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Choosing among spatially distributed options is a central chal-
lenge for animals, from deciding among alternative potential food
sources or refuges to choosing with whom to associate. Using an
integrated theoretical and experimental approach (employing im-
mersive virtual reality), we consider the interplay between move-
ment and vectorial integration during decision-making regarding
two, or more, options in space. In computational models of this
process, we reveal the occurrence of spontaneous and abrupt
“critical” transitions (associated with specific geometrical relation-
ships) whereby organisms spontaneously switch from averaging
vectorial information among, to suddenly excluding one among,
the remaining options. This bifurcation process repeats until only
one option—the one ultimately selected—remains. Thus, we pre-
dict that the brain repeatedly breaks multichoice decisions into a
series of binary decisions in space–time. Experiments with fruit
flies, desert locusts, and larval zebrafish reveal that they exhibit
these same bifurcations, demonstrating that across taxa and eco-
logical contexts, there exist fundamental geometric principles that
are essential to explain how, and why, animals move the way
they do.

ring attractor | movement ecology | navigation | collective behavior |
embodied choice

Animals constantly face the need to make decisions, and many
such decisions require choosing among multiple spatially

distributed options. Despite this, most studies have focused on
the outcome of decisions (1–3) (i.e., which option among alterna-
tives is chosen), as well as the time taken to make decisions (4–6),
but seldom on the movement of animals throughout the decision-
making process. Motion is, however, crucial in terms of how space
is represented by organisms during spatial decision-making; the
brains of a wide range of species, from insects (7, 8) to verte-
brates (9, 10), have been shown to represent egocentric spatial
relationships, such as the position of desired targets, via explicit
vectorial representation (11, 12). Such neuronal representations
must, and do, change as animals move through space. Thus, while
the movement of an animal may, initially, appear to simply be a
readout of the decision made by the brain—and consequently,
not particularly informative—this view overlooks important dy-
namical properties introduced into the decision-making process
that result from the inevitable time-varying geometrical relation-
ships between an organism and spatially distributed options (i.e.,
potential “targets” in space).

Due to a dearth of existing studies and with the objective to
develop the necessary foundational understanding of the “geom-
etry” of decision-making, we focus here—first theoretically and
then experimentally—on the consequences of the recursive in-
terplay between movement and (collective) vectorial integration
in the brain during relatively simple spatial decisions. We employ
immersive virtual reality to investigate decision-making regard-
ing multiple (two or more) options in both invertebrate (the fruit

fly Drosophila melanogaster and the desert locust Schistocerca
gregaria) and vertebrate (larval zebrafish Danio rerio) models.
Doing so allows us to reveal the emergence of geometric princi-
ples that transcend the study organism and the decision-making
context and thus, are expected to be broadly relevant across taxa.
In support of this finding, we also explore how these principles
extend to collective decision-making in mobile animal groups,
allowing us to gain insights across three scales of biological orga-
nization from neural dynamics to both individual and collective
decision-making.

Modeling Decision-Making on the Move
Congruent with neurobiological studies of the invertebrate and
vertebrate brain, we consider organisms to have an egocentric
vectorial representation of spatial options (11–13). We then
consider the collective dynamics of vector integration in the
brain assuming there exists reinforcement (excitation/positive
feedback) among neural ensembles that have similar directional
representations (goal vectors) and global inhibition and/or
negative feedback (both produce broadly similar results)
(SI Appendix, Fig. S1) among neural ensembles that differ in
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vectorial representation. This captures, in a simple mathematical
formulation, the essence of both explicit ring attractor networks
[as found in insects (7)] and computation among competing
neural groups [as in the mammalian brain (14)]. The animal’s
relative preference for a target is given by the activity of neurons
that encode direction to that target relative to the activity of
neurons that encode direction to other targets, and the angular
sensitivity of the neural representations (angular difference
at which excitation no longer occurs) is specified by a neural
tuning parameter, ν. The network then computes a unique
“consensus” vector (“activity bump”) that, along with some
angular noise, represents the animal’s desired direction of
movement (SI Appendix, Fig. S2). This is then translated into
motor output [SI Appendix has model details (15)]. Stochasticity
in neural dynamics is implemented here as the neural noise
parameter, T.

While capturing known, generic features of neural integration,
our model is deliberately minimal. This serves multiple purposes.
First, following principles of maximum parsimony, we seek to
find a simple model that can both predict and explain the ob-
served phenomena. Second, we aim to reveal general principles
and thus, consider features that are known to be valid across
organisms irrespective of inevitable difference in structural or-
ganization of the brain. Third, it provides a convenient means
to implement neural noise and can be mapped to the class of
neural ring attractor models widely used in neuroscience (16–
19) (SI Appendix has details). In addition, our results are shown
to be extremely robust to model assumptions, suggesting that it
provides an appropriate low-level description of essential system
properties.

Deciding between Two Options
Beginning with the simplest case, we consider the feedback be-
tween motion and internal vectorial computation when an animal
is presented with two equally attractive, but spatially discrete, op-
tions. In this case, the activity of neurons encoding option 1, N1,
will be equal to those encoding option 2, N2 (Fig. 1A). Our model
predicts that an animal moving from a relatively distant location
toward the two targets will spontaneously compute the average
directional preference, resulting in corresponding motion in a
direction oriented between the two targets. As it approaches
the targets, however, upon reaching a certain angular difference
between the options, the internal network undergoes a sudden
transition in which it spontaneously selects one or the other target
(Fig. 1C). This results in an abrupt change in trajectory: the
animal being redirected toward the respective “selected” target
(Fig. 1C; SI Appendix, Fig. S3A shows the same phenomenon
occurring for a wide range of starting positions).

Our model, therefore, predicts that despite the fact that the
egocentric geometrical relationship between the animal and the
targets changes continuously, upon approaching the targets there
exists a location whereby a further very small increase in angular
difference between the targets will result in a sudden change in
system (neural) dynamics and consequently, in motion and thus,
decision-making. Such spatiotemporal dynamics do not occur if
individuals were to simply integrate noisy vectorial information
or choose their travel direction from a summed distribution of
the location of targets in their sensory field (20), points we will
return to later.

In numerical analysis of our model, we find that irrespective
of starting position, as the animal reaches the respective angle

A B C G
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Fig. 1. Geometrical principles of two-choice and three-choice decision-making. (A) Schematic of the binary decision-making experiments. This simplified
representation shows that a sharp transition in the animal’s direction of travel is expected near a critical angle, θc. (B) A phase diagram describing the
“critical” transition exhibited while moving from compromise to decision between two options in space. The shaded area (also in E) represents the region
in parameter space where both the compromise and the decision solutions exist. (C) Density plot showing trajectories predicted by the neural model in a
two-choice context. The axes represent x and y coordinates in Euclidean space. The black line (also in G) presents a piecewise phase transition function fit
to the bifurcation. (D) Schematic of three-choice decision-making experiments, where the central target is on the angle bisector of the angle subtended
by the other two targets. (E) A phase diagram describing the first critical transition when the individual chooses among three options. After the individual
eliminates one of the outermost targets, it can decide between the two remaining options, similar to the two-choice phase diagram described in B. (F)
Theoretical predictions for decision-making in a three-choice context. The dashed line (also in H) is the bisector of the angle subtended by center target
and the corresponding side target on the first bifurcation point. SI Appendix, Table S1 shows the parameters used in C and F. (G and H) Density plots from
experiments conducted with flies (i) and locusts (ii) choosing among two and three options, respectively. Note that the density plots presented here are
for the nondirect tracks, which constitute the majority type of trajectory adopted by both flies and locusts (SI Appendix, Figs. S11 and S12). However, our
conclusions do not differ if we use all unfiltered data (SI Appendix, Figs. S11 G and N and S12 I and R).
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in space, it will relatively suddenly select one of the options
(SI Appendix, Fig. S3A). While the specific angular difference
at which this phenomenon occurs is dependent on neural tun-
ing, ν (SI Appendix, Fig. S3C), and the starting configuration,
(SI Appendix, Fig. S3B) (due to an interplay between the two
timescales involved), it is always present as long as the neural
noise, T, remains below a critical firing rate, Tc (although even
for T < Tc , these bifurcations may be difficult to see for small
values of ν due to inherent noise in real biological systems)
(SI Appendix, Fig. S4 shows simulations where vectorial repre-
sentations of targets include directional error).

To gain a deeper insight into the mechanism underlying the
observed spatiotemporal dynamics, we constructed a mean-field
approximation of our model (SI Appendix) since this has the
advantage of allowing us to conduct formal analyses of patterns
realized in the simulated trajectories.

Geometric Principles of Decision-Making
The mean-field analysis of our model shows that below a critical
level of neural noise, animals will adopt the average among op-
tions as they approach the targets until a critical phase transition
upon which the system spontaneously switches to deciding among
the options (Fig. 1B and SI Appendix, Fig. S5A). Thus, despite
varying in its exact location (Fig. 1B), the sudden transition
observed is an inevitable consequence of the system dynamics
and will always occur.

Such sudden transitions correspond to “bifurcations” in the
mathematical study of dynamical systems. A bifurcation is said
to occur when a smooth change in an external parameter, in this
case perceived angular difference between the options, causes
a sudden qualitative change in the system’s behavior, here cor-
responding to a literal bifurcation (or branching) in physical
space.

When dynamical systems undergo such a phase, or quasiphase,
transition, they exhibit a remarkable universal property; close
to the transition, at the “critical point” or “tipping point,” the
system spontaneously becomes extremely sensitive to very small
perturbations [e.g., to small differences in preference between
options (21, 22)]. This is true of both physical [e.g., magnetic (23)]
and biotic [e.g., cellular (24, 25)] systems undergoing a phase
transition. Correspondingly, we find that below a critical level of
neural noise, the mean-field model exhibits a sudden increase in
susceptibility as the animal approaches the critical point, imme-
diately prior to the decision being made (SI Appendix, Fig. S5A).
This will not occur in previously considered models where an
animal is assumed to choose its direction of travel based on the
summed distribution of targets in its sensory field, also known
as probability density function (PDF) sum-based models (20).
Thus, as animals approach targets, we predict they will pass
through a window of space (corresponding to the critical angle
for the respective geometry they are experiencing) in which
their brain spontaneously becomes capable of discriminating
between very small differences between options (e.g., a very
small difference in neuronal activity being in “favor” of one
option) (SI Appendix, Fig. S3D has details). This highly valu-
able property (for decision-making) is not built into the model
but is rather an emergent property of the inherent collective
dynamics.

In many real biological systems, including the ones we consider
here, the (neural) system size is typically not large enough
to consider true phase transitions (which only occur for very
large systems, as per the mean-field approximation) but rather,
“phase transition–like” or “quasiphase transition” behavior.
Even though real biological systems are not necessarily close
to the infinite size limit of the mean-field approximation, we
see very similar dynamics for both small and large system sizes
(SI Appendix, Fig. S6).

Decision-Making beyond Two Options
While the majority of decision-making studies consider only two
options [due to both theoretical and experimental tractability (14,
26, 27)], animals moving in real space frequently encounter a
greater number than this. Here, we consider how animals will
be expected to select among three, or more, options (possible
targets) in space. First, we begin with three identical options
(N1 = N2 = N3) since this gives us the clearest insight into the re-
lationship between motion and decision-making dynamics. Then,
we relax these assumptions and consider differences between
options (SI Appendix, Fig. S3E) as well as a greater number of
options (Fig. 2). Note that we do not modify our model in any
way prior to introducing these additional complexities.

Below Tc (SI Appendix, Fig. S7 has considerations when T >
Tc), we once again find that the direction in which the animal
moves is a function of the angular difference between the tar-
gets. When relatively far from the targets, it moves in the aver-
age of these three directions. Upon reaching a critical angular
threshold between the leftmost and rightmost options (from the
animal’s perspective), however, the neural system spontaneously
eliminates one of them, and the animal begins moving in the
direction average between the two remaining options (Fig. 1
D and E). It continues in this direction until a second critical
angle is reached, and now, the animal eliminates one of the two
remaining options and moves toward the only remaining target
(Fig. 1F and SI Appendix, Fig. S5B). Thus, we predict that the
brain repeatedly breaks multichoice decisions into a series of
binary decisions in space–time. Such bifurcation dynamics are
not captured in models of decision-making that do not include
the required feedbacks, such as if individuals simply sum noisy
vectors (or PDFs) to targets in their sensory field (20). For the
case of three targets, vectors/votes to the leftmost option would
tend to cancel those that favor the rightmost option, resulting in
the selection of the central option, an issue we will return to later
when considering collective animal behavior. Simulating a larger

A B

C D

Fig. 2. Decision-making for a larger number of targets. Density plots of
simulated trajectories for four- (A), five- (B), six- (C), and seven-choice (D)
decision-making when targets are placed equidistant and equiangular from
the agent. The axes represent x and y coordinates in Euclidean space. Geo-
metrical configurations are also varied to place the targets on the same side
of the agent (A and B) or in radial symmetry (C and D). SI Appendix, Table S1
shows the parameters used in A–C. In D, all parameters used are identical
except the system size N = 70.
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number of options (Fig. 2) and varying environmental geometries
(SI Appendix, Figs. S8 and S9) demonstrate the robustness of this
mechanism in the face of environmental complexity and the more
complex spatial dynamics that emerge as organisms undergo
repeated bifurcations.

Experimental Tests of Our Predictions
Since the decision process is predicted to be sequential and
dependent on the geometry with respect to the targets from an
egocentric perspective, it should be possible to visualize it directly
from the trajectories taken by animals when making spatial deci-
sions. In this respect, our theoretical studies make a key testable
prediction; if neural groups within the decision-making ensemble
exhibit relatively local excitation and long-range/global inhibi-
tion, we should observe bifurcations in the animals’ trajectories
as they choose among identical options, and if animals face three
(or more) such options, then the complex decision task should be
broken down to a series of binary decisions.

Since the geometrical principles revealed above are expected
to be both robust and generic, we use immersive virtual real-
ity (28) (SI Appendix, Fig. S10) to test our predictions by inves-
tigating both two- and three-choice decision-making in three
evolutionarily highly divergent brains under ecologically rele-
vant scenarios: fruit flies (D. melanogaster) and desert locusts
(S. gregaria) deciding which among multiple vertical objects to
approach (e.g., to perch) and zebrafish (D. rerio) choosing with
which conspecific(s) to school. Like many other insects (29–32),
fruit flies (33) and desert locusts (34) exhibit a natural tendency to
orient and move toward high-contrast vertical features (potential
landing sites or indicators of vegetation) in their environment.
We exploit this tendency, presenting multiple identical black
pillars as targets in an otherwise white environment. We record
trajectories of our focal animals (solitary flies or locusts) as they
choose to move toward one of these pillars, thus obtaining a
behavioral readout of the decision-making process (SI Appendix
has experimental details; SI Appendix, Figs. S11 and S12 show
raw trajectories of flies and locusts, respectively).

As predicted by our theory (Fig. 1 B and C), we find that,
in the two-choice case, most flies and locusts that choose one
of the presented targets initially move in the average of the
egocentric target directions until a critical angular difference
(SI Appendix, Fig. S13), at which point they select (randomly)
one or the other option and move toward it (a randomiza-
tion test where y coordinates between trajectories were swapped
showed that the bifurcation fit to our experimental data was
highly significant; P < 0.01 for both flies and locusts) (Fig. 1G
and SI Appendix, Fig. S13). Here, we note that there may be
multiple factors that affect the animals’ direction of movement.
For example, it could be that animals repeatedly switch between
fixating on each of the two options before reaching the critical
angular difference, following which they select one. However,
quantification of their heading relative to the targets and to
the average direction between the targets (SI Appendix, Fig. S13)
finds no evidence for this; instead, prior to the bifurcation, both
flies and locusts exhibit a heading toward the average of the
egocentric target directions. In the three-choice case, the ani-
mals’ movements are also consistent with our theory; as pre-
dicted (Fig. 1 E and F), they break the three-choice decision
into two sequential binary decisions (P < 10−4 for both flies
and locusts) (Fig. 1H). For both animals, the observed angle
of bifurcation (∼110◦ for flies and ∼90◦ for locusts) is much
larger than their visual spatial resolution [∼8◦ and ∼2◦ for flies
(35) and locusts (36, 37), respectively]. We note that ∼30% of
animals in our experiments (both flies and locusts) did not exhibit
the sequential bifurcations (SI Appendix, Figs. S11 and S12) de-
scribed above and instead, moved directly toward one of the pre-
sented targets (SI Appendix, Figs. S11 and S12). Such variability
in response is expected in animals and is consistent with recent

work on the visual response of flies, which demonstrates a link
between stochastic (nonheritable) variation in brain wiring within
the visual system and strength of visual orientation response to a
vertical stripe target (38). Furthermore, flies that experience high
temperatures during development appear to exhibit a particu-
larly strong orientation tendency, exhibiting the most direct paths
to targets, while flies that experience low developmental tem-
peratures exhibit wandering paths to targets (39). In our model,
such differences can be accounted for by variation in directional
tuning of the neural groups, with high directional tuning (low ν)
being associated with a strong orientational response and such
individuals exhibiting direct tracks to targets from the outset
(SI Appendix, Fig. S14).

A further nonmutually exclusive possibility is that a subset of
insects exhibits “handedness.” For example, in ref. 40, it was
shown that approximately 25% of Drosophila were either strongly
left biased or right biased when moving on a Y maze and that
these consistent differences among flies were similarly nonheri-
table. This experimental design did not assess whether a further
subset was biased to go directly forward if offered three direc-
tional choices (such as could occur in a hypothetical Ψ maze). In
such cases, it is certainly possible that these intrinsic directional
biases break symmetry (SI Appendix, Fig. S3 D and E), resulting
in directed paths to different targets.

We note that individuals predisposed to exhibit direct paths
to targets would be expected to make faster, yet less accurate,
decisions, a prediction we plan to test in future studies.

Our zebrafish experiments consider spatial decision-making in
a social context. We present virtual conspecifics (SI Appendix
has methodological details) that move back and forth in
the arena parallel to each other as targets (Fig. 3A and
SI Appendix, Fig. S15A) and behave (SI Appendix, Fig. S16),
and are responded to (SI Appendix, Fig. S17), in the same way
as real fish. Because they are social, the real fish respond to
these virtual fish by tending to follow at a (relatively) fixed
distance behind them (SI Appendix, Fig. S15E). Our data are best
represented within this moving frame of reference (the virtual
fish) (SI Appendix, Fig. S15). Theoretically, we predict that for
two virtual fish, we should see a single bifurcation, where the real
fish will suddenly switch from averaging the target directions to
deciding among them (i.e., swimming predominantly with one of
the virtual fish) as a function of increasing the lateral distance,
L, between the virtual fish (Fig. 3B and SI Appendix, Fig. S18;
SI Appendix has details of model implementation). The existence
of this bifurcation is clearly seen in our experiments (Fig. 3C).
When considering three moving virtual conspecifics, the model
predicts that real fish will spontaneously break the three-choice
decision to two binary decisions, and a comparison of the
theoretical prediction and experimental results demonstrates
this to be the case (c.f. Fig. 3 E and F).

We also test predictions under conditions where there is an
asymmetric geometry whereby two fish swim closer to each other
than the central one does to the third fish (Fig. 4A). As predicted
by our theory (Fig. 4B), the real fish tends to swim between the
two closely associated fish or close to the third more distant fish
(Fig. 4B). Note that, also as predicted, the real fish spends a
similar amount of time in each of the two locations.

Although detailed models considering the specifics of each
system would be expected to provide additional quantitative fits
(at the expense of losing some degree of generality and analytical
tractability), our results are broadly independent of the model
implementation details. Thus, we find that the key predictions of
our model are validated in fruit flies, desert locusts, and larval
zebrafish in distinct yet ecologically relevant contexts.

Model Features That Determine Network Behavior
There are key features that are essential to produce the bifurca-
tion patterns observed in our data (i.e., for any decision-making
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Fig. 3. Decision-making in a moving frame of reference. (A) Schematic
of the two-choice decision-making experiments conducted with larval ze-
brafish. In these experiments (also in the three-choice experiments depicted
in D), the virtual fish swim parallel to each other while maintaining a
fixed lateral distance, L, between them. We only consider data where
the real fish swims behind the virtual fish (i.e., it follows the virtual fish)
(SI Appendix, Fig. S15 has details). (B) Normalized probability distribution
(proportion of maximum) of simulated positions of an agent following two
moving targets and corresponding experiments (C) conducted with larval
zebrafish following two virtual conspecifics. (D) Schematic representation of
the three-choice decision-making experiments. (E) Normalized probability
distributions of simulated positions of an agent following three moving
targets and corresponding experiments (F) conducted with larval zebrafish
following three virtual conspecifics. SI Appendix, Table S1 shows the model
parameters used in B and E.

system to break multichoice decisions to a series of binary
decisions).

1) Feedback processes that provide the system directional per-
sistence and drive such bifurcations are crucial to exhibit the
observed spatiotemporal dynamics. In the neural system, this
is present in the form of local excitation and long-range/global
inhibition (7, 18, 19). However, as shown in our model of
collective animal behavior below, we expect that similar dy-
namics will be observed if the necessary feedbacks are also
incorporated into other models of decision-making, such as
to PDF sum–based models, for example (20).

2) Observing similar decision dynamics requires a recursive (em-
bodied) interplay between neural dynamics and motion in
continuous space. Here, the animal’s geometrical relationship
with the targets changes as it moves through physical space.
Since neural interactions depend on this changing relation-
ship, space provides a continuous variable by which the in-
dividual traverses the time-varying landscape of neural firing
rates.

These essential features, along with the observed animal trajec-
tories in the two-choice context, are reminiscent of collective
decision-making in animal groups [models (41–45), fish schools
(46), bird flocks (47), and baboon troops (26)]. Below, we con-
sider an established model of collective decision-making (41) to
draw links between these two scales of biological organization—
decision-making in the brain and decision-making in animal
groups.

A Link to Collective Decision-Making
In order to draw a link between individual decision-making and
collective decision-making in animal groups, we consider an
animal group with an equal number of individuals exhibiting
preference for each target (SI Appendix has methodological de-
tails). A long-standing approach in the study of animal collec-
tives is to consider them integrating vectorial information from
neighbors (48, 49), and there are a great number of publications
of such “flocking,” “schooling,” or “herding” behaviors (48–50).
Individuals within groups may also have preferences to reconcile
this local vector averaging with goal-oriented behavior, such as a
desired direction of travel (41, 46), and such models have made
effective predictions regarding how the number of individuals
with a common desired direction of travel influences the accuracy
of group motion toward targets (26) and how the weighting of the
internal “goal-oriented” vector representing the desired direc-
tion of travel influences the capacity and accuracy for individuals
to act as leaders and to influence the direction taken by the group
as a whole (51).

We demonstrate here, however, that while ubiquitous, such
models of collective animal behavior fail to account for the
known capability for animal groups to make decisions among
spatially discrete targets (SI Appendix, Fig. S19 A and B). To do

A

B

Fig. 4. Decision-making with the targets in an asymmetric geometry.
(A) Schematic of the asymmetric choice test presented to larval zebrafish.
In these experiments, the virtual fish swim parallel to each other while
maintaining a fixed lateral distance, L, between them. To create asymmetry
in the geometry, the center fish swims closer to one of the side fish than the
other (L12 = 0.09 m and L23 = 0.03 m). B, Upper shows the PDF of simulated
positions of an agent following three moving targets in an asymmetric
geometry corresponding to the experiments. The simulated agent occupies
a position of y = ±0.04 m while following the targets (ν = 0.7;σθ = 0.3).
B, Lower shows the PDF of the position of the real fish along the axis
perpendicular to its direction of motion. As predicted by our model, the real
fish considers the two virtual conspecifics closer to each other as a single
target and adopts one of two positions behind the virtual fish.
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so, it is essential that the necessary feedbacks, as described above
for collective decision-making among neurons, are incorporated.
While these feedbacks are inherent to our neural model, they can
also be included in other models in the form of social interactions
or in the animals’ response to their environment (52).

For example, one way feedback can be introduced here is
via “informed” individuals (those with a desired direction of
travel) associating with “uninformed” or “unbiased” individuals
(individuals that exhibit social interactions but have no specific
desired direction of travel) (41, 46); uninformed individuals are
effectively recruitable by those with a desired direction of travel
(providing local positive feedback) but are also in finite sup-
ply, creating what is effectively a competition among informed
subsets that differ in their preferred direction of travel (a form
of longer-range inhibition between informed subsets). However,
because uninformed individuals tend to average the direction
of all informed individuals that recruit them, we find that this
type of feedback functions more as a social glue and is only
able to explain bifurcations when the group is choosing between
two options. In a decision-making context with three options,
this type of feedback results in the group almost always moving
toward the central target (SI Appendix, Fig. S19D).

A means of resolving this issue is for individuals to change
the strength of their goal-orientedness as a function of their
experienced travel direction; for example, individuals that find
themselves consistently moving in a (group) direction that differs
from their preferred target direction could weaken the strength
of their preference over time [a form of forgetting/negative feed-
back, effectively resulting in long-range/global inhibition; when
this preference is lost, they will tend to spontaneously reinforce
the majority-selected direction (46), a form of positive feedback].
We find that this biologically plausible mechanism (41) will allow
individuals within the group to recover the capability to come to
consensus even in the absence of uninformed individuals (Fig. 5)
and for a greater number of options than two (Fig. 5B).

Despite considerable differences in details between this model
and that of neural dynamics described above, with the former
involving individual components that change neighbor relation-
ships over time and where inhibition emerges from a differ-
ent biological process, the predictions regarding motion during
decision-making are extremely similar (c.f. Figs. 1and 5show a
comparison between predictions for neural groups and animal
groups, respectively). Thus, we find that similar principles may
underlie spatial decision-making across multiple scales of biolog-
ical organization. Furthermore, by presenting social interactions
in a decision-making context, our zebrafish experiments elucidate
the neural basis of schooling, allowing us to glean insights across
three scales of biological organization—from neural dynamics to
individual decisions and from individual decisions to collective
movement.

Conclusions
We demonstrate that, across taxa and contexts, explicitly
considering the time-varying geometry during spatial decision-
making provides insights that are essential to understand how
and why animals move the way they do. The features revealed
here are highly robust, and we predict that they occur in
decision-making processes across various scales of biological
organization, from individuals to animal collectives (Fig. 5 and
SI Appendix, Fig. S19), suggesting they are fundamental features
of spatiotemporal computation.

Materials and Methods
We construct a simple, spatially explicit model of neural decision-making
to study how the brain reduces choice in the presence of numerous spatial
options (adapted from ref. 15). Theoretical predictions obtained were then
tested experimentally by exposing invertebrate (fruit flies and desert locusts)
and vertebrate systems (zebrafish) to spatial choice tests in virtual reality. To

A

B

Fig. 5. Consensus decision-making in simulations of animal groups follow
the same geometrical principles. Results for two- (A) and three-choice
(B) decision-making in a model of animal collectives. The density plots
show trajectories adopted by the centroid of the animal group for 500
replicate simulations where the groups do not split. The axes represent
x and y coordinates in Euclidean space. The black lines show a piecewise
phase transition function fit to the trajectories. For the three-choice case
(B), the dashed line is the bisector of the angle subtended by the center
target and the corresponding side target on the first bifurcation point.
SI Appendix, Table S2 shows the parameters used.

identify unifying principles of spatiotemporal computation across scales of
biological organization, we also reproduce the obtained decision-making
patterns with an established model of collective decision-making in animal
groups.

Neural Decision-Making Model. We construct a computational model of
neural decision-making that takes in a representation of directions to the
different targets as input and outputs a collective vectorial representation
of the agent’s future velocity (adapted from ref. 15). This provides us with
explicit predictions for animal trajectories, allows us to determine which
target is reached in each realization of the simulation, and facilitates direct
comparison with experimental tests. Our model is within the class of widely
employed neural ring attractor models (SI Appendix), which like neural field
models (53, 54) and attractor network models more generally (16, 18, 55),
consider the collective firing activity of the neurons, or the firing rate, as
opposed to the microscopic state of each firing neuron.

In our model, the brain is composed of individual components, called
“spins,” that collectively, as a “spin system,” represent neural activity. Spin
systems, which have been long studied in physics due to their ability to
give insight into a wide range of collective phenomena from magnetic to
quantum systems (56), were first introduced in the study of neurobiology
by Hopfield (57) in a landmark paper that provided considerable insights
into principles underlying unsupervised learning and associative memory.
In its simplest (and most common) formulation, as in Hopfield networks, a
spin system is composed of entities, spins, that can each be in state 0 or 1
or in the terminology of physics, either “up” or “down.” Spin systems have
consistently provided deep insights into complex collective phenomena from
spin and molecular systems to neural systems undergoing phase transitions
(58, 59) (SI Appendix has details and discussion).
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Here, the animal’s brain is characterized by a system of N spins. Each spin
i encodes the direction to one of the presented goals p̂i and exists in one
of two states: σi = 0 or σi = 1. We do not imply that a spin is equivalent
to a neuron but rather, as we show via a mathematical derivation, that
the collective properties of interacting spins in our model are equivalent to
the firing rate in the neural ring attractor model (SI Appendix has details).
Consequently, we refer to the individual components with which we model
our system as spins and “neural activity” as a term to represent this “firing
rate” equivalent. The energy of the system (for any given configuration) is
given by its Hamiltonian, H:

H = −
k

N

∑
i �=j

Jijσiσj , [1]

where k is the number of options available to the individual and Jij is the
interaction strength between spins i and j. Here, Jij is given by

Jij = cos
(
π

( |θij|
π

)ν)
, [2]

where θij is the angle between preferred directions of spins i and j and
ν represents the neural tuning parameter. For ν = 1, the interactions
become “cosine-shaped” Jij = cos

(
θij

)
, and the network has a Euclidean

representation of space (SI Appendix, Fig. S1). For ν < 1, the network
has more local excitation and encodes space in a non-Euclidean manner
(SI Appendix, Fig. S1). System dynamics are implemented by energy
minimization using the Metropolis–Hastings algorithm (similar to other
Ising spin models), and the agent then moves with a velocity �V determined
by the normalized sum of goal vectors p̂i of all active spins:

�V =
v0

N

N∑
i=1

p̂iσi , [3]

where v0 is the proportionality constant. The goal vector p̂i of spin i
now points from the agent’s updated location to its preferred goal with
directional noise chosen from a circularly wrapped Gaussian distribution
centered at zero with an SD σe. As in the mean-field approximation of the
model, the timescale of movement (defined by the typical time to reach
the target) in the numerical simulations was set to be much greater than
the timescale of neural activity (the typical time between two consecutive
changes in the neural states σi).

Collective Decision-Making Model. We reproduce results from our neural
decision-making model in a model that describes spatial decision-making at
a different scale of biological organization (refer to ref. 41 for methodologi-
cal details). To highlight the features that are key to producing the observed
bifurcation patterns, we run simulations with and without feedback on the
strength of goal-orientedness of individuals.

Fly Virtual Reality Experiments. All experiments were conducted on 3- to
5-d-old female wild-type canton special (CS) strain D. melanogaster raised
at 26 ◦C on a 12-h light, 12-h dark cycle. Experiments were conducted
in a fly virtual reality setup procured from loopbio GmbH (refer to ref.
28 for details). Sixty tethered Drosophila were exposed to either a two-
choice or a three-choice decision task (30 and 30 individuals, respectively)
in the virtual reality environment. Each experimental trial lasted 15 min
where flies were exposed to five sets of stimuli—three experimental sets
and two control sets. The experimental stimuli sets consisted of two or
three black cylinders (depending on the experimental condition) that were
presented to the animal in an otherwise white environment. A control
stimulus with a single pillar was presented before and after the experimental
conditions. We rotated all trajectories such that the x axis points from the
origin to the center of mass of the targets. To visualize trajectories in the
various experimental conditions, we created time-normalized (proportion
of maximum across a sliding time window) density maps. We then folded
the data about the line of symmetry, y = 0, and applied a density threshold
to the time-normalized density map. A piecewise phase transition function
was then fit to quantify the bifurcation:

y =

{
0 x ≤ xc

A|x − xc|α x > xc
, [4]

where xc is the critical point, α is the critical exponent, and A is the
proportionality constant. We also performed randomization tests for each
bifurcation where we conducted the exact fit procedure described above to
data where the trajectories were randomized by keeping the x coordinates
and swapping the y coordinates with values from other random events.
Randomizations show that the resultant fit to our experimental data was
highly significant (P < 0.01 for binary choice and P < 10−4 for the three-
choice case).

Based on the amount of time it took flies to reach one of the available
targets, we also classified individual fly tracks into one of two categories—
direct tracks and nondirect tracks (60) (SI Appendix, Fig. S11 A and H has
details). In our model, the direct tracks were also accounted for by varying
the directional tuning of spins. A high neural tuning (low ν) results in more
directed tracks (SI Appendix, Fig. S14).

Locust Virtual Reality Experiments. All experiments were conducted on 156
instar 5 desert locusts (S. gregaria; 57 individuals for two-choice experiments
and 99 individuals for three-choice experiments, respectively) raised in the
Animal Research Facility of the University of Konstanz. Based on our filtering
criteria, 122 of 156 locusts were used in our analyses. Experiments were con-
ducted in a locust virtual reality setup procured from loopbio GmbH (28). The
experimental procedure was identical to the one described above for flies,
except now, each experimental trial lasted 48 min—three experimental sets
(12 min each) and two control sets (6 min each). Analyzing bifurcations in
locust trajectories using the same methods described above showed that the
resultant bifurcations fit to our experimental data were highly significant (P
< 0.01 for binary choice and P < 10−4 for the three-choice case).

Similar to the flies, the locust trajectories were also classified as direct or
nondirect tracks. However, because the locust virtual reality system allowed
the animals to stop and reconsider movement during the decision-making
process, we added an additional category to the classification of individual
locust tracks viz. the wandering tracks (SI Appendix, Fig. S12 A and J has
details).

Fish Virtual Reality Experiments. All experiments were conducted on 1- ±
0.1-cm-long zebrafish (D. rerio) of age 24 to 26 d postfertilization raised
in a room at 28 ◦C on a 16-h light, 8-h dark cycle; 440 fish were tested in
total. Of these, 198 fish were exposed to decision-making with two virtual
targets, 39 fish were exposed to decision-making with three equidistant
virtual targets, and 50 fish were exposed to decision-making with three
targets in asymmetric geometry (SI Appendix has more details). Experiments
were conducted in a fish virtual reality setup procured from loopbio GmbH
(refer to ref. 28 for details). After a fish was introduced in the arena, it
was given 20 min to acclimatize to the environment. This was followed by
a 10-min control, where it was presented with a single virtual conspecific
circling the arena in a circle of radius 8 cm. After this, for experiments in
symmetric geometries, the real fish was exposed to choice experiments that
lasted 90 min with the virtual fish initialized with random lateral distances
between them and random swim direction. To visualize the bifurcations, we
normalized (proportion of maximum) and stacked the marginal distributions
along the direction of the virtual fish’s motion for various lateral distances.
For experiments in asymmetric geometries, the real fish was exposed to
choice experiments where distance between the center virtual fish and its
closer neighbor was 0.03 m and its distance to the other neighbor was 0.09 m
(Fig. 4). All experiments were conducted in accordance with the animal
ethics permit approved by Regierungspräsidium Freiburg, G-17/170.

Data Availability. Animal movement data have been deposited in GitHub
(https://github.com/vivekhsridhar/GODM) and Zenodo (DOI: 10.5281/zenodo.
5599711) (61)
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