacterial
respiration and TCA cycle (Shin et al., 2009; Nwugo et al.,
2011; Deris et al., 2014; Reddy et al., 2014; Krishna et al., 2019).
Among them, Malate dehydrogenase, which is upregulated in
bacterial biofilm state (Shin et al., 2009), and the expression of it
in carbapenem-resistant A.baumannii was up-regulated, the
researcher hypothesis that it contributes to energy production
and can improve the survival rate of bacteria (Tiwari et al., 2012).
In our results, the protein is down-regulated. We speculate this
may be due to strain differences. There are 53 up-regulated or
uniquely expressed proteins in MDR strains, which are involved
in lipid metabolism (Jang et al., 2008; Gu et al., 2019), amino acid
metabolism (Stancik et al., 2002; Bezsudnova et al., 2017), TCA
cycle (Corregido et al., 2019), purine anabolic metabolism (Spurr
et al., 2012), pyruvate metabolism (Song et al., 2010), fatty acid
metabolism (Nishimaki-Mogami et al., 1987), intracellular
electron transfer of bacteria (López Rivero et al., 2019),
nutrition and energy acquisition (Drewke et al., 1996), and
other metabolic processes. In addition, the heavy metal
associated (HMA) domain protein which is closely related to
the utilization and metabolism of metal ions such as copper ions
and zinc ions (Furukawa et al., 2018) is also up-regulated.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
Proteins With Unknown Function or
Other Functions Containing Biofilm
Formation and Virulence
The final category F includes proteins with unknown functions
or other functions besides the other five groups such as virulence
or biofilm formation (Supplementary Table 7). Studies have
found that the resistance of bacteria to disinfectants and
antibacterial agents will be greatly increased after the formation
of biofilms (Høiby et al., 2010) and the resistance of A. baumannii
that produces biofilms is significantly higher than that of bacteria
that cannot produce biofilms (Gurung et al., 2013). The
mechanisms of biofilm formation causing resistance include
delaying the penetration of antibacterial agents into bacteria,
causing changes in the growth rate of membrane-forming
microorganisms, and upregulating efflux pumps and other
physiological metabolic differences (Donlan and Costerton,
2002; Kentache et al., 2017). Our study also found the proteins
related to biofilm formation expressed more in drug-resistance
isolates. For example, flagellin which is involved in the formation
of bacterial flagella and the fimbriae assembly protein FilF are
both related to bacterial biofilm formation (Karatan and Watnick,
2009). Histidine kinase and esterase members are also involved in
the formation of biofilms (Chen et al., 2017; Larsen and Johnson,
2019). They both are upregulated in our study. A comparison of
drug-resistant clinical strains and susceptible clinical strains found
that drug-resistant clinical strains contain more virulence factors
such as FilF, GroEL, and hemagglutinin-like protein (Li et al.,
2015). In our study another type of up-regulated protein is mainly
related to the virulence of bacteria. For example, hemolysin is one
of the virulence factors of bacteria and is closely related to the
pathogenicity of bacteria (Bhakdi et al., 1988). Cupin family
protein is a superfamily of proteins with multiple functions such
as metalloenzymes, sugar binding, and pathogenicity (Sim et al.,
2016). Several hypothetical proteins are also up-regulated in MDR
strains. Among them, putative septicolysin, cholesterol-dependent
cytolysin family, and related proteins are generally virulence
factors produced by bacteria (Lukoyanova et al., 2016). Other
uncharacterized proteins are also upregulated. It is worth noting
that an undefined protein is a member of LysM domain/BON
superfamily protein. The unknown functional protein of LysM
domain/BON superfamily protein was detected in both
upregulated and downregulated proteins. A previous study
found that a 16 kDa protein of LysM domain/BON superfamily
protein detected in the outer membrane protein of susceptible
Klebsiella pneumoniae (Kádár et al., 2017). Another study found
that it may be related to the stress response of Klebsiella
pneumoniae to Carbapenem (Khan et al., 2017). However, its
specific function is unknown and deserves further study.

Analysis of Glycoproteomes
Studies have found that O-glycosylation mechanism is widespread
in A.baumannii, and it is closely related to the virulence and
biofilm formation ability of the bacteria (Iwashkiw et al., 2012;
Kinsella et al., 2015), but its association with drug resistance was
rarely reported. Other post-translational modifications such as
phosphorylation and acetylation have been shown to be related to
February 2021 | Volume 11 | Article 625430
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drug resistance (Kentache et al., 2016). Our study aimed to
identify the different glycosylation between the MDR and drug-
susceptible strains. A total of 77 glycoproteins were found in the 9
MDR isolates and 97 glycoproteins were found in the 10 drug-
susceptible isolates. MDR strains had 10 specifically expressed
polysaccharides, and drug-susceptible strains had 30 specifically
expressed polysaccharides (Supplementary Table 8). The
specifically expressed polysaccharides found in MDR strain
contain chaperone protein DnaK and phosphoenolpyruvate
carboxykinase which both are essential for metabolism and
survival (Supplementary Table 9). By further analysis, we
found a polysaccharide form of HexNAc(2)Hex(2)Fuc(1) on the
S21 (OGlycan/876.3223) site of adenylate kinase (the product of
adk) is present in six MDR isolates and not exist in any drug-
susceptible isolates. NetOGlyc predicts an additional glycosylation
site at site 129 that is more likely to carry O-GalNAcmodifications
in this protein. The adenylate kinase is related to energy
metabolism (Shin and Park, 2015). There is a study showed that
the main mechanism of multidrug resistance is the increased
activity of adenosine triphosphate (ATP)-dependent drug efflux
transporters (Wen et al., 2018). Therefore, we speculate that
glycosylation of adenylate kinase is closely related to the
metabolism of bacteria, which may enhance the bacteria’s
metabolic ability and efflux ability to enhance their
drug resistance.

Transcription Level of 7 DEPs by qRT-PCR
To verify the results from proteomics, we randomly chose
another eight A.baumannii isolates from the same hospital to
identify the transcription level of 7 DEPs: Aminoglycoside (3’)
phosphotransferase AphA1 or APH (3’)-Ia (AFV53106), Beta-
lactamase AmpC (AFA35105/AFA35107), Outer membrane
protein assembly factor BamD (WP_000056810), MFS
transporter (RSR57702), ABC transporter (AXV52620), HlyD
membrane-fusion protein of T1SS (ENV25944), and Elongation
factor Tu (KLT84190). Our results (Figure 6) showed that the
transcription levels of AFV53106, AF135105, AXV52620, and
ENV25944 in MDR isolates have a higher trend than that of
drug-susceptible isolates, which is consistent with the results of
proteomics. However, the transcription levels of WP_000056810,
RSR57702 and KLT84190 in MDR isolates and susceptible
isolates showed no difference. Previous studies have also found
disparity between the protein levels and transcription levels of
certain genes. This may be due to protein expression and post-
translational modifications. In general, the verification of other
MDR strains and drug-sensitive strains showed consistency with
the proteomic results, indicating that the protein obtained in our
results is closely related to the resistance mechanism
of A.baumannii.

In conclusion, our study found that in MDR strains, a large
number of membrane proteins and membrane formation and
efflux-related proteins, metabolism-related proteins, stress
response-related proteins, and proteins involved in gene
expression regulation and protein translation are all
upregulated, and glycosylation of adenosine triphosphate is
unique in MDR strains. Through the study of the mechanism
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
of multidrug resistance of A.baumannii, treatment can be
adopted for its resistance mechanism to improve the success
rate of treatment of A.baumannii infection, such as using
engineered endolysin to degrade bacterial peptidoglycan to
replace carbapenem drugs (Lee et al., 2017) or add certain
compounds that can increase the energy production of bacteria
and enhance the permeability of their cell membranes during
antibiotic treatment to promote the therapeutic effect of
antibiotics (Shin and Park, 2015). The development of vaccines
against drug-resistant-related proteins is also another effective
strategy to solve drug-resistant bacterial infections (Mujawar
et al., 2019). This study uses plenty of isolates for comparative
and comprehensive analysis, however, because these isolates
were isolated from the same hospital and might have similar
genetic phenotypes, we still need further study like expanding
sample sources or sequencing these isolates to found the genetic
mechanism. In addition, the specific mechanism of how DEPs-
related genes influence drug resistance still needs to be further
studied and explored using auxiliary methods such as gene
knockout to support the results of proteomics.
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