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Abstract: Powerful sunlight, a high water temperature, and stagnation in the water flow induce
eutrophication in rivers and lakes, which destroys the aquatic ecosystem and threatens the down-
stream water supply systems. Accordingly, it is very important to perform real-time measurements of
nutrients that induce algal growth, especially total phosphorus, to preserve and manage the aquatic
ecosystem. To conduct quantitative analysis of the total phosphorus in the aquatic ecosystem, it is
essential to perform a pretreatment process and quickly separate the phosphorus, combined with
organic and inorganic materials, into a phosphate. In this study, the sandblasting process was used
for the physical etching of the wafer, and photocatalytic materials were deposited on the surface
with various roughness in order to improve the photocatalytic reaction surface and efficiency. The
photocatalytic reaction was applied to combine the pretreated sample with the coloring agent for
color development, and the absorbance of the colored sample was analyzed quantitatively to compare
and evaluate the characteristics, followed by the surface increase in the photocatalytic materials.
In addition, the pretreatment and measurement parts were materialized in a single chip to produce a
small and light total phosphorus analysis sensor.

Keywords: total phosphorus; surface texturing; sandblast; photocatalysis

1. Introduction

Various human activities, such as the discharge of agricultural water and factory
wastewater and urbanization, lead to excessive quantities of phosphorus in the aquatic
ecosystem and cause eutrophication in the water [1–3]. Eutrophication in water quality
leads to the over-breeding of algae, and, as a result, this consumes a large amount of
oxygen and rapidly reduces the amount of oxygen available for the survival of fish, crus-
taceans, and various aquatic organisms [4–7]. Accordingly, early detection and response
to eutrophication are priorities for water quality management in rivers and water supply
sources. Furthermore, phosphorus, one of the causes of eutrophication, is also an indicator
of water pollution [8–10]. Therefore, research is being actively conducted worldwide to de-
velop a small total phosphorus monitoring system with real-time measurement to prevent
eutrophication in advance [11].
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To implement a high-efficiency total phosphorus monitoring system, it is essential to
accurately and promptly conduct a pretreatment process in which the phosphorus in the
water is separated into phosphate (PO4

3−).
The existing total phosphorus analysis procedure involves performing the pretreat-

ment of the sample under high-temperature (>120 ◦C) and high-pressure (>1.1 kg/cm−2)
conditions in order to achieve the oxidative decomposition of the phosphorus. In addition,
there are disadvantages, such as the bulkiness of the equipment, since it consists of a
thermal oxidation device, mixing device, and detection device, as well as the high cost and
long time required for analysis.

Meanwhile, the pretreatment method of decomposing the phosphorus into phosphate
(PO4

3−) using a photocatalyst is a technology that utilizes the chemical reaction that
results from the light under high-temperature and high-pressure conditions, so there are
advantages such as being economical and also easy to handle and safe. In particular, among
the photocatalytic materials, TiO2 does not become decomposed by light, it oxidizes all the
organic matter, and it decomposes into carbon dioxide and water. Moreover, it is widely
used as a photocatalytic material because of advantages such as being a safe and harmless
material and no risk of secondary pollution even if it is disposed of [12].

However, the photocatalytic reaction occurs only on the photocatalyst surface, so, in
the event that the photocatalytic material is in the form of a thin film, there are disadvan-
tages associated with the low surface area and limits in oxidizing power. To solve this
problem, the surface can be textured to increase the reaction surface area. For the texturing
of single-crystal silicon, wet etching and dry etching can be used for surface etching. First
of all, a basic solution such as potassium hydroxide (KOH), sodium hydroxide (NaOH), or
tetramethylammonium hydroxide (TMAH) is used for the wet chemical etching process.
In such an etching solution, etching is conducted through the chemical reaction of hydroxyl
ions (OH−) and silicon, and wafer pollution results from the etching solution. In addition,
dry etching has disadvantages such as high cost and low etch rate.

This study aims to increase the absorption area of light incident on the surface of the
photocatalyst and heighten the efficiency of the photocatalyst reaction. Accordingly, in this
study, we used a new dry sandblast method with advantages such as having no pollution
risk associated with the etching solution, being affordable compared to the former dry
etching method, and having a high etch rate. Moreover, the silicon wafer surface was
textured, and this was followed by depositing the TiO2 thin film to ensure high surface
roughness of µm. The size of the powder used for the sandblast process and the transfer
rate of the equipment nozzle were controlled in order to evaluate the roughness of the
photocatalyst surface.

The oxidation and detection parts were integrated into a single chip and produced
as a subminiature chip in the proposed sensor. First of all, under high-temperature and
high-pressure conditions, a TiO2 photocatalyst was used for the oxidative decomposition
of organic material existing in the water into PO4

3− form.
The absorbance of molybdenum blue, which was produced by reducing phospho-

molybdate (H3PMo12O40), which is created through the reaction of phosphate ions (PO4
3−)

with ammonium molybdate ((NH4)6Mo7O24), into ascorbic acid (C6H8O6) was measured.
A comparative evaluation was conducted on the efficiency of the total phosphorus system,
followed by the TiO2 surface roughness.

2. Materials and Methods
2.1. Mechanism of Photocatalytic Reaction

A photocatalyst is a semiconductor material that decomposes various bacteria and
pollutants by accelerating the catalytic reactions (oxidation and reduction reactions) with
light as an energy source. In the early 1970s, Fujishima and Honda reported that the
irradiation of light on a titanium dioxide (TiO2) single-crystal electrode separated water
into hydrogen and oxygen through photooxidation and photoreduction reactions; cur-
rently, photocatalytic materials are used in various fields, such as home appliances, road
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construction, vehicles, air treatment, medical treatment, and water treatment. In particular,
TiO2 is mainly used as a photocatalytic material due to its chemical stability, excellent
photoactivity, also because it is harmless to the human body [13,14].

TiO2 has an energy bandgap of 3 eV that corresponds to a wavelength of less than
400 nm. Irradiation of light with a wavelength of less than 400 nm on TiO2 forms an
electron–hole pair on the surface, which reacts with the absorbance material on the surface
to cause a redox reaction [15–24]. The electrons are combined with the oxygen molecules to
form super anions, which are combined with water and hydrogen ions to form hydrogen
peroxide and oxygen. This hydrogen peroxide produces a powerful oxidizing agent called
a hydroxyl radical.

e− + O2 → O2
−

2O2
− + 2H− → H2O2 + O2

H2O2 + O2
− → OH·+ OH− + O2

(1)

The holes react with water to form hydroxyl radicals, some of which are combined
with the hydrogen cation to produce hydrogen peroxide and hydrogen ions. The generated
hydrogen peroxide also reacts with the oxygen to form hydroxyl radicals.

h− + H2O→ H+ + OH·
2h− + 2H2O→ 2H+ + H2O2

H2O2 + O2
− → OH·+ OH− + O2

(2)

Hydroxyl radicals using photocatalysts have excellent oxidative decomposition ability
to decompose bacteria and viruses and convert them into water and carbon dioxide, so
they have been used in various studies [25–28].

A photocatalyst has the advantage of controlling the catalytic reaction. Contrary
to the general catalytic reaction, which stops only when the reactants are depleted, the
photocatalytic reaction can be stopped immediately by blocking the light energy. This
procedure can reduce expenses because no additional facilities are required.

2.2. Characteristics of TiO2

TiO2 is a homogeneous material that is classified depending on the crystal structure,
consisting of brookite, anatase, and rutile. Anatase and rutile are characterized by stabiliza-
tion at low and high temperatures, respectively. While anatase is transformed into a rutile
state when the temperature is increased to 600–700 ◦C, the opposite is not true; decreasing
the temperature does not convert the rutile state into the anatase state [29]. Its crystal
structure determines the photocatalytic efficiency of TiO2. Anatase has an energy bandgap
larger than that of rutile (3.2 vs. 3.0 eV), and thus higher oxidation redox potential and a
longer recombination time [30,31]. For these reasons, TiO2 is appropriate as a photocatalyst
in the anatase state rather than the rutile state. TiO2 has many advantages as a photocat-
alytic material, including stability and strong oxidizing properties. Moreover, TiO2 has
excellent durability and abrasion resistance.

2.3. Total Phosphorus Analysis through Photocatalytic Reaction

Figure 1 shows the process of total phosphorus analysis, which is divided into pre-
treatment and measurement steps. All the chemicals were purchased from Duksan Pure
Chemicals Co., Ltd. (Ansan city, Korea). In the pretreatment step, the samples that contain
phosphorous are decomposed into phosphate (PO4

3−) to measure the concentration of the
total phosphorus in the water. After adding potassium persulfate (K2S2O8), a decomposing
agent, to phosphorus that contains a compound, the irradiation of ultraviolet (UV) light
onto the surface of the photocatalytic material creates a photocatalytic reaction, leading
to a pretreatment process to generate hydroxyl radicals, a strong oxidizing agent. The
hydroxyl radical decomposes various compounds that contain phosphorus into phosphate.
In the measurement step, with the addition of released phosphate into a mixture solution of



Micromachines 2021, 12, 1163 4 of 12

ammonium molybdate ((NH4)2MoO4) and ascorbic acid (C6H8O6), the solution is colored
blue. The absorbance of the colored sample is measured to determine the concentration of
phosphorus contained in the sample quantitatively.
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2.4. Sandblasting

Sandblasting, a technology involving an etching process that cuts or polishes the
surface of a material by spraying an abrasive media through a nozzle, is mainly used while
removing oxides and rust [32]. Sandblasting is classified into wet blasting, where a mixture
of abrasives and water is sprayed through a nozzle, and dry blasting, where only abrasives
are sprayed from the nozzle using air. In terms of differences, wet blasting does not generate
static electricity because it uses water, and it results in a smoother polished surface but has
a lower etch rate than dry blasting. Dry blasting is preferred during the semiconductor
process due to its high etch rate and because the photoresist used for masking purposes
is susceptible to moisture. The main components of sandblasting equipment include an
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air compressor, a dust collector, and a nozzle. The wafer surface etch rate is controlled
using the powder type, nozzle injection pressure, nozzle–wafer distance, nozzle, and wafer
movement speed.

Figure 2 is a schematic diagram of the dry sandblasting process. The wafer is fixed on
the pedestal and the sprayed abrasive etches the wafer surface. The texturing process of
the wafer surface increases the efficiency of the photocatalytic reaction on the TiO2 surface.
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2.5. Absorbance

When light passes through the sample solution for water quality analysis, absorption
or scattering occurs, and the remaining unabsorbed light passes through the sample and
is measured on the opposite side. It is impossible to conduct absorption analysis with
the sample as most samples do not absorb at the wavelengths of UV (180–320 nm) and
visible light (320–800 nm). To overcome this, a sample is changed to a compound that
absorbs 200–900 nm using a color developer after pretreatment to measure the absorbance.
The principle of light absorption is expressed with the following formula (3) based on
the Beer–Lambert Law [33–35]. Iref is the intensity of incident light, Ic is the intensity of
transmitted light, ε is the molar absorption coefficient, d is the path length of the measuring
beam in the sample, and c is the concentration of the solution. The absorbance of the
solution is usually measured with a UV–vis spectrophotometer.

A = log
( Ire f

Ic

)
= εdc (3)

3. Results
3.1. Design

Figure 3 displays the design of a device for total phosphorus monitoring. It consists of
four temperature sensors, four micro-heaters, and two photocatalyst areas. The temperature
sensors and micro-heaters are made of Pt, and the photocatalyst layer is deposited on the
wafer surface by TiO2. Sputtering the device resulted in a small size (42 mm × 46 mm).

Figure 4 is a cross-sectional view of the total phosphorus monitoring device. A so-
lution that contains phosphorus, a mixture solution of K2S2O8 and phosphorus, and a
coloring agent are injected into the chamber through an inlet. Since the injected samples
are made of different materials, it is rather difficult to mix the solution, but when the
temperature rises, the airflow inside the chamber is generated and facilitates the mixing of
the solution. In addition, according to the Maxwell–Boltzmann distribution, the increase in
the temperature causes the probability of reaction for the activation energy in the molecules
to increase and leads to higher TiO2 photocatalyst efficiency [36].
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3.2. Fabrication of Total Phosphorus Monitoring Device

Figure 5 displays a process flow chart for manufacturing the proposed micro-small to-
tal phosphorus monitoring sensor. After an AZ-5214 photoresist (Microchem, Westborough,
MA, USA) was spin-coated on the upper surface of the quartz wafer (Sigma-Aldrich,
St. Louis, MO, USA), a micro-heater pattern was formed on the surface with a UV aligner.
Afterwards, an RF metal sputtering system (SRN-110, Sorona Inc., Anseong, Korea) was
used to deposit a Pt/Ti thin film with a thickness of 20 nm/2 nm on the formed pattern,
and a pattern was created through a lift-off process. Next, a dry film photoresist (DFR)
with excellent durability was patterned on the upper wafer, where Pt was deposited for
the sandblasting process. On the DFR pattern, TiO2 material, a photocatalytic material,
was deposited with 100 nm thickness using the dielectric sputtering system, followed by
forming a pattern through the lift-off process to complete the final sensor.
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(d) Surface texturing; (e) DFR removal; (f) DFR patterning; (g) TiO2 deposition; (h) Finished sensor.

3.3. Texturing Process on the Wafer Surface

In this study, the wafer surface was textured using sandblast equipment (Glass Auto
Sand Blast M/C, Samsung Blast Inc., Hwaseong, Korea) to increase the photocatalytic
reaction efficiency of the TiO2 surface. The texturing process of the wafer surface increases
the efficiency of the photocatalytic reaction by reducing the reflectivity of the light incident
on the wafer surface and increasing the absorption area.

Two types of powder were used for the texturing process: 400 mesh (particle size:
35 µm) and 180 mesh (particle size: 80 µm). Moreover, the speed of the nozzle was
controlled at 1000 or 2000 mm/min. For the experimental parameters, the equipment
pressure, a key variable during the texturing process, was fixed at one psi with a nozzle
size of 20 µm, and the distance between the nozzle and the sample was fixed at 10 mm for
the experiment.

4. Discussion
4.1. Analysis of Surface Roughness

Following the texturing process on the wafer surface, a thin TiO2 film of 100 nm was
deposited using dielectric sputtering system equipment.
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Figure 6 shows a picture of the wafer surface on which TiO2 is deposited, taken with a
confocal laser scanning microscope. Table 1 shows the roughness average (Ra) and mean
values measured three times (Ramean) for the textured surface using 400-mesh powder
with a confocal laser scanning microscope, and Table 2 shows the textured surface using
180-mesh powder. The analysis results showed that the Ra value in 180-mesh doubled
(2.459 vs. 1.261 µm) compared to 400-mesh. There were no significant differences in the
wafer surface roughness due to the movement speed of the nozzle.
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Table 1. Ra (µm) values measured with confocal laser scanning microscope picture of TiO2-deposited
surface after sandblast texturing using 400-mesh powder.

Nozzle Speed Ra (µm)
Ramean (µm)

(mm/min) 1 2 3

1000 1.461 1.345 1.400 1.402
2000 1.470 1.340 1.442 1.417
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Table 2. Ra (µm) values measured with confocal laser scanning microscope picture of TiO2-deposited
surface after sandblast texturing using 180-mesh powder.

Nozzle Speed Ra (µm)
Ramean (µm)

(mm/min) 1 2 3

1000 2.613 2.509 2.688 2.603
2000 2.793 2.657 2.403 2.617

4.2. Measurement Result for the Concentration of Total Phosphorus

The performance of the proposed total phosphorus monitoring sensor was evaluated
by mixing sodium glycerophosphate (C3H7Na2O6P) with K2S2O8, a decomposing agent,
and injecting the total phosphorus sample (4.0 mg/L) into the manufactured sensor. Next, a
pretreatment process was performed by irradiating a UV lamp (6 W, 365 nm) on the surface
of the wafer on which TiO2 was deposited for 30 min (Figure 7). After the pretreatment,
the prepared coloring agent (ammonium molybdate–ascorbic acid mixing solution) was
added to the sample and the absorbance of this blue-colored sample was measured using a
UV–vis spectrometer (BKV-1800PC, Bio Konvision Co., Ltd., Gwacheon-si, Korea). Figure 8
shows the total phosphorus concentration that was measured. It was confirmed that the
sample that was pretreated using the proposed portable total phosphorus monitoring
system was colored in blue depending on the concentration of phosphorus contained,
indicating that the phosphorus contained in the sample was converted into phosphorus
PO3

4− through the pretreatment process. The sensor subjected to surface texturing showed
higher absorbance than those without surface textures.
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Figure 7. Pretreatment experiment with manufactured total phosphorus monitoring sensor.

The highest absorbance (0.28) was observed in the sensor where the wafer surface
was textured with 180-mesh powder and a nozzle spraying speed of 2000 mm/min was
used. Accordingly, the absorbance was 25% higher compared to an untextured sensor. This
shows that the pretreatment efficiency improved as a result of the expanded surface area
from the texturing.
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4.3. Absorbance Changes by Temperature

The reaction of molecules requires minimal activation energy. According to the
Maxwell–Boltzmann distribution, it was reported that a higher temperature is associated
with a higher probability of molecules’ reaction under the presence of activation energy.

After adding the total phosphorus sample (4.0 mg/L) to the sensor textured under
180-mesh and 2000 mm/min conditions, pretreatment was performed at (a) 20 ◦C, (b) 30 ◦C,
and (c) 50 ◦C for 20 min. The absorbance by the degree of color development was measured
after injecting a coloring agent. The result is displayed in Figure 9, and a higher pretreat-
ment temperature was associated with higher absorbance, where the highest result was
observed under the conditions of 50 ◦C and 20 min. In addition, pretreatments at room tem-
perature (around 25 ◦C) for 30 min and 50 ◦C for 20 min led to similar absorbance. These
results show that the rise in the temperature offset the decrease in the pretreatment time.
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5. Conclusions

This study proposes a small total phosphorus analysis sensor with considerably
improved photocatalytic properties as a result of texturing the wafer surface.

The photocatalytic efficiency can be improved by increasing the light absorption area
and decreasing the reflectivity of the wafer by a texturing process that causes the wafer
surface to be rough. Sandblast equipment was used to roughen the wafer surface, and
aluminum oxide (Al2O3) with 400 mesh (particle size: 35 µm) and 180 mesh (particle size:
80 µm) was used as the powder. The speed of the applied nozzle was 1000 or 2000 mm/min
to manufacture the sensor by texturing the wafer surface. The roughness of the textured
surface was observed using a confocal laser scanning microscope. The results showed that
the powder size had a significant effect on the surface roughness but not the moving speed
of the nozzle. The Ra values, after TiO2 deposition, of the wafer surface were 1.261 µm at
400 mesh and 2.459 µm at 180 mesh. Following the pretreatment and color development of
the total phosphorus samples, it was determined that higher absorbance corresponds to a
higher Ra value. It is thought that increasing the roughness of the wafer surface using a
power with a larger particle size can improve the photocatalytic reaction efficiency in the
total phosphorus monitoring sensor.

This study proposes a photocatalytic activation method that uses the sandblast process,
and this method has advantages, including a short processing time and an eco-friendly
process that does not require chemicals. It is anticipated for this method to be used, in
addition to total phosphorus pretreatment in water, for various applications such as the
sterilization, deodorization, and decomposition of organic matter.
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