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glycosaminoglycans (GAGs) on host cell membrane17e2
However, administration of heparin relies on intravenous (i.v.)
injection (only injection formulations clinically available), which
To the Editor:

As of January 27, 2022, therewere 363,062,293 cases and 5,645,884
deaths from the COVID-19 pandemic1. The prevalent mutated
strains have aggravated the global pandemic2. SARS-CoV-2 is
highly mutable, and the mutations on the spike (S) protein resulted
in a high transmission of COVID-19 and vaccine breakthrough
infection3. For example, there is a notable decrease in neutralizing
ability of BNT162b2 vaccination-elicited antibodies against the
Delta and other variants4,5, and attenuation of peak viral burden and
vaccine effectiveness are reduced with Delta variant6.

The development of antiviral drugs against infection of
SARS-CoV-2 and its variants is still an urgent need. The
blockage of SARS-CoV-2 spike protein against the binding with
the receptors on host cells is a promising therapeutic target7, and
angiotensin-converting enzyme 2 (ACE2) is the most explored
virus receptor on host cells8,9. Recent studies have demonstrated
that ACE2-expressing exosomes can inhibit SARS-CoV-2 entry
to and infect the host cells10e15; for instance, we previously re-
ported that the intranasal administration of ACE2þ exosomes can
inhibit the colonization and infection of SARS-CoV-2
pseudovirus in the nasal epithelium11. However, SARS-CoV-2
can also infect the cells with low ACE2 expression, suggesting
that there are alternative virus receptors in mediating the infec-
tion16. Spike protein can bind with some specific
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particular, S protein can efficiently bind with heparan sulfate
(HS), and the binding allows spike protein to maintain an “open”
conformation that facilitates the subsequent binding to ACE2 and
TMPRSS2, respectively19,21. It has been revealed that the analog
heparin is able to inhibit SARS-CoV-2 entry to host cells by
blocking interaction between heparan sulfate and spike pro-
tein22,23. Therefore, heparin can be a therapeutic candidate.

has two major disadvantages. First, i.v. injection must be handled
by a medical professional in clinical settings. Second, i.v. heparin
in systemic circulation has a potential bleeding risk24.

To address these issues and develop a self-administrable and
safe heparin-based therapy, we proposed the heparin nanoparticles
(NPs) for anti-SARS-CoV-2 infection via inhalation delivery to
facilitate the lung-specific drug distribution. Such a system can act
as a nano-capturer to neutralize the virus, with a unique benefit of
early treatment that is critical for preventing hospitalization and
the chronic sequelae of COVID-19, saving lives, and relieving the
overburden of medical systems25.
1. Effect of heparin on anti-infection of SARS-CoV-2
pseudovirus

The heparins with different molecular weights (Supporting
Information) were used in the study. Both high-molecular-
weight heparin (HMWH) and low-molecular-weight heparin
(LMWH) exhibited a dose-dependent inhibition against SARS-
CoV-2 in 293T-hACE2 cells, and HMWH had a significantly
higher efficacy of anti-infection than LMWH (Fig. 1A and B).
Therefore, the HMWH was employed for the preparation of
heparin nanoparticles. Our results are also consistent with a pre-
vious finding that longer heparin chains can bind more efficiently
to multiple sites and also potentially create stronger steric
stitute of Materia Medica, Chinese Academy of Medical Sciences.
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Figure 1 Effect of heparin on anti-infection of SARS-CoV-2 pseudovirus and characterization of heparin NPs. (A) hACE2 expression in 293T-

hACE2 and 293T cells. (B) Heparin with different molecular weights blocked SARS-CoV-2 infection in 293T-hACE2 cells. LMWH: MW

5600e6400; HMWH: MW 15,000e19,000). Data were normalized by the control group of the SARS-CoV-2 pseudovirus infected 293T-hACE2

cells without treatment. The 293T cells pretreated with heparinase were infected by SARS-CoV-2 pseudovirus (C), and Delta (D) and Delta plus

(E) mutated strains. The 293T-hACE2 cells pretreated with heparinase were infected by SARS-CoV-2 pseudovirus (F), Delta (G), and Delta plus

(H) mutated strains. (I) Particle size and the cryo-TEM of the NPs. Scale bar: 100 nm. (J) z-potential of the NPs. (K) The colloidal stability of the

NPs. (L) Size of the pseudovirus. (M) Particle size of the NPs. (N) Size of the NP/pseudovirus complex. (O) The cryo-TEM image of the complex,

scale bar: 100 nm. Data are presented as mean � SD (n Z 3); ns, no significance; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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hindrance to block the spike protein binding with the cell surface
viral receptors22.

To verify the role of cell surface heparan in mediating SARS-
CoV-2 infection, we pretreated the host cells with heparinase to
eliminate the surface heparan. The results showed heparinase pre-
treatment dramatically reduced the transfection efficiency of
SARS-CoV-2 pseudovirus and the mutated strains (e.g., Delta and
Delta plus) in both 293T cells and 293T-hACE2 cells (Fig. 1CeH).
It indicated that the cell surface heparan was important for SARS-
CoV-2 infection. Notably, the removal of heparan affected the
infection in the 293T cells more significantly than the 293T-hACE2
cells, suggesting that the virus may heavily rely on heparan to enter
the host cells with low ACE2 expression. More importantly, the
Delta-mutated strain was very sensitive to the heparan elimination
that caused the most significant inhibition against infection in both
293T and 293T-hACE2 among the tested strains.

2. The binding of heparin NPs with the pseudovirus

The poly-anionic heparin can crosslink by the cationic chitosan
via charge interaction, thus forming the stable nanoparticles with
spherical shape (Fig. 1I and K). Chitosan thus serves as a cross-
linker in this nanodecoy system. The net charge of the heparin
polysaccharide NPs was negative and thereby reduced the risk of
positive charge-related side toxicity (Fig. 1J).

The efficient binding of heparin NPs and pseudovirus was
demonstrated by the morphological change (cryo-TEM image,
Fig. 1O). It also showed the increased particle size of the NP/
pseudovirus complex (Fig. 1LeN). It should bementioned that there
is a minor peak of 82 nm, which could be the exosomes from the
packing cells. Due to the close size of the exosomes and virus, both
were collected by ultracentrifugation without further separation.

3. Neutralization of wide-type SARS-CoV-2 pseudovirus and
Delta variants

The 293T and 293T-hACE2 cells were used in this study because
293T cells is a common cell model for SARS-CoV-2 infection via
ACE2 or HS receptors26. Also, 293T cells are convenient for
genetic engineering for stable expression of a target protein (e.g.,
hACE2). Both HMWH and the heparin NPs efficiently inhibited
the cell entry of SARS-CoV-2 pseudovirus in 293T cells and
293T-hACE2 cells as shown in the fluorescence images (Fig. 2A).
The inhibition results were further confirmed by flow cytometry
detection (Fig. 2B and C), which showed that the positive cells
containing the Dil dye-labeled pseudovirus were dramatically
decreased by treatment with HMWH or the heparin NPs.
Accordingly, the transfection of pseudovirus in 293T and 293T-
hACE2 cells was significantly suppressed by the treatment, as
reflected by the decreasing level of luciferase (a reporter gene of
pseudovirus) (Fig. 2D and E). Notably, the heparin NPs had a
better inhibition effect than HMWH. This may due to the higher
surface area in the nanoparticles27. In addition, the NPs can pro-
vide multiple ligands to bind with viruses and thus efficiently
block the cell entry of viruses.

The Delta variant SARS-CoV-2 has been a main threat in the
current global pandemic28. Therefore, to develop a broad-
spectrum antiviral agent is a pressing need under the current
circumstance. It was discovered that the cell entry of Delta
pseudovirus was significantly blocked by either HMWH or the
heparin NPs, as reflected by the decreased amount of the positive
cells containing the Dil-labeled Delta pseudovirus (Fig. 2F).
Furthermore, both HMWH and the heparin NPs were able to
inhibit Delta pseudovirus infection (Fig. 2G). Similarly, the hep-
arin NPs had better efficacy against Delta pseudovirus infection.
The result also implys that the heparin NPs could block the
infection of Delta pseudovirus.

Another SARS-CoV-2 variant, Delta plus, has also raised
public concerns for its increased transmissibility and reduction in
monoclonal antibody response29. We also tested the inhibition
efficacy against Delta plus variant. The results were promising
that the heparin NPs were also highly efficient for suppressing the
cell entry and infection of the Delta plus variant (Fig. 2H and I).

The findings demonstrate that the heparin NPs can serve as a
potent antiviral agent effectively in various SARS-CoV-2 variants.

4. In vivo blockage of SARS-CoV-2 and Delta variants

Lung is the primary target organ in SARS-CoV-2 infection. Pul-
monary drug delivery is generally considered to be an ideal
administration route for anti-COVID-19 therapy due to direct ac-
cess of drug to the lung30,31. Moreover, inhaled formulations also
possess the benefits of self-administration, rapid onset of action,
good patient compliance, and reduced systemic side effects31. The
mouse model was established by introducing the pseudovirus to
infect the lung tissue through the bronchus. The inhibition efficacy
of the heparin NPs against infection was evaluated by inhaled
administration. After treatment with either HMWH or the heparin
NPs, the accumulation of the pseudovirus (including the wide-type,
Delta, and Delta plus) in the lung was significantly reduced
(Fig. 3BeG). The heparin NPs showed a higher anti-viral efficacy
than HMWH. Moreover, the inhibition efficacy of the heparin NPs
against transfection by different pseudovirus was evaluated by
monitoring the level of the reporter gene luciferase in the lung. The
data further demonstrate that the NPs could significantly reduce
infection of all the test variants of pseudovirus (Fig. 3HeJ), sug-
gesting that the heparin NPs can serve as a broad-spectrum anti-
SARS-CoV-2 drug candidate against various variants.

5. Clearance of the NP/virus via phagocytosis by
macrophages

Macrophages are the major scavenger for clearing away pathogens
via phagocytosis32. For instance, the immune complexes formed
by the binding of antibody/virus to the NPs, can be identified and
phagocytized by macrophages33. Our results show that the viruses
neutralized by the heparin NPs were increasingly captured by the
macrophages, compared to the control groups (Supporting
Information Fig. S1), suggesting that the thus-formed NP/virus
complexes were efficiently identified by the macrophages as an
exogenous component and removed away.

A previous study revealed that a large number of monocyte-
derived macrophages were involved in COVID-19 patients’ lungs34.
Macrophages play an important role in mitigating respiratory virus
infection35. Phagocytosis bymacrophages is highly dependent on the
component sizes; e.g., themacrophages exhibited an enhanced ability



Figure 2 Heparin NPs inhibited cell entry and transfection of SARS-CoV-2 pseudovirus, Delta and Delta plus mutated strains in 293T and

293T-hACE2 cells. (A) The cell entry of the Dil-labeled SARS-CoV-2 pseudovirus inhibited by HMWH and heparin NPs, scale bar Z 100 mm.

Flow cytometry assay of the cell entry of SARS-CoV-2 pseudovirus in 293T (B) and 293T-hACE2 cells (C). The transfection of SARS-CoV-2

pseudovirus inhibited by HMWH and heparin NPs in 293T cells (D) and 293T-hACE2 cells (E). (F) The cell entry inhibition of Delta pseudovirus

by the NPs. (G) The inhibition of Delta pseudovirus transfection by the NPs in 293T cells and 293T-hACE2 cells. (H) The cell entry inhibition of

Delta plus pseudovirus. (I) The inhibition of Delta plus pseudovirus transfection by the NPs. Data are presented as mean � SD (n Z 3); ns, no

significance; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Figure 3 Heparin NPs inhibited infection in lung tissues. (A) Schematic illustrating the inhibition of pseudovirus infection to the lung in vivo.

Ex vivo imaging of the lung tissues exposed to SARS-CoV-2 pseudovirus (B), Delta pseudovirus (C), and Delta plus pseudovirus (D); the fluorescence

intensity indicated the amount of DiR-labeled pseudovirus in the lung. Ex vivo radiant efficiency of the lung tissues exposed to SARS-CoV-2

pseudovirus (E), Delta pseudovirus (F), and Delta plus pseudovirus (G). The luciferase (luc) mRNA level in the lung exposed to SARS-CoV-2

pseudovirus (H), Delta (I), and Delta plus pseudovirus (J). Data are presented as mean � SD (n Z 3); *P < 0.05, **P < 0.01, ****P < 0.0001.
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to phagocytose the nanoparticles less than 500 nm36. Therefore, the
NP/virus complex with a relatively large size about 350 nm could
facilitate the capture by the macrophages.

6. The clinical application prospects

Both heparin and chitosan have been widely used in pharmaceu-
tical products. Specifically, inhaled delivery of heparin and chi-
tosan has been widely explored in either clinical or preclinical
studies, and the biosafety has been demonstrated37e39. Heparin is
an anticoagulation drug and has been used for the patients in the
advanced stage of COVID-1940. A retrospective analysis suggests
the treatment benefits of heparin in the patients with severe
COVID-19 meeting sepsis-induced coagulopathy (SIC) criteria or
with markedly elevated D-dimer41. In-hospital heparin treatment
in severely ill COVID-19 patients and in those with strong
coagulation activation was associated with a lowering mortality42.
Heparin can also be used as an immunomodulatory drug to treat
the hyperinflammatory response43. But most clinical trials just
emphasized the coagulation-related symptoms of advanced
COVID-19. The early prevention of SARS-CoV-2 using heparin is
still under-explored.

Nanotechnology has been actively explored for the application
against SARS-CoV-244e46. In this work, it was demonstrated that
the efficacy of the heparin NPs served as nanodecoy for neutral-
izing SARS-CoV-2 and the Delta-mutated strains. Importantly,
heparin can inhibit the enzymatic activity of Furin that cleaves
many viral glycoproteins with polybasic residues (e.g., SARS-
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CoV-2 spike protein), thus activating the S protein47. Notably, a
simulation study revealed that the omicron variant has the
increased furin-binding ability compared to the wide-type
SARS-CoV-2, suggesting that the stronger furin binding could
lead to the more efficient fusion at molecular level and higher
viral load on the host48. Therefore, it is expected that this hep-
arin nanodecoy strategy is potentially workable in anti-Omicron
variant infection.

Besides, heparin can inhibit another protease, Factor Xa, in
host cells, which is necessary for processing the spike protein49.
Therefore, heparin-based neutralization therapy may involve
multiple mechanisms against the infection of SARS-CoV-2 and
its variants. Yet, further experiments will be needed to confirm
the prediction.

It should be noted that a recent clinical trial revealed that
LMWH (i.e., Enoxaparin) had a better treatment outcome in
hospitalized COVID-19 patients than unfractionated heparin,
but the analysis just focused on the impact of the COVID-
associated coagulation cascades50. Heparin is expected to have
multiple synergistic functions when applied to the treatment of
COVID-1951, apart from the neutralization effect. In terms of
neutralization effect, our results suggest that heparin with high
molecular weight yields better efficacy of anti-SARS-CoV-2
infection.

For early treatment purposes, a self-administrable dosage
form is the priority in drug development. We developed a
nanodecoy strategy for anti-COVID-19 by using the heparin NPs
to neutralize SARS-CoV-2. The results reveal the superiority of
the heparin NPs over heparin. The NPs serve as an effective
inhibitor against infection of both wide type virus and Delta
mutations in the pseudovirus test. Pulmonary delivery of the
heparin NPs can direct access the lung and reduce the unwanted
drug exposure to other organs. The preparation of the NPs is easy
and rapid. Therefore, the heparin NPs have a potential value for
clinical translation.
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