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Neurological injuries such as strokes can lead to important loss in motor function.
Thanks to neuronal plasticity, some of the lost functionality may be recovered over
time. However, the recovery process is often slow and incomplete, despite the most
effective conventional rehabilitation therapies. As we improve our understanding of
the rules governing activity-dependent plasticity, neuromodulation interventions are
being developed to harness neural plasticity to achieve faster and more complete
recovery. Here, we review the principles underlying stimulation-driven plasticity as well
as the most commonly used stimulation techniques and approaches. We argue that
increased spatiotemporal precision is an important factor to improve the efficacy of
neurostimulation and drive a more useful neuronal reorganization. Consequently, closed-
loop systems and optogenetic stimulation hold theoretical promise as interventions to
promote brain repair after stroke.

Keywords: neurostimulation, neuromodulation, stroke, closed-loop stimulation, optogenetic stimulation, brain-
computer interfaces, neural plasticity

INTRODUCTION

Stroke often leads to neuronal death and permanent dysfunction. It can cause substantial damage
to the motor cortex, hinder motor control, and result in a decreased autonomy and quality of life.
Through neural plasticity, the brain has the capability to reorganize by forming new connections
among residual neurons, which may compensate at least in part for the lost ones. There is a
critical time window of enhanced plasticity for 1–3 months after ischemic stroke, during which
both spontaneous and intervention-mediated recovery is maximized (Zeiler and Krakauer, 2013).
However, spontaneous reorganization is often maladaptive or insufficient to restore function to pre-
insult levels. Building evidence suggests an important role for the relative timing of perisynaptic
neuronal activity to drive plasticity (Feldman, 2012). Through neurostimulation, it is possible to
induce a causal timing between the firing of two neurons and thereby induce Hebbian spike-
timing-dependent plasticity (Markram et al., 1997; Bi and Poo, 1998). For this reason, a growing
number of researchers are investigating different neurostimulation approaches with the goal of
inducing targeted plastic changes in the nervous system to reduce the consequences of lesions and
improve function.

Here, we review the main stimulation approaches and techniques which are being investigated,
beginning with an examination of the general principles of stimulation-driven plasticity. Due to
the complexity and heterogeneity of nervous system organization, we argue that more targeted
stimulation techniques could be more effective in inducing plasticity, and could also result in a
neural reorganization with greater functional benefits. Closed-loop stimulation paradigms have
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an important advantage in this regard, as they rely (at least for
the presynaptic component) on naturally occurring patterns of
brain activity. Therefore, this approach targets more specifically
the neurons involved in voluntary motor control (Ethier et al.,
2015). Optogenetic stimulation also has great potential as a tool
to stimulate neurons selectively and induce synaptic changes in
targeted neuronal subpopulations. This factor could be critical to
improving the functional relevance of induced neural plasticity.
Its eventual use in humans would pose important practical
challenges and require new ethical frameworks. In the meantime,
the use of optogenetic and electrical stimulation in animal models
will advance our understanding of neural plasticity and recovery
mechanisms. We focus on stroke in this review since it is one of
the leading causes of death and disability worldwide and current
treatments remain scarce. However, the principles of neuronal
plasticity discussed, and the new methods available to understand
and reshape neuronal connections could theoretically be applied
with the appropriate modifications to other types of neurological
or psychiatric conditions, providing a unified framework for
treatment of brain disease and injury.

PRINCIPLES OF STIMULATION-DRIVEN
PLASTICITY

The repeated coincidence of postsynaptic action potentials
with synaptic inputs is the driving factor explaining activity-
dependent synaptic changes. Regrouped under the umbrella
concept of spike-timing-dependent plasticity (STDP) (Markram
et al., 1997; Froemke and Dan, 2002; Dan and Poo, 2004;
Feldman, 2012), the exact timing rules by which coincident
activity can encourage long-term potentiation (LTP) or
depression (LTD) may vary according to the type of neuron,
or even synaptic location on the dendritic tree (Froemke et al.,
2010). Generally, stimulation interventions designed to leverage
STDP to potentiate cortical or corticospinal interconnections
aim at increasing the coincidence of action potentials in pre-
and postsynaptic neuronal populations with a positive sequential
timing (pre before post) in accordance to the Hebbian principles
of causal association (Hebb, 1949). In this framework, synapses
are strengthened when they repeatedly take part in the generation
of action potentials in the postsynaptic neuron, and weakened
when they do not.

STIMULATION PARADIGMS

Three main stimulation approaches may be employed to
exogeneously enhance the coactivation of connected neurons:
(1) repetitive stimulation, (2) paired stimulation, and (3) closed-
loop stimulation (Jackson and Zimmermann, 2012; Figure 1).
Repetitive stimulation can recruit presynaptic neurons directly
and postsynaptic neurons transsynaptically if the interconnecting
synapses allow it. With paired stimulation, a precise relative
timing of activity can be imposed to two interconnected neuronal
populations by applying stimulation pulses at two distinct
locations within the nervous system. Closed-loop stimulation

FIGURE 1 | Stimulation Paradigms to Induce Plasticity. Depiction of three
main stimulation strategies used to induce plasticity. With repetitive
stimulation, pre-synaptic neurons are activated directly and post-synaptic
neurons are activated transsynaptically. With paired stimulation, the
synchronization of pre- and post-synaptic populations is controlled directly by
the stimulation of two points of the nervous system. Repetitive and paired
stimulation can be applied in an open-loop manner, with no regard to current
brain or behavioral state. In closed-loop approaches, however, the stimulation
of a neuronal (post-synaptic) population can be precisely timed with neuronal
activity (e.g., action potentials or EEG). These three different strategies all aim
to induce coincidental activity in pre- and post-synaptic neurons with such a
timing that would result in either LTP- or LTD-like effects, according to the
rules of Hebbian STDP.

involves a more sophisticated stimulation control system,
which synchronizes the stimulation of a postsynaptic neuronal
population with spontaneous activity in presynaptic neurons,
detected from neuronal recordings or brain imagery. In some
other forms, closed-loop stimulation may involve synchronizing
the stimulation on muscular or behavioral activity instead
of neuronal recordings (e.g., stimulation triggered by EMG
signals, movement detection or task events). These three general
strategies are not mutually exclusive. For example, Zrenner et al.
(2018) have recently shown that the LTP-like effect of repetitive
stimulation could be improved when it’s applied precisely during
a particular brain state (i.e., negative phase of µ -rhythm).

In the following sections, we will describe different
neurostimulation approaches based on these three stimulation
paradigms. Although other stimulation techniques exist, we
will focus our analysis on experiments that have employed
transcranial magnetic stimulation (TMS), electrical stimulation
and optogenetic stimulation approaches, the three major types
of neurostimulation currently employed in the clinical and
fundamental neurosciences today.

REPETITIVE STIMULATION

Transcranial Magnetic Stimulation (TMS)
TMS in humans has been widely used on the primary motor
cortex to elicit descending corticospinal volleys and muscle
contraction (TMS-induced motor evoked potentials, MEPs).
This non-invasive neurostimulation technique has been applied
using a number of different protocols, with the goal of altering
corticomotor excitability toward stroke recovery. Repetitive
TMS (rTMS) and theta burst stimulation (TBS) paradigms
are the most common TMS applications aimed at driving
plasticity based on the repetitive stimulation paradigm shown
in Figure 1. Low (≤1 Hz) and high (≥5 Hz) frequency rTMS
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are generally employed with the premises that they respectively
produce a decrease and an increase in excitability of stimulated
regions respectively (Fitzgerald et al., 2006). The TBS paradigm,
consisting of bursts of three pulses at 50 Hz, delivered every
200 ms, can also be used to modulate excitability in either
direction. Trains of bursts can be delivered continuously for 20–
40 s (cTBS), typically resulting in a depressive effect on cortical
excitability, or intermittently (iTBS), by applying TBS trains for
only 2 s at a time with 8 s pauses in between, generally leading to
facilitatory effects (Cárdenas-Morales et al., 2010).

Stroke leads to an imbalance in interhemispheric inhibition,
caused initially by a reduced transcallosal activation of
contralateral inhibitory networks from the lesioned to the
healthy hemispheres (Murase et al., 2004). Reciprocally, the
increased excitability of the healthy hemisphere contributes
further to the inhibition of the injured hemisphere. rTMS and
TBS protocols have been employed with the goal of restoring
balance in interhemispheric inhibition. Indeed, cTBS or low
frequency rTMS can be used to reduce the over-excitability in
the healthy contralateral hemispheric region, and iTBS or high
frequency rTMS to increase the excitability of the lesioned cortex
(Fitzgerald et al., 2006; Hummel and Cohen, 2006; Chung et al.,
2016). These differential effects can be advantageous for people
with stroke who tend to overuse their healthy limb. This excessive
compensatory use might induce an excitatory reorganization of
the contralesional hemisphere and a further increased inhibition
of the injured hemisphere, resulting in maladaptive plasticity
(Ward and Cohen, 2004). Therefore, stimulation interventions
aimed at reducing this interhemispheric imbalance may help
stroke patients by limiting maladaptive plasticity and restoring
more normal function to the damaged hemisphere (Khan, 2017).

Work in animal models have started to elucidate some
of the mechanisms of the TMS modality and TBS protocols
specifically in stroke. Sessions of TMS and cTBS over 6 days
in rats appears to be neuroprotective for proteins and cell
signaling molecules involved in blood brain barrier integrity
and promote beneficial changes in angiogenesis and cytokine
response (Zong et al., 2020). In mice, cTBS exerts direct and
sustained effects via modulation of GABAergic interneuron
transmission in photothrombosis (Feng et al., 2020). This is
of interest since phasic GABAergic signaling is a potential
target for drug therapeutics in mice (Hiu et al., 2016). TMS
combined with exercise significantly increased expression of
Brain-Derived Neurotrophic Factor and TrkB after middle
cerebral artery occlusion in rats (Cui et al., 2020). Hogan
and colleagues have written a useful review concerning
the molecular mechanisms resulting from neural stimulation
and those involving neural plasticity (Hogan et al., 2020).
More work in the basic neurosciences will be essential
to develop protocols based on an understanding of the
molecular processes resulting from neurostimulation which will
consequently optimize clinical efficacy.

Although there is promise for rTMS and TBS to improve
stroke recovery (Zhang et al., 2017), there are also a number of
negative reports from gold-standard randomized control trials
(RCTs) (Dionísio et al., 2018; Kim et al., 2020). Several factors
likely contribute to this disparity. With regard to patients, there

is a lack of consistency in the stroke severity of subjects and
the timing of interventions with respect to stroke onset, among
other factors known to impact cortical excitability such as age,
medications, etc. There is also a lack of consistency in the
exact stimulation protocols employed and in the duration over
which the effects are monitored post-intervention. This creates
a challenge to rigorously assess the therapeutic effectiveness of
rTMS and TBS in stroke. While most protocols were effective
at inducing changes in the ipsi- and/or contralesional cortical
excitability (e.g., Sung et al., 2013; Wang et al., 2014; Du
et al., 2016), these changes in excitability were not always
correlated to motor improvements (Malcolm et al., 2007; Talelli
et al., 2007; Nowak et al., 2008). For many interventions,
the induced change in cortical excitability did not translate
into long term gains of motor function (Smith and Stinear,
2016). This last point is critical in our opinion: to be effective,
stimulation interventions aimed at promoting motor recovery
have to be guided by a sound understanding of the precise
physiological mechanisms by which neural plasticity can mediate
motor recovery, and paired with rigorous validation studies to
establish their efficacy. Notably, there are other models of stroke
recovery (vicariation, and bimodal balance-recovery utilizing the
concept of structural reserve) which rely less on hemispheric
imbalance, and may better explain individual variation in
therapeutic effectiveness (Di Pino et al., 2014). Further basic
science research directly validating these models, along with
clinical research in human neuroimaging, will be necessary to
determine which perspective is most applicable for a given
therapeutic modality.

Transcranial Direct Current Stimulation
(tDCS)
tDCS relies on weak electrical stimulation (e.g., 0.5–4 mA)
to modulate cortical excitability. Non-invasive stimulation is
applied on the scalp through at least two electrodes, an anode
and a cathode, placed above a region or network of interest. It
is presumed that cortical excitability is increased in the region
under the anode and decreased in the region under the cathode
(Nitsche and Paulus, 2001). tDCS is non-invasive and relatively
easy to administer, with only potentially mild side effects (Antal
et al., 2017). It is also inexpensive relative to other techniques. It
can also be set up as a home-based intervention. Its potential as
a therapeutic tool has therefore led to a great deal of interest in
neuroscience and clinical research.

As mentioned above, stroke may induce an imbalance in
interhemispheric inhibition, resulting in maladaptive plasticity.
Thus, similar to rTMS or TBS, three main tDCS protocols have
been tested in order to restore interhemispheric balance and
improve activities of daily living or upper limb rehabilitation
(e.g., Plow et al., 2016). The first protocol aims at increasing
excitability in the injured region by placing an anode electrode
over this region coupled and a cathode electrode on a neutral
contralateral region, such as the supraorbital area. A second,
inverse strategy is to decrease the excitability of the contralesional
cortex by placing the cathode over it, and the anode on the
contralateral supraorbital area. Finally, a third approach is to
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apply both the anode and cathode electrodes over the lesioned
and contralesional regions, respectively (Vines et al., 2008). Some
early experiments have identified promising effects, such as
an hour-long reduction of corticomotor excitability following
cathodal stimulation applied over the primary cortex in healthy
adults (Nitsche and Paulus, 2001). However, recent randomized
studies and meta-analyses of active vs. sham tDCS have found
no clear evidence of improvement to upper paretic limb function
following any of the tDCS protocols (Bastani and Jaberzadeh,
2012; Triccas et al., 2015; Elsner et al., 2017). With regard
to activities of daily living, Elsner et al. (2017) completed a
meta-analysis (including 284 participants from 12 randomized
controlled trials) and identified a significant moderate effect when
the cathode was applied over the contralesional cortex, but no
clear evidence for the other protocols.

Nonetheless, in the same manner as rTMS and TBS, tDCS
mechanisms are not fully understood yet and the literature
still lacks consistency regarding the stimulation parameters
used. Some fundamental work has been done in this regard.
In mice, anodal high definition tDCS over the contralesional
motor cortex after middle cerebral artery occlusion enhanced
neurogenesis peri-lesionally and upregulated PDGFA and GDF5
expression in the lesioned hemisphere, factors involved in
neuroprotection and downstream plasticity pathways (Ahn
et al., 2020). As with TMS, BDNF, TrKB and associated growth
factor signaling are heavily implicated as well with tDCS (Fritsch
et al., 2010). Although high definition tDCS is still being
developed as of writing, and association with functional MRI,
magnetic resonance spectroscopy or electroencephalography
could be beneficial, the incompleteness of mechanistic
understanding hinders the effectiveness of this method.
More research is necessary to discover common plasticity
mechanisms and pathways across stimulation modalities,
thereby identifying high-yield mechanistic targets to optimize
stimulation protocols.

Invasive Electrical Stimulation
Despite the risks associated with surgical implantation of
electrodes, invasive neurostimulation techniques have also been
investigated. The higher proximity of electrodes to the target
neurons confers a superior spatial resolution and stimulation
efficiency. These factors may activate and induce plasticity
in more targeted neuronal subpopulations, which may in
turn provide the means to more effectively remodel neuronal
pathways toward functional recovery. For example, epidural
stimulation of the perilesional cortex, paired with rehabilitation
training, has been tested to promote motor recovery after stroke
(Plow and Machado, 2014). Initial experiments in rodents have
led to behavioral improvements (Adkins et al., 2008), and Phase
I/II clinical trials have also suggested therapeutic benefits (Brown
et al., 2006; Levy et al., 2008). Despite the enthusiasm following
these results, a Phase III clinical trial unfortunately did not
demonstrate significant functional improvement (Levy et al.,
2016). This failure could be due to differences in electrode
placement among subjects and the diversity of lesion severity,
localization and extent (Plow et al., 2009). Further research will be

necessary to identify precisely how epidural cortical stimulation
could be used to improve motor recovery after stroke.

PAIRED ASSOCIATIVE STIMULATION
(PAS)

In PAS paradigms, interventions aim to synchronize perisynaptic
neuronal activity to elicit spike-timing-dependent plasticity
(Markram et al., 1997; Feldman, 2012). For motor recovery, the
most common PAS experiments have combined TMS over the
motor cortex and non-invasive electrical stimulation of the spinal
cord or peripheral nerves (Stefan et al., 2000; Castel-Lacanal et al.,
2007). For example, a study conducted on 19 healthy subjects
demonstrated that PAS promoted an increase in primary motor
cortex excitability when using transspinal stimulation followed
by transcortical stimulation, whereas transcortical stimulation
followed by transspinal stimulation induced a decrease in M1
excitability (Dixon et al., 2016). This study also emphasized the
importance of interval timing for neuromodulation efficiency.
Single sessions of non-invasive PAS in stroke patients are
effective at inducing general increases in corticomotor excitability
(Palmer et al., 2018). In patients with spinal cord injuries, recent
experiments demonstrated that repeated PAS interventions could
strengthen the descending connections onto motoneurons and
lead to modest but sustained improvements in upper and lower
limbs motor function (Bunday and Perez, 2012; Urbin et al., 2017;
Jo and Perez, 2020). However, PAS effects are highly variable
across subjects (Sale et al., 2007; McGie et al., 2014; Tarri et al.,
2018), and failure at inducing plasticity with PAS has also been
reported (McGie et al., 2014).

A challenge for PAS (and most rTMS/tDCS) interventions is
that stimuli are typically being applied in awake subjects with no
regard to the complex ongoing patterns of neuronal activity. The
effectiveness of PAS can be increased when stimulation is applied
with a specific timing relative to ongoing cortical activity, namely
by timing PAS with event-related desynchronization during
motor imagery (Royter and Gharabaghi, 2016; Kraus et al., 2018).
The effectiveness of this approach underlines the importance of
considering the brain’s state and ongoing spontaneous neuronal
activity as factors influencing the effectiveness of PAS. Moreover,
the effect of PAS has also been shown to be influenced by other
processes such as attention (Stefan et al., 2004). Overall, the
literature suggests that PAS can be effective, but also that a high
level of cooperation between the spontaneous brain activity and
stimulation-induced activity is necessary for reliable and effective
neuromodulation. The overall idea, namely to administer a
neuromodulation treatment during or right after specific states
of brain activity, is also important for rTMS treatments: in the
Food and Drug Administration (FDA) approved rTMS protocols
for smoking cessation or to treat obsessive-compulsive disorders
(OCD), subjects are required to observe smoking or OCD
symptoms are provoked right before administrating the rTMS
treatment, to “activate the relevant neuronal circuits” (FDA, 2018;
Roth et al., 2020).

To improve the reliability and efficacy of paired stimulation
interventions and advance our understanding of important
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factors underlying stimulation-induced plasticity, paired
stimulation interventions are being investigated in animal
models as well. The latter carry inherent advantages over human
studies to precisely identify mechanisms and principles of
plasticity. For example, at the spinal cord level, coincident
stimulation between the descending corticospinal tract and the
spinal cord afferents in rats under anaesthesia could induce
sustained potentiation of corticospinal excitability (Mishra et al.,
2017). An early attempt at invasive electrical PAS in awake rats
by our group was not successful in meaningfully potentiating
the corticospinal system (Ting et al., 2020). Although many
factors could explain this difference, one possible explanation
is the interference of spontaneous activity in the very neurons
targeted by the pairing process. These PAS results in awake and
anesthetized rats contrast with those obtained with rTMS, where
interventions on awake animals induced stronger long-term
effects that in sedated ones (Gersner et al., 2011). The STDP
hypothesis was also tested in awake monkeys using paired
stimulation within the sensorimotor cortex, between implanted
electrodes, demonstrating that intra-cortical plasticity is also
inducible using a paired stimulation protocol (Seeman et al.,
2017). However, this study also highlighted inconsistency in PAS
outcomes, as robust LTP-like effects were obtained in only 2 out
of 15 pairs of cortical sites. Further work in animal models of
neurostimulation will be crucial to advance our understanding
of the governing principles of plasticity, at both the spinal cord
and cortical levels. This process will likely involve more specific
methods of neuronal activation, such as optogenetic stimulation
in well-defined neuronal subpopulations and circuitry.

CLOSED-LOOP STIMULATION

Therapeutic neuroprostheses rely on healthy brain activity to
guide stimulation of the paralyzed limb and produce basic
movements such as grasping or reaching. Such closed-loop
stimulation paradigms aim to engage more natural patterns of
neuronal and muscular activity in the association process. Like
paired stimulation targeting cortico-motoneuronal synapses,
this approach forces the synchronization between spontaneous
(voluntary) corticospinal activity, and stimulation-induced post-
synaptic activity (antidromic spikes in motoneurons). Unlike
open-loop PAS, however, brain-controlled peripheral stimulation
relies on natural patterns of brain activity, and thus engages
the very same brain neurons in the association process as those
that will be recruited later through voluntary effort. The plastic
effects induced through this approach are thus likely to translate
more directly into functional gains than open-loop approaches
(Ethier et al., 2015).

Behavior-Controlled Stimulation
A first approach to roughly match neuronal stimulation and
ongoing brain activity is to synchronize stimulation to behavior.
Promising results have been obtained in severe stroke patients
by pairing transcutaneous neurostimulation with rehabilitation
exercises (Thrasher et al., 2008). In a series of experiments
involving vagus nerve stimulation, closed-loop stimulation of the

vagus nerve was found to be effective in driving corticospinal
plasticity. For example, Ganzer et al. (2018) demonstrated in
rat models of SCI that precisely timed stimulation of the vagus
nerve during a rehabilitative isometric pull task could strengthen
remaining motor connections. This experiment demonstrated
that triggering stimulation in tandem with the most successful
movements was significantly better than rehabilitation alone
or stimulation associated with weaker pull forces. In rat
models of stroke, the same group also demonstrated that vagus
nerve stimulation improved functional recovery when paired
to rehabilitation exercises, but not when delivered arbitrarily
(Khodaparast et al., 2016; Meyers et al., 2018).

An experiment combining electrochemical stimulation and a
robotic interface designed to force rats to use their paralyzed
hindlimbs has also led to improved recovery of voluntary
movement (Van Den Brand et al., 2012). In that study, rats with
spinal cord injuries were supported by a harness mounted on
a rail and trained to walk on their hindlimbs toward a sweet
reward. In this case, the repeated coincidence of voluntary effort
and the spinal cord stimulation led to beneficial plasticity and
improved recovery. In a related study also in rat models of SCI,
stimulation of the spinal cord was triggered upon the detection
of residual EMG activity in the impaired forelimb (McPherson
et al., 2015). This closed-loop system induced a faster and greater
recovery of forelimb function than when the same stimuli were
applied with an arbitrary timing or when physical training alone
was performed. In all these previous examples, functional benefits
were obtained by conjugating stimulation to voluntary effort.
This general approach was also successfully tested in human
subjects, where the delivery of neuromuscular stimulation during
rehabilitation exercises led to increased corticospinal excitability
and improved functional recovery (Thrasher and Popovic, 2008;
Everaert et al., 2010; Kapadia et al., 2011; Popovic et al., 2011;
Hara et al., 2013; Stein et al., 2013). Despite these successes,
the strategy of timing stimulation to behavior triggers or EMG
recordings has at least two limitations. First, it may be ineffective
for patients unable to move, or who display abnormal muscle
activity patterns. Second, this approach does not allow for a very
high temporal resolution, insufficient perhaps to precisely time
the stimulus pulses with respect to action potentials occurring
during voluntary effort. Therefore, it may be suboptimal to fully
engage Hebbian mechanisms.

EEG-Controlled Stimulation
Electroencephalography (EEG) is an easy and non-invasive
method to record motor cortical activity and infer voluntary
effort without relying on movement or EMG activity. Movement
intents are correlated to rhythm desynchronization of alpha
and beta waves (10–30 Hz) measured over the sensorimotor
cortical areas (Neuper and Pfurtscheller, 2001). Brain activity
related to both real or imagined movements can be captured
in brain-computer interface (BCI) settings to tailor peripheral
stimulation to ongoing activity patterns (Iturrate et al., 2018).
Controlling functional electrical stimulation using EEG-based
BCIs allowed stroke patients to improve upper limb function
(Kim et al., 2016; Marquez-Chin et al., 2016; Biasiucci et al., 2018).
BCI control of peripheral stimulation via EEGs utilize three

Frontiers in Neuroscience | www.frontiersin.org 5 May 2021 | Volume 15 | Article 649459

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-649459 May 10, 2021 Time: 17:32 # 6

Ting et al. Neurostimulation for Stroke Rehabilitation

main signal sources—the slow cortical potential, sensorimotor
rhythms, and event related potentials, specifically the P300
signal. With training, participants can use motor imagery to
change the polarity and/or amplitude of one or more of these
signals, which enables basic control of computer cursors or other
text input devices.

EEG is a convenient method to access spontaneous brain
activity and pair it with stimulation in the perspective of
rehabilitation, with the primary advantage being that it is non-
invasive, and depending on the system, requires varying degrees
of initial time investment. However, to reach the scalp electrodes
from the brain, the signals have to travel through layers of
skin, bone and liquid with different conductivity, inducing
distortion of current paths and electrical potentials (Nunez and
Srinivasan, 2006). The signals can therefore be contaminated by
physiological activity such as spontaneous muscle movements
or heart beats (Nunez and Srinivasan, 2006). While positive
demonstrations of therapeutic effects were obtained using this
approach, EEG recordings also lack the spatiotemporal resolution
needed to precisely time stimulation pulses to action potentials or
precise patterns of complex neuronal activity. The accuracy that
could be obtained with invasive techniques allowing for direct
extracellular recordings of neuronal activity (Buzsáki, 2004)
could be theoretically advantageous to engage the mechanisms
of STDP, requiring the precise detection of action potentials.

Invasive Recordings and Stimulation
Invasive recording and stimulation techniques are on the rise
due to technological advances leading to longer stability and
higher signal-to-noise ratios. Unlike EEG, intracortical electrodes
enable the detection of action potentials of single neurons with
precise temporal and spatial resolution. Intracortical recording is
therefore a better candidate than EEG when one wants to induce
STDP by precisely controlling the timing of action potentials
in different neuronal populations. Similarly, invasive electrodes
for intracortical or intraspinal electrical microstimulation can
provide a greater spatial precision than magnetic stimulation.
Consequently, the use of invasive recording and stimulation
electrodes could lead to a more precise intervention, and perhaps
a faster and better recovery.

Closed-loop methods using intracortical signals have enabled
monkey models and human SCI patients to re-activate and
use their own paralyzed muscles voluntarily (Ethier et al.,
2012; Bouton et al., 2016; Ajiboye et al., 2017). In addition
to enabling movement, closed-loop electrical stimulation has
also been applied to drive plasticity in the targeted networks.
One important demonstration of this method was made by
Jackson et al., who used spike-triggered stimulation within
the intact cortex of non-human primates. They were able to
induce cortical reorganization which strengthened the functional
coupling between distant motor cortical points (Jackson et al.,
2006). Nishimura et al. (2013) later demonstrated that both
LTP-like and LTD-like plastic effects could be induced in the
corticospinal circuits by stimulating monkeys’ spinal cord with
different timing after the detection of intracortical spikes. This
artificial link between the cortex and spinal cord caused, after
2–3 days of application, a change in the output of the recorded

cortical neuron. This was determined using spike-triggered
averaging of EMG activity, and this effect lasted for up to a few
days. The observed change (LTP or LTD) was consistent with the
established STDP causal timing rules.

Few demonstrations of invasive closed-loop systems for
brain repair have been documented so far. In an important
demonstration, Guggenmos et al. (2013) used a spike-triggered
intracortical stimulation approach to strengthen the neuronal
connections between the premotor and sensory cortices in rats
with a lesion to the primary motor cortex. They demonstrated
that this closed-loop approach was more effective than open-loop
stimulation to improve functional recovery.

Overall, although different approaches may enable a control
over neuronal activity with varying degrees of spatiotemporal
resolution, the feature that all closed-loop systems designed to
drive plasticity have in common is that they rely on engaging
naturally occurring brain activity as the “presynaptic” component
of the neuronal association process. The property of such devices
relying on spontaneous spiking activity to control stimulation
instead of using an arbitrary timing appears to be a defining factor
to induce a therapeutically useful reorganization. Therefore, the
ability of these systems to engage voluntary efforts might be an
important factor for functional recovery (Ethier et al., 2015).

LEVERAGING THE SELECTIVITY OF
OPTOGENETICS TO STUDY AND GUIDE
PLASTICITY TOWARD REHABILITATION

Regardless of their spatial resolution, electrical and
electromagnetic neurostimulation methods activate nearby
neuronal elements indiscriminately of their phenotype or
projection targets. Optogenetic techniques may provide an
important theoretical advantage over electrical and magnetic
stimulation in that respect, as opsins can be virally expressed
in cells with specific genetic signatures or innervation patterns,
thanks to genetic promoters and conditional or intersectional
approaches (Fenno et al., 2011). Additionally, when targeting
nerves or muscles, electrical stimuli do not recruit muscle fibers
according to Henneman’s size principle (Henneman et al., 1965),
but instead tends to activate small and large fibers unselectively
(Gregory and Bickel, 2005). Such a recruitment pattern can
lead to quicker muscle fatigue, a problem that is alleviated with
optogenetic nerve stimulation, which leads to a more natural
order of motor unit recruitment (Llewellyn et al., 2010; Williams
et al., 2019). Optogenetic stimulation can therefore activate
neurons with more natural activity patterns, with a timing
resolution of milliseconds, and with the cellular specificity of
pharmacological methods (Fenno et al., 2011), permitting the
selective control of neurons with specific genetic identities or
projection targets within a given volume of brain tissue.

Central Optogenetic Stimulation
Optogenetic stimulation may provide more consistent
neuromodulation results than electromagnetic stimulation.
Wu et al., conducted iTBS and cTBS experiments using optical
stimulation in rodent M1. In contrast to electromagnetic
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stimulation, their optical stimulation targeted excitatory
cells selectively and not inhibitory interneurons. As a result,
both iTBS and cTBS protocols induced a potentiation of the
corticospinal projections (Wu et al., 2018). Importantly, they
also reported that optogenetic iTBS led to LTP-like effects
which were nearly twice as strong as when iTBS was delivered
electrically. The selectivity achievable with optogenetic tools
therefore seems to allow an important increase in effectiveness in
inducing plasticity. Yazdan-Shahmorad et al. (2018) investigated
optically-induced cortical reorganization inside macaques’
sensorimotor cortex. Using a large scale optogenetic interface,
they demonstrated that functional connectivity between the
motor and somatosensory cortex could be strengthened
following a Hebbian plasticity model (Yazdan-Shahmorad et al.,
2018). Provided that optogenetic technologies evolve to a point
where they can be safely administered in humans, there is a huge
potential for enhanced rehabilitation protocols using selective
optical neuronal stimulation.

Peripheral Optogenetic Stimulation
In comparison to electrical stimulation, optogenetic stimulation
allows for a more orderly motor unit recruitment pattern which
more closely resembles a physiological contraction (Llewellyn
et al., 2010). To test this characteristic, Srinivasan et al. (2018)
compared closed-loop functional optical stimulation (FOS)
and functional electrical stimulation (FES) on mice and rats’
peripheral nerves to control ankle joint position. The closed-
loop system combined optical or electrical stimulation to a
distance sensor measuring ankle joint position as feedback
(Srinivasan et al., 2018). Results showed that FOS was more
accurate and presented faster rise times than FES. Also, FES
induced more fatigue during periodic movements, indicating
that optogenetic methods may be better suited for longer and/or
more repetitive use. Although early tests showed limited time
course of effectiveness, virally-mediated optogenetic activation
of peripheral nerves have been successfully tested in non-human
primates as well (Williams et al., 2019).

Before developing fully optical closed-loop devices, it may be
possible to combine electrical monitoring and optical stimulation
in a hybrid device (Song et al., 2018). In their study, Song
et al. (2018), developed a nerve cuff combining platinum
electrodes and a blue light emitting diode to record and stimulate
the peripheral nerves of active Thy1:ChR2 transgenic mice.
Efficient light penetration deep into peripheral neural tissue
renders optogenetic stimulation less position dependent than
electrical stimulation without losing specificity. The validation
of transdermal optical stimulation (Srinivasan et al., 2018) could
make non-invasive optogenetic methods feasible in the near
future. Development of these technologies would eliminate the
biological risks inherently associated with implants and invasive
surgeries and may facilitate the clinical transition of optogenetics.

Limitations of Optogenetics
Closed-loop optogenetic stimulation in animal models have
delivered promising results for the development of innovative
and efficient rehabilitation devices. However, further progress
with optogenetic technologies and molecular tools will be

necessary to achieve an efficient transition from animal
experiments to human clinical treatment.

One of the core challenges to be addressed concerns opsin
stimulation efficiency. When experimenting on non-human
primates, devices which induced promising results on rodent
brains would have to tackle a volume approximately 100
times larger (Herculano-Houzel, 2009). This volume scaling
might induce more light scattering and therefore reduce opsin
stimulation intensity. One might increase the optic fiber’s
diameter, but this could produce more tissue damage (Diester
et al., 2011). On the other hand, the use of above-the-surface
optical fiber or external brain illumination could reduce brain
damage, but might not be efficient for deep brain tissues (Ruiz
et al., 2013). Some new light emitting devices already address
these limitations, such as large-volume illuminators, which are
optical fibers modified to obtain an emitting surface area 100
times larger than conventional fibers (Acker et al., 2016). The
development of red-shifted opsins, activated by light with longer
wavelengths such as ChrimsonR (excitatory) (Klapoetke et al.,
2014) or Jaws (inhibitory) (Chuong et al., 2014), may enable
stimulation of deeper and larger structures. For example, large
volume illuminators combined to Jaws in the rhesus monkey
frontal eye field has induced large behavioral changes and
inactivation of 80–100% neurons over 10 mm3 (Acker et al.,
2016). Similar studies with conventional fibers reported 38–68%
of neuron inactivation within 1 mm of the light source (Diester
et al., 2011; Han et al., 2011).

An additional challenge concerns effective gene transfer to
human cells. Adeno-associated viruses (AAVs), are an efficient
tool to transduce opsin coding genes to cells. AAVs are valuable
carriers due to their neural tropism as well as their ability to
transport opsin genes and cell-specific promoters (Montgomery
et al., 2016). Although effective, this technique should be used
carefully to prevent immunogenic effects due to high viral doses
inside cells. Similar dose-dependent immune responses have been
observed in a clinical trial for degenerative retinal disease using
AAVs (Bainbridge et al., 2015). Cellular transplantation of opsin-
expressing cells is an alternative to AAV usage, as transplantation
of autologous cells could limit immune responses. This method
was proven effective to modulate muscle activity in mice suffering
from partial denervation (Bryson et al., 2014). Further research,
and eventually human trials, are required in this area to
demonstrate feasibility and safety.

NEUROMODULATION BEYOND
NEUROSTIMULATION: OTHER FACTORS
INFLUENCING NEURAL PLASTICITY

There are other very promising research directions which are
being investigated for harnessing beneficial plasticity through
neurotechnologies. The critical advances will come from a
better fundamental understanding of systems neuroscience
and mechanisms of neural plasticity. Perineuronal nets
are neuroprotective extracellular matrix formations which
have demonstrated influence on synaptic plasticity through
modulation of lateral AMPAR diffusion during critical periods
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(Testa et al., 2019). Nogo-A and NgR1 signaling is also
a potentially important plasticity-limiting mechanism, and
early work has demonstrated that anti-Nogo antibody/NgR1
receptor antagonists may be helpful to induce new periods
of experience-dependent plasticity, for diseases ranging from
spinal cord injury, to stroke and multiple sclerosis (Schwab and
Strittmatter, 2014). Finally, neuromodulators such as dopamine
and serotonin may play essential roles in controlling when
and how plasticity is expressed. We know that dopamine
signaling, for example, is a necessary component of STDP-type
plasticity in the corticostriatal system (Pawlak and Kerr, 2008;
Yagishita et al., 2014).

The ideal therapeutic treatment will likely be multi-modal
and evidence-based, involving not only optimized timing
(closed-loop) and specificity (optogenetics), but also effective
neuromodulation using reward cues and/or pharmaceuticals
to create a fertile environment for beneficial training-
induced neural plasticity. It is also critical to understand
that stroke is not a homogeneous phenomenon across
patients. Every neurovascular event is unique in terms
of location, severity and affected systems. With that in
mind, it is crucial that future therapeutic interventions be
tailored to each individual patient and their specific needs.
Indeed, that is part of the challenge. However, with all the
emerging knowledge on neural plasticity and improvement
in stimulation techniques and protocols, it is likely that the
upcoming decades will lead us to the emergence of highly
effective interventions to drive neuronal reorganization. Severe
neurological insult may no longer be synonymous with
lifelong impairment.

CONCLUSION

In this review, we posit that simultaneous advances along
several fronts will be necessary to create more effective
therapeutic stimulation interventions, including but not limited
to closed-loop approaches and the integration of optogenetics.
Fundamental research into the rules and governing principles
of plasticity will be critical to this endeavor. We may be at the
cusp of a revolution in rehabilitation neuroscience, where our
understanding of the brain and neuronal plasticity can be directly
applied to help patients recover from neurological insult.
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