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Abstract: Solasonine was reported to inhibit tumour cell growth in several different models.
The in vivo toxicity of solasonine, the effects of genetic background on its toxicity, and its
possible roles in regulating the expression of cyp450 family genes were still unclear and required
characterisation. Here, Horn’s assays were performed on male mice from four different strains, and
the expression of cyp450 family genes in their livers was examined by RT-PCR and ELISA. Mice
treated by intraperitoneal injection with high levels of solasonine showed immediate post-excitatory
depression, intraperitoneal tissue adhesion, and dissolving of cells in the liver. Furthermore, these
four mouse strains showed different toxicological sensitivity to solasonine. The strains, in decreasing
order of LD50 value, rescuing speed of body weight, and more severe pathological symptoms, were
KM, ICR, C57BL/6, and BALB/c. Interestingly, more cyp450 genes were downregulated at the mRNA
and/or protein level in the livers of male mice from C57BL/6 or BALB/c strains than those from
KM or ICR strains. These results suggest that (1) Solasonine has hepatic toxicity and downregulates
cyp450 genes expression at transcriptional and/or post-transcriptional levels; (2) Genetic background
is an important factor which can affect the in vivo toxicity; (3) Downregulation of cyp450 gene
expression in the liver may be a clue to help understand whether or not a given strain is sensitive
to solasonine; (4) Influences on the expression of cyp450 genes should be considered when using
solasonine alone, or in combination with other drugs.

Keywords: solasonine; genetic background; in vivo toxicity; cyp450 family gene expression

Key Contribution: Solasonine at high level doses has in vivo hepatic toxicity and downregulates
cyp450 genes’ expression, and these effects are influenced by genetic background.

1. Introduction

Genetic background can influence clinical symptoms. Mice heterozygous for MDM2 (mouse
double minute 2 homolog) and MDM4 (mouse double minute 4 homolog) all die during embryogenesis
when bred on the 129-mouse background, while the majority of mice with the same genotype do not
show obvious developmental defects, and could mature to adulthood on the C57BL/6 background [1].
Genetic background can also influence the pharmacological and/or toxicological effects of drugs used
in clinical treatments, as the same drugs at the same doses may cause different pharmacological
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function/toxicity. Alternatively, in order to obtain the same or similar function/toxicity, drug
doses should be adjusted under different genetic backgrounds [2–5]. Inconsistent expression of
the same genes due to different genetic background may be a reasonable explanation for the genetic
background-dependent phenotypes [6], suggesting that genetic background should be considered for
clinical drug usage.

Drug biotransformation regulated by cyp450 (cytochrome P450 proteins) family genes [6–9], is
important for the pharmacological and toxicological effects of drugs [10]. Interestingly, the expression
and activity of cyp450 family genes can be regulated by many drugs which, in turn, can affect the
biotransformation and pharmacological or toxicological functions of the drugs themselves [9,11–14].
Currently, more than 57 human and 103 mouse cyp450 family genes have been identified from genome
analysis [15,16], and more than 78 cyp450 genes have been characterised in mice [17]. Members of the
cyp450 gene family are usually expressed at various levels. For studies on drug biotransformation
and function, cyp1a2, cyp2e1, and cyp3a11, which are expressed at high levels in human and murine
livers, are often employed [9,17–19]. Of note, basal levels of the expression of genes in the cyp450
family were reported to be dependent on factors such as gender [17,18], diseases [20], stresses [21], or
age [22]. Here, we hypothesise that genetic background is a non-ignorable factor that can modify the
pharmacological and toxicological function of drugs by modulating the induced expression of cyp450
genes upon drug administration.

Solasonine is a key component of the anticancer effects of Solanum nigrum Linn., which grows
wild around the world, and is one of the ten major anticancer drugs used in traditional Chinese
medicine [23,24]. Solasonine was reported to inhibit the growth of many different tumour cells,
including human glioma cells (U87 [25], U251 [25,26], U118 [25], MO59J [26], U343 [26]), human colon
carcinoma cells (HT29 [26]), human cervical adenocarcinoma cells (Hela [26]), human hepatocellular
liver carcinoma cells (HepG2 [26]), human breast cancer cells (MCF-7 [23,27], MDA-MB-231 [23,27]),
human lung cancer cell lines (H446 [28], A549 [23]), human gastric cancer cells (MGC803 [23]), human
cholangiocarcinoma epithelial cells (QBC939 [29]), murine melanoma cells (B16F10 [26], B16 [30]) and
murine Lewis lung cells [24], probably by activating BAX [28,29] or inhibiting the activity of the Hh
pathway [31]. In a recent study, we found that high levels of solasonine exhibited in vivo toxicity
in FVB mice [32]. However, it is unknown whether the toxicity of solasonine in these mice is FVB
background specific, or whether this observation is a general phenomenon in mice with different
genetic backgrounds. Moreover, as important modulators of the pharmacological and toxicological
function of drugs, it is also unclear whether expression of cyp450 family genes could be regulated
by solasonine. Here, we compared the in vivo toxicity of solasonine in male mice from four different
strains—KM, ICR, C57BL/6, and BALB/c—by Horn’s assays [33], and the effects of solasonine on
regulating the expression of genes in the cyp450 family in the livers of male mice from these four
different strains were also evaluated.

2. Results

2.1. LD50 Values of Solasonine in Four Different Mouse Strains in the First Week after Treatment

To characterise the in vivo toxicity of solasonine and to reveal the influence of genetic background
on its toxicity, mice from four different strains, KM, ICR, C57BL/6, and BALB/c, were evaluated with
Horn’s assays [33]. In order to exclude the influences of sex as shown in References [17,18], only male
mice were used in this study. In addition, thanks to the extremely low absolute bioavailability of oral
administration [34], mice were administered with solasonine by intraperitoneal injection. According to
Reference [25] and Horn’s assay (n = 5, 2.15×) [33], the in vivo toxicity of solasonine was evaluated at
the doses 10, 21.5, 46.4, and 100 mg/kg. Except for those in the 10 mg/kg groups and vehicle groups, all
treated mice showed post-excitatory depression in 1.5 min (Supplemental Movie S1). In the first week
after solasonine treatment, the number of mice that died at the doses of 100, 46.4, 21.5, and 10 mg/kg,
respectively, were 2, 2, 0, 0 for KM; 5, 3, 0, 0 for ICR; 4, 4, 1, 0 for C57BL/6; and 5, 4, 1, 0 for BALB/c
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mice (Table 1 and Figure 1). According to the table of Horn’s assay (n = 5, 2.15×) [33], LD50 values of
solasonine in KM, ICR, C57BL/6, and BALB/c strains were >43, 43, 34.8, and 31.6 mg/kg, respectively
(Table 1). This suggests that the order of sensitivity to solasonine from weak to strong was KM, ICR,
C57BL/6, and then BALB/c.
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Figure 1. Survival curves of male mice from four strains treated by intraperitoneal injection with
solasonine. Five mice in each group of KM, ICR, C57BL/6, or BALB/c strains were treated by
intraperitoneal injection with solasonine at dose of 10, 21.5, 46.4, or 100 mg/kg. Then, the number of
deceased mice was counted each week.

Table 1. LD50 value of solasonine in four murine strains according to statistical analysis table of Horn’s
assay (n = 5, 2.15×).

Item KM ICR C57BL/6 BALB/c

Dose (mg/kg) 100 46.4 21.5 10 100 46.4 21.5 10 100 46.4 21.5 10 100 46.4 21.5 10
Death Rate 2/5 2/5 0/5 0/5 5/5 3/5 0/5 0/5 4/5 4/5 1/5 0/5 5/5 4/5 1/5 0/5

LD50 (mg/kg) >43 43 34.8 31.6
95% Confidence Limit N/A 29.5–62.6 19.2–63 20.5–48.8

2.2. Body Weight of Mice from Four Different Strains in the First Week after Intraperitoneal Injection of
Solasonine

As 21.5 mg/kg was the lowest dose of solasonine that showed post-excitatory depression in
mice from different strains and caused moderate animal death compared to higher doses (Table 1
and Figure 1), it was chosen for the following experiments. After injecting 21.5 mg/kg of solasonine
or vehicle, the body weights of the treated mice were measured immediately, 2 days, 4 days, and
6 days later. It was found that the body weights of solasonine treated mice were lower, but increased
continuously, compared to the control mice in each strain (Figure 2, Figure S1). The body weights of
solasonine-treated KM mice became very close to the control KM mice 6 days after solasonine injection
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(Figure 2, Figure S1). A similar phenomenon was observed in the ICR mice (Figure 2, Figure S1).
In C57BL/6 or BALB/c strains, the mouse body weight decreased remarkably, and was always lower
compared to control mice after solasonine injection (Figure 2, Figure S1). Of note, compared to control
mice, mice from the C57BL/6 strain showed faster gains in body weight within the 6 days after
solasonine injection than those of BALB/c mice (Figure 2, Figure S1). This suggests that the speed of
rescue of body weight, from fastest to slowest, was KM or ICR, C57BL/6, then BALB/c.
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Solasonine Injection 

Figure 2. Changes in the body weights of male mice from four strains after intraperitoneal injection
with solasonine or vehicle (control). Mice of KM, ICR (1/9 died within 6 days after solasonine
administration), C57BL/6, and BALB/c (3/9 died within 6 days after solasonine administration) strains
were treated by intraperitoneal injection with solasonine at a dose of 21.5 mg/kg. Body weights
were weighed on Day 0 (the day mice were treated, the same below), Day 2, Day 4, and Day 6 after
treatment. #: compared to vehicle group from the same strain on the same day, #: p < 0.05, ##: p < 0.01,
###: p < 0.001; $: compared to vehicle group of KM strain on the same day, $$: p < 0.01, $$$: p < 0.001;
*: compared to 21.5 mg/kg group of the KM strain on the same day, **: p < 0.01,***: p < 0.001.

2.3. Ratios of Liver and Spleen Weight to Body Weight in Mice of Four Different Strains Six Days after
Solasonine Injection

Six days after intraperitoneal injection of 21.5 mg/kg of solasonine, the ratios of spleen weight
to body weight and liver weight to body weight were examined in all four strains. Compared
to the vehicle group, no significant difference was observed in the ratio of spleen weight/body
weight in KM mice (Figure 3, Spleen). However, the spleen weight/body weight ratio was decreased
in ICR mice, while it was increased in C57BL/6 or BALB/c mice compared to control (Figure 3,
Spleen). The ratio of liver weight/body weight was slightly decreased in KM mice (Figure 3, Liver).
Interestingly, no significant difference in liver weight/body weight ratios was observed in ICR, BALB/c,
or C57BL/6 mice (Figure 3, Liver). This suggests that compared to control, and related to its body
weight, the spleen weight of the solasonine group grew at slower rate in the ICR strain, and at a faster
rate for C57BL/6 and BALB/c. Liver weight grew at a slightly lower rate for the KM strain.
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Figure 3. Changes in the ratios of liver and spleen weight/body weight of male mice from four strains
six days after intraperitoneal injection with solasonine or vehicle (control). After body weight was
evaluated, liver and spleen were dissected from mice of KM, ICR, C57BL/6, and BALB/c strains, dried
by absorbent paper, and weighed six days after treatment with solasonine at a dose of 21.5 mg/kg or
vehicle. Then, the ratio of spleen or liver weight/body weight was counted. #: compared to vehicle
group from the same strain on the same day, #: p < 0.05, ###: p < 0.001; $: compared to vehicle group of
KM strain on the same day, $$: p < 0.01, $$$: p < 0.001; *: compared to 21.5 mg/kg group of the KM
strain on the same day, *: p < 0.05.

2.4. Pathological Changes in Mice Treated with Solasonine

Mice were sacrificed six days after intraperitoneal injection of 21.5 mg/kg solasonine, and livers
were collected for histological analysis. Intraperitoneal tissue adhesion was observed in mice of
all four strains treated with 21.5 mg/kg of solasonine, but not in vehicle-treated mice (Figure 4A).
Compared to other strains, BALB/c mice presented more severe intraperitoneal tissue adhesion
(Figure 4A, BALB/c). Consistently, cell-dissolving was seen in liver slices of each strain of mice
treated with solasonine at doses of 21.5 mg/kg, but not in mice treated with vehicle (Figure 4B). More
inflammatory cells were observed in the liver slices of C57BL/6 mice (Figure 4B, C57BL/6). This
suggests that a high dose of solasonine could cause damage to contacted tissues and dissolve cells.
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Figure 4. Pathological changes in mice six days after intraperitoneal injection with solasonine at a dose
of 21.5 mg/kg or a vehicle (control). (A) Intraperitoneal tissue adhesions were observed (red arrow);
scale bar: 1 cm. (B) Cell-dissolving (black frames; the magnification of each frame is listed on the
bottom-right) and many inflammatory cells (black circle, C57BL/6) were observed. Scale bar: 100 µm.

2.5. mRNA Levels of Genes of the cyp450 Family in the Livers of Each Strain of Mice Six Days after
Intraperitoneal Injection with Solasonine at a Dose of 21.5 mg/kg

As cyp450 family enzymes could play key roles in drug biotransformation and drug
pharmacological and toxicological effects, the expression levels of genes of the cyp450 family were
evaluated in the livers of male mice from four strains. We compared basal expression levels of the
cyp450 family genes in the livers of mice from four strains, and revealed whether solasonine influenced
cyp450 family gene expression. Four cyp450 family genes were basally expressed at a high level:
cyp1a2, cyp2e1, cyp3a11, and cyp2d11; and three genes (i.e., cyp2d12, cyp2j12, and cyp4f37) were
basally expressed at a low level in the livers of male C57BL/6 mice [18]. These genes were selected to
be detected at the mRNA level by SYBR real-time PCR assay six days after the mice were treated by
intraperitoneal injection with solasonine at a dose of 21.5 mg/kg, or with a vehicle.

For the vehicle group, compared to that of KM mice, cyp2e1 mRNA levels were lower for ICR
mice (p < 0.001, 0.57 of KM), while they were higher for BALB/c mice (p < 0.001, 2.22 of KM, Figure 5,
cyp2e1); cyp2d12 mRNA levels were lower for ICR mice (p < 0.01, 0.50 of KM), while they were higher
for BALB/c mice (p < 0.01, 1.91 of KM, Figure 5, cyp2d12); and cyp4f37 mRNA level was higher for
BALB/c mice (p < 0.05, 1.83 of KM) (Figure 5, cyp4f37).
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Figure 5. Related mRNA levels of cyp450 family genes in the livers of mice from four strains six days
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family member was normalised to rpl13a mRNA expression. #: compared to vehicle group from the
same strain on the same day, #: p < 0.05, ##: p < 0.01,###: p < 0.001; $: compared to vehicle group of KM
strain on the same day, $: p < 0.05, $$: p < 0.01, $$$: p < 0.001; *: compared to 21.5 mg/kg group of the
KM strain on the same day, *: p < 0.05, ***: p < 0.001.
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Compared to the gene expression in livers of mice from the same strain treated with vehicle, in
the livers of mice treated with solasonine, cyp1a2 mRNA levels decreased for C57BL/6 (p < 0.01, 0.50
of vehicle) and BALB/c strains (p < 0.01, 0.58 of vehicle) (Figure 5, cyp1a2); cyp3a11 (p < 0.01, 0.43 of
vehicle) and cyp2d12 (p < 0.01, 0.50 of vehicle) mRNA levels both decreased for BALB/c mice (Figure 5,
cyp3a11, cyp2d12); cyp2e1 mRNA levels were higher for KM (p < 0.05, 1.25 of vehicle) and lower for
BALB/c mice (p < 0.001,0.46 of vehicle) (Figure 5, cyp2e1); cyp2d11 mRNA level was lower for the ICR
strain (p < 0.05,0.82 of vehicle) (Figure 5, cyp2d11).

Together, these results suggest that, in the livers of male mice, although the basal mRNA levels of
most tested genes were no different between these four strains, more genes (4/7) were downregulated
at mRNA level by solasonine in the BALB/c strain than those in KM (0/7) and ICR strains (1/7).

2.6. Protein Levels of the cyp450 Family Genes in the Livers of Mice from Four Strains Six Days after
Intraperitoneal Injection with Solasonine at a Dose of 21.5 mg/kg

To compare the basal expression level of cyp450 family enzymes in the livers of male mice from
four strains (i.e., KM, ICR, C57BL/6, and BALB/c), and to reveal whether solasonine influences cyp450
family gene expression at the protein level, five cyp450 family enzymes that are usually targeted in
drug research—CYP1A2, CYP3A11, CYP2E1, CYP2D11, and CYP2C19—were detected by ELISA in
the livers of male mice treated by intraperitoneal injection with solasonine at a dose of 21.5 mg/kg or
with a vehicle.

For the vehicle group, compared to KM mice, CYP3A11 levels were higher for BALB/c mice
(p < 0.05, 1.09 of KM) (Figure 6, CYP3A11); CYP2E1 levels were lower for ICR (p < 0.001, 0.87 of KM),
C57BL/6 (p < 0.05, 0.91 of KM), and BALB/c mice (p < 0.001, 0.87 of KM, Figure 6, CYP2E1); CYP2D11
levels were also lower for ICR (p < 0.001, 0.84 of KM), C57BL/6 (p < 0.05, 0.90 of KM), and BALB/c
mouse strains (p < 0.01, 0.87 of KM (Figure 6, CYP2D11).
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Figure 6. Protein levels of cyp450 family genes in the livers of male mice from four strains 6 days after
intraperitoneal injection with solasonine or vehicle (control). Total protein of each sample was diluted in
1× PBS to a final concentration of 2000 ng/mL, and each enzyme was quantified basally on a standard
curve established using an ELISA kit. Expression data were normalised to total protein. #: compared to
vehicle group from the same strain on the same day, #: p < 0.05, ##: p < 0.01, ###: p < 0.001; $: compared
to vehicle group of KM strain on the same day, $: p < 0.05, $$: p < 0.01, $$$: p < 0.001; *: compared to
21.5 mg/kg group of the KM strain on the same day, *: p < 0.05, **: p < 0.01.

Compared to mice from the same strain treated with vehicle, CYP1A2 levels in the livers of mice
treated with solasonine were lower for C57BL/6 (p < 0.05, 0.84 of vehicle) and BALB/c strains (p < 0.01,
0.88 of vehicle) (Figure 6, CYP1A2); CYP3A11 levels were lower in C57BL/6 (p < 0.05, 0.89 of vehicle)
and BALB/c mice (p < 0.001, 0.76 of vehicle) (Figure 6, CYP3A11); CYP2E1 levels were lower for KM
(p < 0.05, 0.90 of vehicle) and C57BL/6 mice (p < 0.01, 0.94 of vehicle) (Figure 6, CYP2E1); CYP2D11
levels were lower for C57BL/6 (p < 0.01, 0.89 of vehicle) and BALB/c (p < 0.05, 0.90 of vehicle) (Figure 6,
CYP2D11); and CYP2C19 levels were lower in KM mice (p < 0.05, 0.91 of vehicle) (Figure 6, CYP2C19).

Together, these data suggest that, in the livers of male mice, although the basal levels of most
tested proteins in C57BL/6 and BALB/c strains were not lower than those in KM and ICR strains,
more CYP450 proteins were downregulated by solasonine in both C57BL/6 (4/5) and BALB/c (3/5)
strains than those in KM (2/5) and ICR (0/5) strains.

3. Discussion

The concepts of holism and dialectics are the essence of traditional Chinese medicine (TCM)
theory. This theory attaches importance to individual differences in treatment. Moreover, precision
treatment and individual treatment have become increasingly common in modern medicine. From
the genetic viewpoint, the essences of both individual difference and precision therapy are based
on differences in genetic backgrounds. Differences between human races can be viewed as similar
to those differences between mouse stains. Therefore, it is reasonable that mouse strains should be
utilised as models for research of how genetic backgrounds influence in vivo pharmacological and
toxicological functions of drugs and their effects of regulating expression levels of cyp450 family genes,
one of the most important gene families for drug metabolism and functions in vivo. In this study,
four strains of mice intraperitoneally administered with solasonine showed different toxicological
sensitivity to solasonine. The strains, in order of decreasing LD50 value, rescuing speed of body
weight, and increasing severity of pathological symptoms, were KM, ICR, C57BL/6, and BALB/c.
Interestingly, 6 days after treatment with solasonine at a dose of 21.5 mg/kg, at the mRNA level, four
(cyp1a2, cyp2e1, cyp3a11, and cyp2d12) out of seven cyp450 family genes had decreased expression
in BALB/c mice, while only one was downregulated in ICR (cyp2d11) and C57BL/6 (cyp1a2) mice.
Additionally, no genes were decreased in expression in KM mice (seen in Figure 5). Moreover, at the
protein level, three or four (CYP1A2, CYP3A11, CYP2D11 and/or CYP2E1) out of five cyp450 enzymes
dropped in BALB/c and C57BL6 mice, and two (CYP2E1 and CYP2C19) out of five enzymes were



Toxins 2018, 10, 487 10 of 15

downregulated in KM mice, while no enzyme was decreased in ICR mice (seen in Figure 6). These
results suggest that solasonine has hepatic toxicity and downregulates cyp450 genes expression at
transcriptional and/or post-transcriptional levels. Meanwhile, genetic background is an important
factor that can affect in vivo toxicity and, thus, should not be ignored. In short, for the in vivo toxicity
of solasonine, BALB/c is the most sensitive strain to solasonine, while KM is the least sensitive.
Additionally, the C57BL/6 strain was more sensitive to solasonine than the ICR strain. Consistently,
more cyp450 family members showed decreased expression in the C57BL/6 and BALB/c strains
compared to the KM and ICR strains, suggesting that the downregulation of cyp450 genes expression
may be a clue to help understand the mechanism of strain sensitivity to solasonine. As we know, both
KM and ICR are outbred strains, while C57BL/6 and BALB/c are inbred strains. This suggests that
hybrid superiority may endow individuals with a stronger resistance to drug toxicity, and that the
mechanism of this resistance may be related to less cyp450 gene activity in the liver downregulated
by drugs.

In fact, many documents have reported that insufficient cyp450 enzymes can lower the capacity
to metabolise drugs. Cyp1a2 was downregulated in the livers of controlled insulin-dependent diabetic
mice with more than 10-fold reduction. The livers of controlled insulin-dependent mice showed
significantly higher levels of mRNA than uncontrolled insulin-dependent mice, but still lower than
the non-diabetic mice; which can at least partly explain the poor drug and fatty acid metabolism
in diabetic patients compared to healthy groups [20]. On the other hand, vitamin C can alleviate
damage to the liver of weaning piglets by modulating the nuclear receptor signalling pathway and
partly elevating levels of phase I metabolic enzyme genes (i.e., cyp1a1, cyp1a2, cyp1a6) [35]. Some
minimal basal expression of cypla2 is essential for hexachlorobenzene (HCB)-mediated enhancement
of uroporphyria [36]. Malaria can downregulate hepatic levels of cyp1a2, cyp2e1, and cyp3a11 mRNAs,
causing prolongation of midazolam sleeping time and a slower clearance of chlorzoxazone [37].
In our study, the expression levels of more cyp450 genes were impaired by solasonine in C57BL/6 and
BALB/c mice, than those in KM and ICR mice. Simultaneously, the potency in protecting against the
toxicity of solasonine was reduced. This also suggests that solasonine may change the pharmacological
and toxicological effects of solasonine itself, and other drugs, by regulating cyp450 genes’ expression.

Dopaminergic systems regulate the release of several hormones, including growth hormone (GH),
thyroid hormones, insulin, glucocorticoids, and prolactin (PRL), which play significant roles in the
regulation of various CYP450 enzymes. Inhibition of dopamine D2-receptors with sulpiride (SULP)
significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced cyp1a1, cyp1a2, and cyp1b
expression in the rat liver, which appears to be mediated by activation of the insulin/PI3K/AKT
pathway [38]. Injection of 5,7-DHT decreased serotonin concentration in the brain, followed by a
significant rise in the levels of growth hormone, corticosterone, and testosterone, and a drop in
triiodothyronine concentration in the serum. Simultaneously, the activity and protein level of liver
cyp1a, cyp3a1, and cyp2c11 rose, and the mRNA levels of cyp1a1, cyp1a2, cyp2c11, and cyp3a1
were also elevated. This suggests hypothalamus–pituitary–secretory organ axes play key roles in
CYP450 enzymes’ expression [39]. Moreover, GH and insulin-like growth factor-1 (IGF-1) levels after
exercise depended on the work done, and the relative levels of CYP1A2 expression correlated with the
time and the amount of work done by athletes [40]. However, tetrahydroxystilbene glucoside (TSG),
the main active component of Polygonum multiflorum, has inhibitory effects on mouse liver CYP1A2,
CYP2E1, and CYP3A11 protein expression through the suppression of aryl hydrocarbon receptor
(AhR), pregnenolone X receptor (PXR), and proliferate-activated receptor α (PPARα) activation [19].
In addition, liver insufficiency also impairs CYP450 enzymes’ expression. In a rat model of liver
insufficiency with a dysfunctional serotonergic system, cyp1a2 gene expression was simultaneously
downregulated, with a concomitant decrease in CYP1A2 protein and activity, a significant reduction in
thyroid hormone β (TRβ) receptor levels, together with a simultaneous increase of thyroid hormone α

(TRα) receptor gene and protein level (mainly TRα2 isoform) after serotonergic system dysfunction,
suggesting that the serotoninergic system is involved in the regulation of CYP1A isoforms without
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influence from thyroid hormones during liver insufficiency [41]. Downregulation of AhR during
the progression of liver fibrosis is associated with decreased expression levels of phase I and II
enzymes and drug transporters during inflammation-related signal transduction between AhR and
other nuclear receptors [42]. Furthermore, trans-factors and cis-elements, and others, regulate hepatic
CYP450 enzymes’ expression. CpG sites [43], DNA methylation [44], microtubule-interfering agents
(through restricting aryl hydrocarbon receptor-mediated c-jun-N-terminal kinase and glucocorticoid
receptor) [45], and clock gene mPer2 [46], all influence cyp1a2 expression post-transcriptionally or
pre-translationally. Meanwhile, β-catenin is necessary for both cyp1a2 and cyp2e1 expression [47].
At the post-translational level, SUMOylation, enhancing cyp2e1 protein stability and activity, may
have important implications in alcoholic liver disease (ALD) [48]. Cytoplasmic heat shock protein
90 (HSP90) and membrane-bound CYP2E1 may directly interact with each other as partner proteins,
leading to the dissociation of the CYP2E1 from the membrane, consequently making it possible
to transfer microsomal CYP2E1 in complex with HSP90 to the proteasome for proteolysis [49].
As summarised in Reference [21], there are three major neuroendocrinological pathways involved in
the stress-mediated regulation of various CYP450 genes in the liver: the hypothalamic–pituitary–GH,
hypothalamic–pituitary–adrenal, and hypothalamic–pituitary–thyroid hormone axes. In our study,
mice could be stimulated by high levels of solasonine to have post-excitatory depression in 1.5 min,
and then showed different toxic symptoms. This phenomenon may be explained by the fact that the
depression of the neuroendocrine axis constrains the expression of CYP450 enzymes. KM or ICR mice
appear more tolerant to such stimulation than C57BL/6 or BALB/c mice, and thus recover faster in
body weight, and so on. These should be further revealed in future investigations.

4. Materials and Methods

4.1. Animals

Male SPF (specific pathogen-free) mice of each strain—KM, ICR, C57BL/c, or BALB/c—were
purchased from the Hunan Slack Landscape Laboratory Animal Co., Ltd. (Changsha, China). Mice
were bred and maintained under specific pathogen-free conditions, and experiments were conducted
in accordance with the Institutional Animal Care and Use Committee at the animal facility of the
Laboratory Animal Research Center for Science and Technology of Jiangxi University of Traditional
Chinese Medicine, China. All experiments were approved by the Animal Care and Use Committee
of Jiangxi University of Traditional Chinese Medicine (identification code: JZLLSC2017-032; date of
approval: 11 August 2017).

4.1.1. Horn’s Assay (n = 5, 2.15×)

For each strain, 20 male mice, aged 6 weeks, with an average weight (shown as average ± SD)
on the day mice were treated of 24.44 ± 0.89 g for KM, 28.88 ± 2.05 g for ICR, 18.43 ± 0.70 g
for C57BL/6, and 23.23 ± 0.96 g for BALB/c mice were equally divided into four groups, and
then each group was treated by intraperitoneal injection with solasonine (Desite, Chengdu, China,
LOT:DST170828-005,CAS:19121-58-5, extracted from the fruits of Solanum nigrum Linn., HPLC purity
≥99%, first dissolved in DMSO, then diluted in 1× PBS with appropriate amount of HCl, final
pH 6.0–6.5) at doses of 100, 46.4, 21.5, or 10 mg/kg. After treatment, mice were weighed every 2 days,
and the numbers of deceased mice were recorded every day, and added up at the end of the week
for this study. Then, the LD50 value of the drug on each strain was given according to the statistical
analysis table.

4.1.2. In Vivo Toxicity Experiment

For each strain, male mice, aged 6 weeks, with an average weight (shown as average ± SD) on the
day mice were treated of 22.24 ± 1.61 g for KM (n = 16), 23.8 ± 1.13 g for ICR (n = 16), 21.44 ± 0.65 g for
C57BL/c (n = 10) and 19.08 ± 0.71 g for BALB/c (n = 17) mice were randomly divided into two groups,



Toxins 2018, 10, 487 12 of 15

and then each group was treated by intraperitoneal injection with the above solasonine at a dose of
21.5 mg/kg or the above vehicle. After treatment, mice were weighed every 2 days. The numbers of
deceased mice were recorded every day, and added up at the end of the week for this study. On day
6 after solasonine treatment, all mice were sacrificed, and tissues were collected for studies. Liver,
spleen, and body weight were taken.

4.2. Haematoxylin–Eosin Staining

Liver was dissected, fixed in cold 4% paraformaldehyde (PFA) overnight at 4 ◦C, dehydrated by
an alcohol gradient (from 50% to 100%), rendered transparent in xylol, and embedded in paraffin. Then,
tissue was cut on a microtome to slices of 5 µm in thickness. After deparaffinisation and rehydration,
slices were stained with haematoxylin (Solarbio, Beijing, China), dehydrated by an alcohol gradient
(from 50% to 95%), stained with eosin (Solarbio, Beijing, China), further dehydrated by 100% alcohol,
rendered transparent in xylol, embedded in neutral resin, and finally covered by a cover slip. Samples
were imaged by a biomicroscope (Leica, Wetzlar, Germany).

4.3. RNA and Real-Time PCR

Livers were homogenised by an electric homogeniser in TRIquick (Solarbio, Beijing, China). Total
RNA samples were isolated and reverse-transcribed to cDNA using a TRUEscript 1st Strand cDNA
Synthesis kit (Aidlab Biotechnlologies Co., Ltd., Beijing, China) according to the manufacturer’s
instructions. Diluted cDNAs were used for real-time PCR with SYBR Green reagents (Mei5
Biotechnology, Co., Ltd., Beijing, China) on a bioanalyser (Roche LightCyler96, IN, USA). Sequences of
primers referred to in the document [17] are listed in Table S1. Expression data were normalised to
rpl13a mRNA expression. Expression changes were calculated using the ∆∆Ct method.

4.4. Protein and ELISA (Enzyme-Linked Immunosorbent Assay)

Livers in 1× PBS were homogenised by an electric homogeniser in ice water. Total protein in
each sample was quantified by a total protein detection kit (Aidlab Biotechnlologies Co., Ltd., Beijing,
China), and then diluted in 1× PBS to a final concentration of 2000 ng/mL. Optical density (OD)
values of enzymes in each sample were detected on a microplate reader (Thermo, VARIOSKAN
FLASH, MA, USA) using an ELISA Kit (He Peng Biotechnology Co., Ltd., Shanghai, China) following
the manufacturer’s instructions, and then each enzyme was quantified basally, based on a standard
curve that was established using an ELISA kit. Expression data were normalised to total protein at a
concentration of 2000 ng/mL.

4.5. Statistical Analysis

Data were expressed as the mean ± SEM. Statistical analyses were carried out using GraphPad
Prism 5 software (Vesion 5.01, San Diego, CA, USA, 2007) and t-test analysis was performed between
two groups. All p-values less than 0.05 were considered to be statistically significant.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/10/12/
487/s1. Figure S1: Changes in body weight of male mice from four strains over one week, Table S1: Primers
for real-time PCR of cyp450 family genes and rpl13a, Movie S1: Behavioural response of mice to 21.5 mg/mL
solasonine or vehicle after intraperitoneal administration (seen or downloaded in the site: http://susy.mdpi.com/
user/submission/video/87f3d40f66418381426f9f271272b6be).
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