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A B S T R A C T

When allocating limited vaccines to control an infectious disease, policy makers frequently have goals relating
to individual health benefits (e.g., reduced morbidity and mortality) as well as population-level health benefits
(e.g., reduced transmission and possible disease eradication). We consider the optimal allocation of a limited
supply of a preventive vaccine to control an infectious disease, and four different allocation objectives:
minimize new infections, deaths, life years lost, or quality-adjusted life years (QALYs) lost due to death.
We consider an SIR model with 𝑛 interacting populations, and a single allocation of vaccine at time 0. We
approximate the model dynamics to develop simple analytical conditions characterizing the optimal vaccine
allocation for each objective. We instantiate the model for an epidemic similar to COVID-19 and consider 𝑛 = 2
population groups: one group (individuals under age 65) with high transmission but low mortality and the
other group (individuals age 65 or older) with low transmission but high mortality. We find that it is optimal to
vaccinate younger individuals to minimize new infections, whereas it is optimal to vaccinate older individuals
to minimize deaths, life years lost, or QALYs lost due to death. Numerical simulations show that the allocations
resulting from our conditions match those found using much more computationally expensive algorithms such
as exhaustive search. Sensitivity analysis on key parameters indicates that the optimal allocation is robust to
changes in parameter values. The simple conditions we develop provide a useful means of informing vaccine
allocation decisions for communicable diseases.
1. Background

When allocating limited vaccines to control an infectious disease,
policy makers frequently have goals relating to individual health bene-
fits (e.g., reduced morbidity and mortality) as well as population-level
health benefits (e.g., reduced transmission and possible disease erad-
ication). For example, a recent report from the National Academy of
Sciences, Engineering and Medicine on equitable allocation of vaccine
for SARS-CoV-2, the virus that causes COVID-19 infection, states that
‘‘The goal of the committee’s framework for equitable allocation of
COVID-19 vaccine is to reduce morbidity, mortality, and negative
societal impact due to the transmission of the novel coronavirus’’ [1].
Such goals are not necessarily compatible, however, as individuals who
are most likely to die from a disease may not be most likely to transmit
the disease.

Different approaches to the vaccine allocation problem have been
proposed. For a general infectious disease, some studies formulate the
problem as a mixed-integer or linear programming problem with the
objective of minimizing the number or cost of vaccines such that the
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reproductive ratio 𝑅0 is below 1 [2–4]. One study considers a two-
period problem with the goal of allocating a fixed number of vaccine
doses to minimize the fraction of people who become infected [5].
Other studies use an optimal control formulation to determine the con-
tinuous allocation of vaccine with the goal of minimizing vaccination
cost plus the cost of infection [6,7]. Many vaccine allocation studies
use compartmental epidemic models and assume homogeneous mixing.
One study shows by introducing variability in the transmission rates
between population groups that eradication of an epidemic is possible
with fewer vaccinations than under the homogeneous assumption [8].
More broadly, another study develops an SI model to allocate resources
among a set of interventions to control an epidemic in non-interacting
population groups [9]. The authors use Taylor series expansions to
approximate the objective function and show that some formulations
of the model are equivalent to a knapsack problem.

A number of vaccine allocation studies have focused on seasonal
influenza. Some researchers use age-structured compartmental models
with numerical simulations to evaluate the impact of different vacci-
nation strategies [10,11]. One study uses numerical optimization to
determine the optimal allocation of influenza vaccine between low-
https://doi.org/10.1016/j.mbs.2021.108621
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and high-risk children and adults at different time points to minimize
deaths or hospitalizations [12] and another study considers the opti-
mal influenza vaccination policy for five different outcomes: deaths,
infections, years of life lost, contingent value, and economic loss [13].
Both studies find that population age structure is an important factor
in determining the optimal influenza vaccine distribution.

Recent studies have examined optimal vaccination policies for
COVID-19. One study considers the choice between vaccinating high-
risk individuals in low-exposure occupations versus low-risk individuals
in high-exposure occupations, with the goal of minimizing the cost of
infections plus economic losses [14]. The authors find that the optimal
vaccine allocation should prioritize age-based fatality rates rather than
occupation-based infection rates. Another study uses an age-stratified
model to determine the optimal vaccine allocation for four different
outcomes: deaths, symptomatic infections, and maximum non-ICU and
ICU hospitalizations [15]. The authors find that when vaccine coverage
can reach at most 60% of the population, younger age groups should
be vaccinated to minimize symptomatic infections or non-ICU hospital-
izations, whereas older age groups should be vaccinated to minimize
deaths or ICU hospitalizations; for coverage levels above 60%, the
optimal strategy for all four objectives is to vaccinate high-transmission
groups. One study uses a multi-period age-stratified model with the
goal of minimizing the number of deaths or confirmed cases [16].
The authors show that, for static policies, vaccinating older groups
averts more deaths, whereas vaccinating younger groups averts more
infections; for dynamic policies, older people should be vaccinated first,
followed by younger people.

In this paper we consider the optimal allocation of a limited supply
of a preventive vaccine to control an infectious disease. We explore the
impact of four different objectives: minimize new infections, deaths,
life years lost, or quality-adjusted life years (QALYs) lost due to death.
We consider an SIR model with 𝑛 interacting populations, and a single
allocation of vaccine at time 0. We approximate the model dynamics to
develop simple analytical conditions characterizing the optimal vaccine
allocation for each objective. We instantiate the model for an epidemic
similar to the COVID-19 epidemic in New York State, both during an
initial outbreak and during a resurgence, and consider 𝑛 = 2 population
groups: one group (individuals under age 65) with high transmission
but low mortality and the other group (individuals age 65 or older)
with low transmission but high mortality. We determine the optimal
vaccine allocation for the different objectives, and assess the quality of
solutions from the approximated model.

2. Framework

2.1. SIR model with vaccination

We develop an SIR model of a population with 𝑛 ≥ 2 interacting
groups in which an infectious disease is spreading (Fig. 1). Individuals
in each group 𝑖 can be susceptible (𝑆𝑖), infected (𝐼𝑖), recovered (𝑅𝑖),
or dead (𝐷𝑖). Individuals in group 𝑖 can acquire infection from contact

ith individuals in their own population group (at rate 𝛽𝑖𝑖) or another
opulation group 𝑗 (at rate 𝛽𝑖𝑗). Infected individuals in group 𝑖 either
ecover (at rate 𝛾𝑖) or die (at rate 𝜇𝑖). We consider a relatively short time
orizon and thus do not include births, non-infection-related deaths, or
ther forms of entry into and exit from the population.

The compartmental model is governed by the following differential
quations:

d𝑆𝑖
d𝑡

= −𝑆𝑖
(

𝑛
∑

𝑗=1
𝛽𝑖𝑗𝐼𝑗

)

∀𝑖 ∈ [[1, 𝑛]]

d𝐼𝑖
d𝑡

= 𝑆𝑖
(

𝑛
∑

𝑗=1
𝛽𝑖𝑗𝐼𝑗

)

− (𝛾𝑖 + 𝜇𝑖)𝐼𝑖 ∀𝑖 ∈ [[1, 𝑛]]

d𝑅𝑖
d𝑡

= 𝛾𝑖𝐼𝑖 ∀𝑖 ∈ [[1, 𝑛]]

d𝐷𝑖 = 𝜇 𝐼 ∀𝑖 ∈ [[1, 𝑛]]

(1)
d𝑡 𝑖 𝑖

2

We assume that a preventive vaccine with effectiveness 𝜂 > 0 is
available and that vaccination of susceptible individuals moves them
to a recovered health state. Vaccination does not affect the transmis-
sion rates between infected and unvaccinated individuals (𝛽𝑖,𝑗) nor
the recovery rates of infected individuals (𝛾𝑖). We let 𝑃 denote the
population size, and 𝑣 = (𝑣1, 𝑣2,… , 𝑣𝑛) ∈ R𝑛 denote the proportion
of individuals vaccinated. More specifically, 𝑣𝑖 is the proportion of the
entire population that is vaccinated and belongs to group 𝑖. We further
assume that a limited number of vaccines, 𝑁 < 𝑃 , are available to be
distributed at time 0 such that ∑𝑖 𝑣𝑖 ≤

𝑁
𝑃 .

We denote by 𝑆𝑖(0), 𝐼𝑖(0), 𝑅𝑖(0) and 𝐷𝑖(0) the proportion of the en-
ire population in each compartment at time 0 without vaccination. We
et 𝑆𝑖(𝑣; 𝑡), 𝐼𝑖(𝑣; 𝑡), 𝑅𝑖(𝑣; 𝑡), and 𝐷𝑖(𝑣; 𝑡) be the proportion of individuals
n each compartment at time 𝑡 in the presence of vaccination 𝑣. By
efinition, we have:
𝑛

𝑖=1
𝑆𝑖(𝑣; 𝑡) + 𝐼𝑖(𝑣; 𝑡) + 𝑅𝑖(𝑣; 𝑡) +𝐷𝑖(𝑣; 𝑡) = 1, ∀𝑣, 𝑡

Since vaccination only impacts the initial conditions, we have ∀𝑖 ∈
[1, 𝑛]]

𝑆𝑖(𝑣; 0) = 𝑆𝑖(0) − 𝜂𝑣𝑖
𝐼𝑖(𝑣; 0) = 𝐼𝑖(0)

𝑅𝑖(𝑣; 0) = 𝑅𝑖(0) + 𝜂𝑣𝑖
𝐷𝑖(𝑣; 0) = 𝐷𝑖(0)

(2)

The problem of optimal vaccine allocation can be expressed as
ollows, where 𝑓 (𝑣) denotes the objective to be optimized:

minimize
𝑣

𝑓 (𝑣)

subject to
𝑛
∑

𝑖=1
𝑣𝑖 ≤

𝑁
𝑃

𝑣𝑖 ≤ 𝑆𝑖(0) ∀𝑖 ∈ [[1, 𝑛]]

𝑣𝑖 ≥ 0 ∀𝑖 ∈ [[1, 𝑛]]

(3)

The constraints in the above formulation provide limits on the total
fraction of the population that can be vaccinated and on the total
fraction of each population group that can be vaccinated. If desired,
an equity constraint can be added:

𝑣𝑖 ≥ 𝑚𝑖, ∀𝑖 ∈ [[1, 𝑛]]

where 𝑚𝑖 is the minimum fraction of the population in group 𝑖 that
must be vaccinated. In this case, we consider 𝑣′ = (𝑣′1, 𝑣

′
2,… , 𝑣′𝑛) =

(𝑣1−𝑚1, 𝑣2−𝑚2,… , 𝑣𝑛−𝑚𝑛) as our decision variable with the constraints
𝑣′𝑖 ≥ 0,∀𝑖 ∈ [[1, 𝑛]].

2.2. Objective functions

We consider four different objectives for the vaccine allocation
problem, measured over a time horizon of length 𝑇 .
Minimize new infections. The objective of minimizing the total num-
ber of new infections can be written as

𝑓 (𝑣) = 𝐼𝑁𝐹 (𝑣; 𝑇 ) =
𝑛
∑

𝑖=1

(

𝐼𝑖(𝑣; 𝑇 ) + 𝑅𝑖(𝑣; 𝑇 ) − 𝜂𝑣𝑖 +𝐷𝑖(𝑣; 𝑇 )
)

. (4)

Note that we subtract the proportion of recovered individuals in each
group 𝑖, 𝑅𝑖(𝑣; 𝑇 ), by 𝜂𝑣𝑖 because vaccination moves a proportion 𝜂𝑣𝑖
of individuals to the recovered state as can be seen in (2), but these
individuals were never infected.
Minimize deaths. The objective of minimizing the total number of
deaths can be written as

𝑓 (𝑣) = 𝐷(𝑣; 𝑇 ) =
𝑛
∑

𝐷𝑖(𝑣; 𝑇 ). (5)

𝑖=1
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Minimize life years lost. The objective of minimizing life years lost
an be written as

(𝑣) = 𝐿𝑌 (𝑣; 𝑇 ) =
𝑛
∑

𝑖=1
𝐿𝑖𝐷𝑖(𝑣; 𝑇 ) (6)

where 𝐿𝑖 is the average expected life years lost due to death of an
individual in group 𝑖.
Minimize QALYs lost due to death. The objective of minimizing
QALYs lost due to death can be written as

𝑓 (𝑣) = 𝑄𝐴𝐿𝑌 (𝑣; 𝑇 ) =
𝑛
∑

𝑖=1
𝑞𝑖𝐿𝑖𝐷𝑖(𝑣; 𝑇 ) (7)

where 𝑞𝑖 is the average QALY multiplier for individuals in group 𝑖. Note
that (7) does not include QALY losses that occur during the period when
an individual is infected.

3. Simple conditions for vaccine allocation

3.1. Taylor series expansions

Because an analytical solution for an SIR model with 𝑛 interacting
populations would be difficult or even impossible to derive, we ap-
proximate the disease dynamics at time 𝑇 using first- and second-order
Taylor series expansions:

𝑥(𝑣; 𝑡) ≃ 𝑥(𝑣; 0) + d𝑥
d𝑡

(𝑣; 0)𝑡, for 𝑥 ∈ {𝐼𝑖, 𝑅𝑖, 𝐷𝑖}, 𝑡 ≥ 0

𝑥(𝑣; 𝑡) ≃ 𝑥(𝑣; 0) + d𝑥
d𝑡

(𝑣; 0)𝑡 + d2𝑥
d𝑡2

(𝑣; 0) 𝑡
2

2
, for 𝑥 ∈ {𝐷𝑖}, 𝑡 ≥ 0

(8)

A similar approach was used by Zaric and Brandeau [9] for an SI
model, under the assumption that no sufficient contacts occur across
3

population groups. We extend this approach to an SIR model with 𝑛
groups, and allow cross-infection between groups: 𝛽𝑖𝑗 ≠ 0 for 𝑖 ≠ 𝑗.

For the objective of minimizing infections, we use first-order ap-
proximations. Combining Eqs. (1), (2) and (8), we have the following
approximate expressions for compartment sizes at 𝑡 = 𝑇 :

𝐼𝑖(𝑣; 𝑇 ) ≃ 𝐼𝑖(0) + (𝑆𝑖(0) − 𝜂𝑣𝑖)
(

𝑛
∑

𝑗=1
𝛽𝑖𝑗𝐼𝑗 (0)

)

𝑇 − (𝛾𝑖 + 𝜇𝑖)𝐼𝑖(0)𝑇

𝑅𝑖(𝑣; 𝑇 ) ≃ 𝑅𝑖(0) + 𝜂𝑣𝑖 + 𝛾𝑖𝐼𝑖(0)𝑇

𝐷𝑖(𝑣; 𝑇 ) ≃ 𝐷𝑖(0) + 𝜇𝑖𝐼𝑖(0)𝑇

(9)

he above approximations of 𝐼𝑖 and 𝑅𝑖 are linear functions of 𝑣. As
e will show in Section 3.2, this allows us to derive an analytical

olution to the optimal vaccine allocation problem when considering
he objective of minimizing infections.

For the objectives of minimizing deaths, life years lost, and QALYs
ost due to death, we use a second-order approximation to estimate
𝑖(𝑣; 𝑇 ):

𝐷𝑖(𝑣; 𝑇 ) ≃ 𝐷𝑖(0) + 𝜇𝑖𝐼𝑖(0)𝑇

+ 𝜇𝑖
(

(𝑆𝑖(0) − 𝜂𝑣𝑖)(
𝑛
∑

𝑗=1
𝛽𝑖𝑗𝐼𝑗 (0)) − (𝛾𝑖 + 𝜇𝑖)𝐼𝑖(0)

)𝑇 2

2
.

(10)

The above approximation of 𝐷𝑖 is a linear function of 𝑣. This allows
us to derive an analytical solution for the optimal vaccination problem
when considering the objective of minimizing deaths, life years lost, or
QALYs lost due to death, as we will show in Section 3.2.

These approximations have limitations and should be handled with
care in order for the resulting model to be realistic. Specifically, with
sufficient levels of vaccines (𝑣), the first-order approximation of 𝐼𝑖
can be negative, and the second-order approximation of 𝐷 can be
𝑖
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decreasing. In particular,

𝑣𝑖 ≥
1
𝜂

(

𝑆𝑖(0) −
(𝛾𝑖 + 𝜇𝑖)𝐼𝑖(0)𝑇 − 𝐼𝑖(0)

(
∑𝑛

𝑗=1 𝛽𝑖𝑗𝐼𝑗 (0))𝑇

)

= 𝛼𝑖(𝑇 )

⟹

{

𝐼𝑖(𝑣; 𝑇 ) ≤ 0, 𝑖 ∈ [[1, 𝑛]].
d𝐷𝑖
d𝑡 (𝑣; 𝑇 ) ≤ 0, 𝑖 ∈ [[1, 𝑛]].

ince 𝑡 ↦ 𝛼𝑖(𝑡) is a decreasing function of 𝑡, we have 𝛼𝑖(𝑇 ) ≤ 𝛼𝑖(𝑡),∀𝑡 ≤ 𝑇
uch that

𝑖 ≤ 𝛼𝑖(𝑇 ) ⟹

{

𝐼𝑖(𝑣, 𝑡) ≥ 0, ∀𝑡 ≤ 𝑇
d𝐷𝑖
d𝑡 (𝑣, 𝑡) ≥ 0, ∀𝑡 ≤ 𝑇 .

et 𝜏(𝑇 ) = min𝑖{𝛼𝑖(𝑇 )}. For the purpose of this analysis, we assume
hat the number of available vaccines for time horizon 𝑇 is less than
𝜏(𝑇 ); thus, our approximation of 𝐼𝑁𝐹 (𝑣; 𝑇 ) is always positive and
our approximations of 𝐷(𝑣; 𝑇 ), 𝐿𝑌 (𝑣; 𝑇 ), and 𝑄𝐴𝐿𝑌 (𝑣; 𝑇 ) are always
non-decreasing over the time period considered.

3.2. Optimal solution to the allocation problem

Minimize new infections. We approximate the objective (4) using (9):

INF(𝑣; 𝑇 ) ≃
∑

𝑖

(

𝐼𝑖(0) + 𝑅𝑖(0) +𝐷𝑖(0)
)

+
∑

𝑖
(𝑆𝑖(0) − 𝜂𝑣𝑖)

(
∑

𝑗
𝛽𝑖𝑗𝐼𝑗 (0)

)

𝑇 .

Dropping the constant terms, and since 𝜂 > 0, the objective function
for the optimization problem (3) is:

𝑓 (𝑣) = −
∑

𝑖
𝑣𝑖
(
∑

𝑗
𝛽𝑖𝑗𝐼𝑗 (0)

)

. (11)

Since (11) is a linear function of 𝑣, the optimization problem (3)
becomes a knapsack problem, with weights 𝑤𝑖 = 1 ∀𝑖, and value
equal to the initial force of infection: 𝑝𝑖 =

∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0) ∀𝑖. The optimal
solution is to vaccinate groups in decreasing order of the coefficient
𝑝𝑖∕𝑤𝑖. Specifically, we order the groups by decreasing order of their
initial force of infection, and let 𝑘 = max{𝑘′|1 ≤ 𝑘′ ≤ 𝑛,

∑𝑘′
𝑖=1 𝑆𝑖(0) ≤

𝑁
𝑃 }.

he optimal solution is

𝑣∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣∗1
⋮
𝑣∗𝑘
𝑣∗𝑘+1
𝑣∗𝑘+2
⋮
𝑣∗𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑆1(0)
⋮

𝑆𝑘(0)
𝑁
𝑃 −

∑𝑘
𝑖=1 𝑆𝑖(0)
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (12)

n other words, if
∑

𝑗
𝛽𝑖𝑗𝐼𝑗 (0) ≥

∑

𝑗
𝛽𝑙𝑗𝐼𝑗 (0), (13)

hen allocating all vaccine to group 𝑖 until all susceptible individuals
n group 𝑖 are vaccinated averts more estimated infections than does
llocating any vaccines to group 𝑙.
inimize deaths. We proceed in a similar manner for the objective of
inimizing deaths. We approximate the objective (5) using (10) as

𝐷(𝑣; 𝑇 ) ≃
∑

𝑖

(

𝐷𝑖(0) + 𝜇𝑖𝐼𝑖(0)𝑇
)

+ 𝑇 2

2
∑

𝑖
𝜇𝑖
[

(𝑆𝑖(0) − 𝜂𝑣𝑖)(
∑

𝑗
𝛽𝑖𝑗𝐼𝑗 (0)) − (𝛾𝑖 + 𝜇𝑖)𝐼𝑖(0)

]

.

Dropping the constant terms, and since 𝜂 > 0, the objective function
becomes:

𝑓 (𝑣) = −
∑

𝑖
𝑣𝑖
(

𝜇𝑖
∑

𝑗
𝛽𝑖𝑗𝐼𝑗 (0)

)

. (14)

This objective is again a linear function of 𝑣, and we solve a knapsack
problem. Ordering the groups in decreasing order of their initial force
4

Table 1
Coefficients of the knapsack problem for the four objective functions.

Objective 𝑝𝑖∕𝑤𝑖

Minimize infections ∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0)
Minimize deaths 𝜇𝑖

∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0)
Minimize life years lost 𝐿𝑖𝜇𝑖

∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0)
Minimize QALYs lost 𝑞𝑖𝐿𝑖𝜇𝑖

∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0)

of infection multiplied by the mortality rate, 𝜇𝑖
∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0), the optimal
solution is given by (12). If

𝜇𝑖
∑

𝑗
𝛽𝑖𝑗𝐼𝑗 (0) ≥ 𝜇𝑙

∑

𝑗
𝛽𝑙𝑗𝐼𝑗 (0), (15)

then it is optimal to allocate vaccines to group 𝑖 before group 𝑙 in order
to minimize deaths. Condition (15) is similar to that for the case of
minimizing new infections (13), but now weighted by the mortality
rates 𝜇𝑖.
Minimize life years lost and QALYs lost. The functions 𝐷, 𝐿𝑌 and
𝑄𝐴𝐿𝑌 are weighted sums of 𝐷𝑖, with the weights being 1, 𝐿𝑖 and
𝑞𝑖𝐿𝑖, respectively. Therefore, the solutions to minimizing life years lost
and QALYs lost follow directly from the solution to minimizing deaths.
Approximating the objectives (6) and (7) using (10), we find that the
objective functions are linear functions of 𝑣 for both problems so we
have a knapsack problem as before. The weights 𝑤𝑖 are still equal to
one, and the values 𝑝𝑖 when minimizing life years lost and QALYs lost
are similar to the case of minimizing deaths, but additionally weighted
by the average expected life years lost 𝐿𝑖, and the average expected
QALYs lost due to death 𝑞𝑖𝐿𝑖, respectively.

Table 1 summarizes the coefficient 𝑝𝑖∕𝑤𝑖 of the knapsack problem
for each of the four objectives. For each objective, it is optimal to
vaccinate the groups in decreasing order of this coefficient; that is, if
𝑝𝑖∕𝑤𝑖 ≥ 𝑝𝑙∕𝑤𝑙, then it is optimal to vaccinate group 𝑖 before group 𝑙.

The conditions indicate that it is optimal to allocate the vaccines
to one group until every individual in this group is vaccinated before
allocating any vaccines to the remaining groups. The group that re-
ceives the vaccines first depends, respectively, on the force of infection
(∑𝑗 𝛽𝑖𝑗𝐼𝑗 (0)), or the force of infection multiplied by the mortality rate
(𝜇𝑖), the expected life years lost (𝐿𝑖), or the QALYs lost due to death
(𝑞𝑖𝐿𝑖).

4. Example: Vaccination against COVID-19

4.1. Model instantiation

We illustrate our ideas using the example of COVID-19 with two
groups (𝑛 = 2). We assume that group 1 consists of individuals under
age 65 and group 2 consists of individuals 65 years or older. To
instantiate our model we use data that includes daily confirmed cases
and deaths for New York state [17], with values for other model
parameters drawn from the literature and public sources (Table 2). We
assume that all individuals in group 1 have a QALY multiplier of 1.
Using [18–20] we estimate QALYs lost due to death (𝑞𝑖𝐿𝑖) for both
groups.

We compute the transition rates as follows:

𝑑1 = 𝑑𝑚 + 𝛼1𝑑𝑠, 𝜇1 =
𝜉1
𝑑1

, 𝛾1 =
1
𝑑1

− 𝜇1

𝑑2 = 𝑑𝑚 + 𝛼2𝑑𝑠, 𝜇2 =
𝜉2
𝑑2

, 𝛾2 =
1
𝑑2

− 𝜇2

he average duration of infection for an individual in group 𝑖 is the sum
f the average duration of a mild infection, plus the average duration of
severe infection multiplied by the fraction of infections in group 𝑖 that
re severe. The rate at which an individual in group 𝑖 leaves the infected

compartment is 1
𝑑𝑖

. Given that only a fraction 𝜉𝑖 of infected individuals
die, the transition rate from infected to dead (𝜇𝑖) is simply the product
of 𝜉 and 1 . The remaining fraction 1 − 𝜉 of the infected individuals
𝑖 𝑑𝑖 𝑖
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Table 2
Values and sources for model parameters.
Parameter Description Value Source

𝑓1 Fraction of individuals <65 years old 0.84 [18]
𝑓2 Fraction of individuals ≥65 years old 0.16 [18]
𝑑𝑚 Average duration of mild infection (days) 11 [21–24]
𝑑𝑠 Average duration of severe infection (days) 8 [25,26]
𝛼1 Fraction of infections that become severe for individuals <65 years old 0.21 [18,27]
𝛼2 Fraction of infections that become severe for individuals ≥65 years old 0.46 [18,27]
𝑑1 Average duration of infection for individuals <65 years old (days) 12.68 Calculated
𝑑2 Average duration of infection for individuals ≥65 years old (days) 14.68 Calculated
𝜉1 Infected fatality ratio for individuals <65 years old 0.00153 [18,28]
𝜉2 Infected fatality ratio for individuals ≥65 years old 0.0675 [18,28]
𝜇1 Daily death rate for individuals <65 years old 0.00012 Calculated
𝜇2 Daily death rate for individuals ≥65 years old 0.00460 Calculated
𝛾1 Daily rate at which individuals <65 years old recover and become immune 0.079 Calculated
𝛾2 Daily rate at which individuals ≥65 years old recover and become immune 0.064 Calculated
𝜂 Vaccine effectiveness 0.90 [29]
𝐿1 Expected life years lost for individuals <65 years old 46 [18,19]
𝐿2 Expected life years lost for individuals ≥65 years old 13 [18,19]
𝑞1𝐿1 Quality-adjusted expected life years lost for individuals <65 years old 34.47 [18–20]
𝑞2𝐿2 Quality-adjusted expected life years lost for individuals ≥65 years old 6.96 [18–20]
a
w

𝐼

𝑅

𝐷

W

W
p
w
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recovers, and thus the transition rate from infected to recovered (𝛾𝑖) is
equal to 1−𝜉𝑖

𝑑𝑖
= 1

𝑑𝑖
− 𝜇𝑖.

We use model calibration to determine the transmission rate pa-
rameters 𝛽11, 𝛽12, 𝛽21 and 𝛽22, and the initial total number of infected
ndividuals, 𝐼(0) = 𝐼1(0) + 𝐼2(0). We assume that 𝛽12 < 𝛽21, and that
he distribution of cases initially is consistent with the age distribution,
uch that 𝐼1(0) = 𝑓1𝐼(0) and 𝐼2(0) = 𝑓2𝐼(0). Since several studies
ave shown that the total number of cases could be many times higher
han the number of confirmed cases [30,31], we calibrate to a 7-day
olling average of reported deaths from March 1 to April 4, 2020
Fig. 2(a)) and compare our model projections to multiples of a 7-day
olling average of new confirmed cases (Fig. 2(b)). We calibrate to daily
eaths only up until April 4 since all non-essential statewide businesses
losed in New York state beginning on March 22 [32], and we want to
apture the trend of the epidemic during the initial outbreak, before
ny interventions took place.

We use Latin Hypercube Sampling for calibration, randomly sam-
ling each parameter from a range of values [33]. We measure good-
ess of fit using the sum of squared errors. The calibrated parameter
alues are:

11 = 0.403

12 = 0.071

21 = 0.154

22 = 0.613

(0) = 4.97 × 10−6

1(0) = 4.15 × 10−6

2(0) = 8.19 × 10−7

he resulting 𝑅0 value is 4.31, which is consistent with other sources
uch as [34–37] that aim to estimate 𝑅0 while taking into account not
nly confirmed cases but also extrapolating to unconfirmed cases.

Fig. 3 compares the calibrated model’s output to the New York state
ata on deaths and confirmed cases. The model output closely matches
he calibration target of reported deaths (Fig. 3(a)). The model’s pro-
ected total number of infected individuals is 5 to 10 times higher than
aily confirmed cases in New York state (Fig. 3(b)), which is consistent
ith studies such as [30] and [31] that suggest that the total number of
eople infected is 5–10 times the number of confirmed cases due to a
arge population of asymptomatic individuals and untested individuals.

We initialize the model with an estimate of the proportion of
ndividuals in each compartment on November 5, 2020 in the United
tates [38], and using the transmission rates as calculated above. We
ssume that the distribution of the population in each compartment is
onsistent with the age distribution; that is, 𝐼 (0) = (.84)(𝐼 (0) + 𝐼 (0))
1 1 2 i

5

nd 𝐼2(0) = (.16)(𝐼1(0)+𝐼2(0)) (and similarly for 𝑆,𝑅, and 𝐷). From [38]
e have

(0) = 𝐼1(0) + 𝐼2(0) = 1%

(0) = 𝑅1(0) + 𝑅2(0) = 2%

(0) = 𝐷1(0) +𝐷2(0) = 0.1%

e then deduce 𝑆(0) given that 𝑆(0) + 𝐼(0) +𝑅(0) +𝐷(0) = 1. As there
is uncertainty about the number of COVID-19 cases, we also consider
scenarios where there are two, five, and ten times [39] as many infected
and recovered individuals as reported (Supplemental Table A.1).

Since many measures have been put in place to prevent the spread
of the epidemic (e.g., masks, shelter-in-place orders), for each scenario
we also consider the case where transmission rates are halved compared
to the initial outbreak due to these measures [40,41]. We will refer
to these measures collectively as social distancing. Across all scenarios
considered, with and without social distancing, we find that the basic
reproductive number ranges from 1.5 to 4.2 (Supplemental Table A.2).

4.2. Optimal vaccine allocation

We consider three time horizons over which the vaccination objec-
tives are measured: 𝑇 = 30, 90, 180 days. We assume that a vaccine with
effectiveness 𝜂 = 0.90 is available [29]. Using the calibrated parameters,
we determine 𝜏(𝑇 ), which is the maximum proportion of the population
vaccinated that we can consider given our approximation (9) of the
epidemic dynamics (Table 3).

From the optimality conditions (Table 1), we define

𝐶𝐼 = 𝛽11𝐼1(0) + 𝛽12𝐼2(0) − (𝛽21𝐼1(0) + 𝛽22𝐼2(0))

𝐶𝐷 = 𝜇1(𝛽11𝐼1(0) + 𝛽12𝐼2(0)) − 𝜇2(𝛽21𝐼1(0) + 𝛽22𝐼2(0))

𝐶𝐿𝑌 = 𝐿1𝜇1(𝛽11𝐼1(0) + 𝛽12𝐼2(0)) − 𝐿2𝜇2(𝛽21𝐼1(0) + 𝛽22𝐼2(0))

𝐶𝑄𝐴𝐿𝑌 = 𝑞1𝐿1𝜇1(𝛽11𝐼1(0) + 𝛽12𝐼2(0)) − 𝑞2𝐿2𝜇2(𝛽21𝐼1(0) + 𝛽22𝐼2(0))

(16)

e calculate the values of 𝐶𝐼 , 𝐶𝐷, 𝐶𝐿𝑌 and 𝐶𝑄𝐴𝐿𝑌 with the calibrated
arameters for each scenario (Supplemental Table A.3) to determine
hich group to vaccinate given the objective function considered. For
xample, if 𝐶𝐼 > 0, then it is optimal to vaccinate group 1 rather than
roup 2 in order to minimize new infections.

Table 4 shows the optimal allocation for each objective function
nd scenario. The allocations varied for the different objectives, but did
ot vary by scenario. To minimize new infections it is always better to
accinate individuals under 65 years old (group 1). Because there are
ore susceptible individuals under 65 years old than 65 years or older,

nd individuals in the younger group have a higher cross-transmission
ate than individuals in the older group (𝛽21 > 𝛽12), vaccinating younger
ndividuals averts more infections. However, in order to minimize
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Fig. 2. New daily confirmed COVID-19 deaths and cases in New York state beginning from March 1: raw numbers and 7-day rolling average.
Fig. 3. Calibrated model’s daily number of deaths, and multiples of daily confirmed cases compared to reported values (7-day rolling averages) for New York state.
Table 3
Maximum proportion of the population that we consider vaccinating for each time horizon (𝑇 = 30, 90, 180 days) and epidemic
scenario, and with or without social distancing. Scenario 1 assumes that the total number of initial infections equals the number
of reported cases. Scenarios 2, 3, and 4 assume, respectively, that the total number of initial infections equals two, five, and
ten times the number of reported cases.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

No social distancing
𝑇 = 30 days 15.0% 14.4% 12.8% 10.0%
𝑇 = 90 days 13.2% 12.6% 11.0% 8.2%
𝑇 = 180 days 12.7% 12.2% 10.5% 7.8%

Social distancing
𝑇 = 30 days 12.2% 11.6% 10.0% 7.2%
𝑇 = 90 days 8.6% 8.1% 6.4% 3.7%
𝑇 = 180 days 7.7% 7.2% 5.5% 2.8%
Table 4
Optimal vaccine allocation for each scenario and objective function. Group 1 cor-
responds to younger individuals (under age 65) and Group 2 corresponds to older
individuals (age 65 and older).

Objective All scenarios All scenarios
No social distancing With social distancing

Minimize infections Group 1 Group 1
Minimize deaths Group 2 Group 2
Minimize life years lost Group 2 Group 2
Minimize QALYs lost Group 2 Group 2

deaths, it is better to vaccinate older individuals (group 2) because their
mortality rate is much higher (𝜇2 ≫ 𝜇1). Similarly for life years and
QALYs lost, it is better to vaccinate older individuals (group 2), as the
gain in life years and QALYs for younger individuals (group 1) is not
enough to offset the higher mortality rate among older individuals.
Sensitivity Analysis on Key Parameters. Our estimates of COVID-19
natural history parameters are derived from several recently published
studies. Because there is uncertainty around these epidemiological
6

parameters, we examine in one-way sensitivity analysis how the op-
timality conditions change when varying key parameters. Across all
scenarios, with and without social distancing, we find the following:

1. Transmission rates (𝛽𝑖𝑗). If 𝛽11 is 1.55 times smaller, if 𝛽22 is 2.18
times higher, or if 𝛽21 is 1.93 times higher than our calibrated
values, then it is optimal to vaccinate group 2 in order to
minimize infections.

2. Mortality rates (𝜇𝑖). As long as the mortality rate in group 2 is
1.52 times higher than in group 1, then it is optimal to vaccinate
group 2 before group 1 in order to minimize deaths. We estimate
in the base case that the mortality in group 2 is 38.3 times higher
than in group 1, which is well above 1.52.

3. Expected life years lost (𝐿𝑖) and QALYs lost due to death (𝑞𝑖𝐿𝑖). If
𝐿1 is 25.1 times higher than 𝐿2, then it is optimal to vaccinate
group 1 before group 2 in order to minimize expected life years
lost. Similarly, if 𝑞1𝐿1 is 25.1 times higher than 𝑞2𝐿2, vaccinating
group 1 before group 2 minimizes QALYs lost due to death. We
estimate in the base case that 𝐿1∕𝐿2 = 3.5 and 𝑞1𝐿1∕𝑞2𝐿2 = 4.9,
values well below 25.1.
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Table 5
Distributions for sensitivity analysis on COVID-19 transmission and natural history
parameters. We denote by 𝑥𝑐 the value of parameter 𝑥 in the base case.

Parameters Distributions

I(0) U(0.01,0.1)
R(0) U(0.02,0.2)
D(0) U(0.001,0.002)
𝜂 U(0.4, 0.95)
𝛽𝑖𝑗 U(0.4𝛽𝑐𝑖𝑗 , 1.2𝛽𝑐𝑖,𝑗 ) 𝑖, 𝑗 ∈ [[1, 2]]
𝛾𝑗 U(0.8𝛾𝑐𝑗 , 1.2𝛾𝑐𝑗 ) 𝑖 ∈ [[1, 2]]
𝜇𝑗 U(0.8𝜇𝑐

𝑗 , 1.2𝜇
𝑐
𝑗 ) 𝑖 ∈ [[1, 2]]

Table 6
Percentage of trials in which the approximation and the numerical simulation result in
the same optimal solution for each time horizon and objective function.

Infections Deaths Life years lost QALYs lost

𝑇 = 30 days 86.9% 100% 100% 100%
𝑇 = 90 days 86.1% 100% 100% 100%
𝑇 = 180 days 84.9% 100% 100% 100%

4.3. Quality of decisions

To evaluate the accuracy of our approximated optimal allocations,
we compare the above solutions to allocations determined using the
exact Eqs. (1). We determine the optimal solution via exhaustive search.
Since we allocate all available vaccines, we have a univariate problem
in 𝑣2: (𝑣1, 𝑣2) = (𝑁∕𝑃 − 𝑣2, 𝑣2). For each time horizon (𝑇 ) and number
of vaccines available (𝑁), we discretize the range of feasible vaccine
allocations 0 ≤ 𝑣2 ≤ min(𝑆1(0), 𝑆2(0), 𝜏(𝑇 )). We evaluate the objective
function for each allocation, 𝑓 (𝑁∕𝑃 − 𝑣2, 𝑣2), and compare the value
against 𝑓 (𝑣∗1 , 𝑣

∗
2), where (𝑣∗1 , 𝑣

∗
2) is the approximated optimal solution.

We find that in all cases (over the three time horizons and four epi-
demic scenarios, with and without social distancing) the approximated
optimal solution is the same as the true optimal solution.

To further explore the accuracy of our approximations, we stochas-
tically vary the transmission and natural history parameters of the
model (while maintaining the 84%/16% split between groups 1 and 2).
We run 8,000 trials, each time sampling the parameters from uniform
distributions (Table 5). There are several vaccines against COVID, each
with different effectiveness against different COVID variants. To ac-
count for this variability, we vary the vaccine effectiveness 𝜂 uniformly
between 0.4 and 0.95, reflecting ranges found in the literature [42–45].
We calculate the percentage of scenarios where the approximation and
numerical simulations yield the same optimal solution (Table 6). For
the objectives of minimizing deaths, life years lost, and QALYs lost, the
approximation and the exhaustive search with numerical simulations
find the same optimal solution in every trial. For the objective of
minimizing infections, the solutions match in approximately 85% of the
trials.
Sensitivity Analysis on Time Horizon. We use numerical simulations
to explore how the optimal vaccine allocation might change for a longer
time horizon of two years. We find that for all four objectives, the
optimal solution does not change when supplies of vaccines are limited
(𝑣1+𝑣2 ≤ 𝜏(𝑇 )). For the objectives of minimizing deaths, life years lost,
and QALYs lost due to death, it is still optimal to vaccinate group 2
before group 1 for any level of vaccines up to 𝑆1(0).

5. Discussion

In health economics, QALYs are generally used to measure health
outcomes [46]. However, the appropriate objective for the vaccine
allocation problem depends on the decision environment. For example,
because there is currently no cure for COVID-19, policy makers may
initially allocate COVID-19 vaccines to minimize deaths, as deaths are
irreversible [1]. In this paper we have used an epidemic approximation
7

to develop simple conditions characterizing the optimal vaccine alloca-
tion for four different objectives: minimize infections, deaths, life years
lost, or QALYs lost due to death.

Using first- and second-order Taylor series expansions, we reduce
the optimal vaccine allocation problem to a knapsack problem. If the
goal is to minimize new infections (population-level health benefits),
the simple conditions indicate that it is optimal to allocate vaccines to
the group with the highest force of infection. If the goal is to minimize
deaths (individual-level health benefits), the condition is weighted by
the mortality rates; if the goal is to minimize life years or QALYs
lost due to death, the condition is additionally weighted by expected
life years lost or quality-adjusted expected life years lost, respectively.
In all cases, if enough vaccines are available, additional vaccination
of other unvaccinated groups becomes optimal, again following the
simple conditions. This all-or-nothing approach is optimal for these four
objective functions since the approximated problems have the same
form.

Our computational results suggest that good vaccine allocation
decisions can be made using these simple conditions with minimal
data. For the case of COVID-19 and two interacting population groups
comprising younger and older individuals, respectively, we find that
it is optimal to vaccinate the younger individuals to minimize new
infections. This is because the younger group is larger and is more likely
to transmit the infection to older individuals than vice versa. However,
if the objective is to minimize deaths, life years lost, or QALYs lost
due to death, it is optimal to vaccinate the older individuals. This is
because the infection fatality rate is much higher in this group. For all
considered cases (varying the time horizon, epidemic scenario, with or
without social distancing), the approximation yields the exact optimal
solution. In stochastic sensitivity analysis, the approximated solution
is optimal across all trials for the objectives of minimizing deaths, life
years lost, and QALYs lost due to death, and is optimal in more than
85% of trials for the objective of minimizing new infections.

The time horizon and the objective function will depend on the
specific problem setting. For COVID-19, a relatively short time hori-
zon may be appropriate, whereas for other communicable diseases
(e.g., measles) a longer time horizon might be appropriate. Our analysis
is especially useful for short-term horizons, when vaccine supply may
be most limited. We note that the objective may change over time: for
example, policy makers may initially want to use limited vaccine supply
to avert deaths in the short term and then later switch to the objective
of minimizing new infections. In the case of COVID-19, government
policies to initially vaccinate older individuals and healthcare workers
when the vaccine supply was highly constrained are consistent with our
approximated optimal solution to minimize deaths, life years lost, and
QALYs lost due to death. Expansion of vaccination eligibility to younger
age groups is consistent with our approximated optimal solution to
minimize new infections.

Our study has several limitations. We consider a single time period
with individuals vaccinated at time 0 and instantaneous vaccine effec-
tiveness. In reality, vaccination efforts extend over time. Our analysis
is based on a relatively simple SIR model. Further research could
investigate whether our analytical approach could be extended to more
sophisticated compartmental models that can capture more details of
disease transmission and progression (e.g., age structure, quarantine,
exposed individuals, asymptomatic infections or hospitalization) [47–
50]. Finally, we use first- and second-order Taylor series expansions
which provide reasonable approximations in the short term but might
not be as accurate for longer time horizons. Future work could extend
the problem to a multi-period setting.

Despite these limitations, our simple conditions provide a useful
means of informing vaccine allocation decisions. As shown by our
numerical simulations, the allocations resulting from these conditions
match those found using much more computationally expensive al-
gorithms such as exhaustive search, and can be used for any of the
objective functions of minimizing new infections, deaths, life years lost,

or QALYs lost due to death.
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