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Abstract
A number of researchers have attempted to estimate salmonid smolt survival during outmi-

gration through an estuary. However, it is currently unclear how the design of such studies

influences the accuracy and precision of survival estimates. In this simulation study we con-

sider four patterns of smolt survival probability in the estuary, and test the performance of

several different sampling strategies for estimating estuarine survival assuming perfect

detection. The four survival probability patterns each incorporate a systematic component

(constant, linearly increasing, increasing and then decreasing, and two pulses) and a ran-

dom component to reflect daily fluctuations in survival probability. Generally, spreading

sampling effort (tagging) across the season resulted in more accurate estimates of survival.

All sampling designs in this simulation tended to under-estimate the variation in the survival

estimates because seasonal and daily variation in survival probability are not incorporated

in the estimation procedure. This under-estimation results in poorer performance of esti-

mates from larger samples. Thus, tagging more fish may not result in better estimates of

survival if important components of variation are not accounted for. The results of our simu-

lation incorporate survival probabilities and run distribution data from previous studies to

help illustrate the tradeoffs among sampling strategies in terms of the number of tags

needed and distribution of tagging effort. This information will assist researchers in develop-

ing improved monitoring programs and encourage discussion regarding issues that should

be addressed prior to implementation of any telemetry-based monitoring plan. We believe

implementation of an effective estuary survival monitoring program will strengthen the

robustness of life cycle models used in recovery plans by providing missing data on where

and how much mortality occurs in the riverine and estuarine portions of smolt migration.

These data could result in better informed management decisions and assist in guidance

for more effective estuarine restoration projects.
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Introduction
A number of salmonid populations are at risk of extinction throughout much of their range
[1–5]. Declines have primarily been attributed to habitat loss and the effects of hydropower,
hatcheries, and harvest [6–8]. However, the lack of baseline data often hinders attempts to iso-
late the factors causing population declines [7]. Long term monitoring of population health is
required for the classification of existing degrees of peril, identification of problem areas, and
evaluation of recovery measures. To address these needs, a number of U.S. states have insti-
tuted long term monitoring programs to assess trends in smolt to adult survival [9–12]. How-
ever, none of these long-term programs currently incorporate monitoring to estimate smolt
survival through the estuary into the near shore marine zone; an area in which substantial loss
has been documented [5], [13–22].

Estimating the survival of juvenile salmon as they pass through the estuary has been hin-
dered by an inability to count fish as they enter and exit these large, dynamic environments. To
address this issue there has been increased use of biotelemetry to estimate the survival of out-
migrating salmonids in the past two decades [23], though typically the studies are only 1–2
years in duration [5], [15–17], [19], [21]. These studies have identified a general pattern of high
smolt mortality in the estuary, and in some cases, results have been used to guide management
actions to limit the effects of predators on threatened salmon stocks (e.g., [24]). However, there
has been little discussion about how the design of telemetry studies could affect the interpreta-
tion of survival data, and subsequent inference to the salmonid population in question. This
information is particularly important when evaluating the utility of biotelemetry as a tool for
long term monitoring of smolt survival.

To address this issue, we developed simulations for several conceptual sampling designs in
which acoustic-tagged fish were released in one or more groups over the course of a simulated
outmigration. Sampling design refers to the method by which smolts were selected, or sampled,
from the larger migrant population prior to tagging. The purpose of simulating different sam-
pling designs was to test whether the sampling design (number of tags, time of tagging) influ-
enced the bias in survival estimates given changes in daily smolt survival and run timing
distributions observed in nature. The simulations were not intended to answer specific research
questions (behavior, habitat utilization, migration rates, temporal survival), or to evaluate all
permutations of study design and environmental variability. Instead, we wanted to highlight
factors that should be taken into consideration prior to using biotelemetry as a tool to monitor
annual outmigration survival over multiple years. Our simulations included scenarios in which
the outmigrant run distribution and daily survival varied. We compared the estimates of sur-
vival for the outmigrant population among these different models to determine the effect of
sample size and timing of tagging on the accuracy and precision of survival estimates. The sim-
ulation parameters were based on observations from empirical, field based studies of steelhead
(Oncorhynchus mykiss) smolt survival using acoustic telemetry in Oregon, USA. Our results
can be used to inform both researchers and managers about the potential effects of sampling
design when using acoustic telemetry to measure estuarine mortality in outmigrating
salmonids.

Methods

Simulations
We performed a simulation study to evaluate how different sampling designs and sample sizes
might affect estimates for survival probability. In the simulation, we consider two run distribu-
tion patterns and four survival probability patterns; these are described next.
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Run Distributions
We obtained outmigrant smolt trapping data from seven Life Cycle Monitoring sites on the
Oregon coast during the period 1999–2007 from the Oregon Department of Fish andWildlife
(ODFW) [25]. We observed two common run distribution patterns in these data, one that was
roughly unimodal and symmetric (accounting for almost 90% of observed runs) and one that
was bimodal, with a smaller pulse of smolts followed by a larger pulse S1 Fig. In our simulated
versions of these distributions, we assumed a duration of 100 d and an outmigrating population
of ~10,000 smolts (Fig 1). Specifically, for the unimodal distribution we generated Poisson rate
parameters proportional to the height of a normal probability density function (pdf) for each
of the 100 days of the run. Then, using these rate parameters, we simulated daily run counts
from Poisson distributions. For the bimodal distribution, the rate parameters were generated
to be proportional to the height of two normal pdfs S1 Text.

Survival Probability Patterns
We used data previously collected using biotelemetry in the Nehalem and Alsea rivers[13],
[15], [20] to suggest general patterns for survival probabilities throughout runs (constant, line-
arly increasing, and symmetrically increasing and then decreasing), as well as a baseline range
for the survival probabilities (seasonally, these probabilities ranged from 0.4 to 0.8). Addition-
ally, we included a two-pulse pattern where the survival probability increases then decreases
twice throughout the duration of the run. Although this two-pulse pattern was not observed, it
remains conceptually feasible. Prior data [14], [17] suggest that survival while migrating
through an estuary is highly variable, even between consecutive days. To account for this, we
incorporated random noise for each survival probability pattern, while keeping the survival
probabilities generally in the 0.4 to 0.8 range. The noise component was zero-centered normal
noise with standard deviation of 0.06. The four patterns of survival probability are shown in
Fig 2.

Sampling Designs and Sample Sizes
We compared survival estimates from four sampling designs, each with four different sample
sizes, n = 12, 20, 100, and 1000 (sample size = total number of acoustic tags used in a study).
We chose these values because 1) in many coastal systems it is not possible to capture large
numbers of wild outmigrating smolts on a single day and 2) the cost of tags may become pro-
hibitive at higher n values. For the sake of comparison, we ran simulations for n = 1000 even
though this is an unrealistic number of tagged smolts for the systems we considered. In one

Fig 1. Two simulated run distribution patternsmodeled using a population size of 10,000 smolts and
run duration of 100 days. Simulations are based on patterns observed in nine years of smolt trapping data
(1999–2007) from seven ODFW Life Cycle Monitoring sites on the Oregon Coast.

doi:10.1371/journal.pone.0132912.g001
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design, all n fish are captured and tagged on a single day that is randomly chosen from the
peak of the run (we call this PEAK), where the peak is defined as between days 40 and 60 of the
outmigration. Two sampling designs (SYST1 and STST2) use systematic sampling: a day is

Fig 2. Survival probability patterns, each with added day-to-day fluctuations (σ = 0.06). All survival
probabilities are generally between 0.4 and 0.8, and the seasonal average survival probability is about 0.6 for
all patterns.

doi:10.1371/journal.pone.0132912.g002
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chosen at random from the start (defined to be between days 20 and 40 after the first smolt is
captured) of the run, and then three subsequent days at equally spaced intervals are also cho-
sen. On each of the four days, n/4 fish are sampled and tagged. In SYST1, the four tagging days
are spaced 7 d apart, whereas in SYST2, the spacing is 14 d. We chose these intervals as
researchers have commonly used 1–2 week intervals between tagging events spread across the
outmigration. In the final sampling design, RAND, four days were chosen at random from the
entire length of the run, and n/4 fish were “tagged” on each of the four days. Our expectations
were that the RAND sampling design would produce the most accurate estimates and that the
SYST designs would outperform the PEAK.

Simulation Steps
We compared the four sampling designs and three sample sizes by generating 1,000 survival
probability estimates for each combination of survival probability pattern, sampling design,
and sample size, for a total of 4 × 4 × 4 = 64 simulation runs. Specific details for each sampling
design are described next.

For the PEAK sampling design we:

1. Randomly selected one day between days 40 and 60.

2. Obtained the survival probability corresponding to the selected day from each of the four
patterns of survival probabilities in Fig 2.

3. Used that survival probability to randomly generate a binomial count for each of the sample
sizes n = 12, 20, 100, and 1000.

4. Calculated survival probability estimates as the counts in step 3 divided by the correspond-
ing sample size, n.

5. Repeated 1000 times.

For the SYST sampling designs:

1. We randomly selected a start day, D, between days 20 and 40.

2. For each survival probability pattern in Fig 2 we:

a. Obtained survival probabilities corresponding to days D, D+7, D+14, and D+21

b. Obtained survival probabilities corresponding to days D, D+14, D+28, and D+42

3. For each sampling day, we randomly generated a binomial count with sample sizes equal to
n/4 for n = 12, 20, 100, 1000.

4. We calculated survival probability estimates as the sums of the four binomial counts divided
by the corresponding sample size, n = 12, 20, 100, 1000.

5. The procedure was repeated 1000 times.

For the RAND sampling design:

1. We randomly selected 4 days between 1 and 100

2. For each survival probability pattern in Fig 2, we obtained survival probabilities correspond-
ing to the selected days

3. For each selected day, we randomly generated a binomial count with sample size equal to
n/4.
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4. We calculated survival probability estimates as the sum of the four binomial counts divided
by the corresponding sample size, n = 12, 20, 100, 1000.

5. The procedure was repeated 1000 times.

We evaluated these results in terms of bias and variation, and by examining confidence
interval coverage. For each survival probability estimate, we also constructed 95% confidence
intervals using the Wilson interval as recommended by Brown et al. 2001 [26]. By examining
the confidence interval coverage (i.e., frequency of overlap between the seasonal survival prob-
ability and the simulated confidence intervals), we evaluated the performance of each sampling
design at estimating survival probability for the entire season. By “valid”, we mean that a 95%
confidence interval constructed from the simulation data covers the true survival probability
(known to us in the simulations) in 95% of simulations.

Expected Number of Surviving Smolts
We also evaluated the influence of sampling design on the accuracy of estimating the number
of smolts surviving to the ocean. To do this, we incorporated the outmigrant numbers derived
from the run distributions in Fig 1. We estimated the number of smolts sucessfully entering the
ocean by multiplying the total run size by the estimated survival probability for the entire sea-
son. Using both the total run size and the shape of the run distribution (as in Fig 1), we hypoth-
esized that we could improve upon the estimate of expected count of surviving smolts by using
the sampling designs which provided estimates of survival probability from four different days
during the run (namely, SYST1, SYST2 and RAND). That is, rather than taking a single sur-
vival probability to represent the survival probability for the entire season, if we used the four
separate estimates to integrate over the differently shaped run distributions it should improve
estimates of expected survival counts.

Results
The bias estimates from 1000 simulations of the four sampling designs and the four survival
probability patterns for the sample size n = 20 are given in Table 1. Results for n = 12 and
n = 100 were quite similar. The bias was highest under the increasing then decreasing survival
pattern for all sampling designs and lowest under the RAND sampling design for all survival
patterns. In general, our expectations were validated—the RAND design outperformed the oth-
ers in terms of minimizing bias, and the two SYST designs generally outperformed the PEAK
design. In terms of the survival probability patterns, it was also not surprising that the lowest
bias values were associated with the constant survival pattern. The two pulse survival pattern
also yielded relatively low bias values across all sampling designs.

Table 1. Mean bias due to survival probability pattern and sampling design from 1000 simulations of n = 20 observations at each setting. Each
entry is the mean difference between estimated survival probability and the true season-averaged survival probability used for the 1000 simulations at each
setting. Bias results are comparable for the other sample sizes. For a sample size of n = 20, a typical standard error for the proportion estimate is on the order
of 0.10; for a sample size of 100, it is on the order of 0.05.

Sampling Design

Survival Probability Pattern Peak Syst 1 Syst 2 Rand

Constant 0.019 0.010 0.001 0.001

Linearly Increasing -0.024 -0.031 -0.004 -0.002

Increase/Decrease 0.090 0.063 0.052 0.005

Two Pulse -0.010 -0.004 0.026 0.000

doi:10.1371/journal.pone.0132912.t001
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It is important to note that there was substantial variation in the survival probability esti-
mates across simulations. For samples sizes of n = 12, 20, 100 and 1000, the standard deviation
across simulations was generally 0.15, 0.11, 0.05, and 0.03 respectively. Taken together with
our observation that the bias remains stable across different sample sizes, this suggests the
rather counter-intuitive result that large sample sizes actually increase the likelihood of obtain-
ing a confidence interval that does not cover the true underlying season-averaged survival
probability.

In addition to examining the point estimates, we considered the confidence interval cover-
age for the different sampling designs. In simulations, the 95% confidence interval coverage
was defined as the percentage of times (out of 1000 simulations) that the confidence intervals
covered the true parameter value. If the sampling procedure performed as expected the per-
centage should be approximately 95%. Results are shown in Table 2. There are several impor-
tant things to notice. First, very few of the sampling designs achieved 95% coverage at any of
the sample sizes, with the coverage generally too low (< 95%). This is likely a function of using
simple sample proportions as estimates of survival probability. Using this approach, we essen-
tially only estimated the smooth functions underlying the different survival probability patterns
in Fig 2. That is, our simple estimates (though no different from what would typically be used
assuming 100% detection) substantially under-estimated the day-to-day variation in survival
probability, and this was reflected in the poor confidence interval coverages. Second, the cover-
age results corresponding to the increasing then decreasing survival probability patterns were
especially poor relative to the other survival probability patterns. Third, the coverages for the
larger sample sizes (n = 100 and n = 1000), were substantially lower than those for the smaller
sample sizes. This may seem counterintuitive until one considers that the larger sample sizes
result in much narrower confidence intervals. The interval widths for n = 12, 20,100 and 1000
were ~ 0.47, 0.38, 0.18, and 0.06, respectively. It seems clear that with the larger sample sizes we
substantially underestimated the standard error. Finally, the two systematic sampling designs
had the best overall performance in terms of confidence interval coverage, except in the case of

Table 2. Coverage percentages for different survival probability-sampling design combinations using the Wilson interval (nominal coverage is
95%).

Survival Probability Pattern Sampling Design

Sample Size PEAK SYST1 SYST2 RAND

Constant n = 12 92.7 95.4 96.0 95.8

n = 20 92.8 97.1 95.7 95.7

n = 100 77.3 93.1 90.7 90.7

n = 1000 39.1 74.5 65.4 60.9

Linearly Increasing n = 12 95.3 95.0 96.0 95.0

n = 20 89.2 91.2 91.4 93.6

n = 100 76.6 81.7 90.3 87.0

n = 1000 39.4 38.1 63.0 50.7

Increasing, Decreasing n = 12 89.7 92.8 94.0 92.5

n = 20 83.6 92.7 93.8 95.4

n = 100 47.6 72.9 78.1 84.3

n = 1000 9.0 17.3 18.9 47.2

Two Pulse n = 12 90.6 91.0 93.5 92.7

n = 20 89.1 94.1 93.9 92.2

n = 100 75.7 92.1 90.0 87.4

n = 1000 36.5 62.7 56.0 56.4

doi:10.1371/journal.pone.0132912.t002
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the increasing then decreasing survival pattern where the random sampling design resulted in
slightly better coverage.

Using the two different run-distribution shapes (unimodal, bimodal), we evaluated the dif-
ferent sampling strategies in combination with the four survival probability patterns in terms
of how well they provided estimates of expected survival counts. The results for estimating
expected counts are fairly similar to those for the survival probability estimates. There were no
clear differences in the performance of the sampling designs relative to the shape of the under-
lying run distributions. For estimating expected counts, the confidence coverage for all sam-
pling designs remained low (<95%), though the coverage for the systematic designs were
marginally better than for the random design. The peak sampling design typically had the low-
est coverage.

Discussion
Our simulations illustrate the effect that sampling design can have on estimating outmigrant
salmonid smolt survival through an estuary under scenarios that represent commonly observed
run distribution and survival patterns. Unfortunately, none of the four sampling design scenar-
ios that we simulated were sufficiently accurate from a statistical perspective. The 95% confi-
dence limits around our simulated estimates encompassed the true mean less than 95% of the
time across most the sampling/survival probability pattern scenarios we evaluated. It is possible
that these methods could be further refined with additional modeling to include a component
for day to day variation, but the larger issue is that the underlying pattern of survival probabil-
ity has a significant effect on the bias, and is typically unknown in a field study.

Several studies have documented substantial mortality (14–77%) during outmigration
through the estuary [5], [13], [15], [16], [18–22]. If these reported survival estimates are accu-
rate, current models of life cycle survival have likely over-estimated the level of ocean mortality
(over which managers have little control). Given this, the implementation of long term moni-
toring of estuarine smolt survival has several potential benefits. These include improved mod-
els of life history survival (by assigning a potentially large proportion of mortality to where it
actually occurs), improved data to guide plans for where estuarine restoration may be needed
(by identifying estuaries with consistently high mortality rates), the ability to measure the suc-
cess of such restoration efforts (by analyzing trends in survival prior and subsequent to restora-
tion efforts), and potentially improved forecasting of adult returns (by incorporating estuarine
smolt survival in current recruitment models).

Our results were encouraging for implementation of a large scale, long term monitoring
program in multiple representative basins within each management area to detect trends in
survival among years. The relatively small number of tags (12–20) needed to achieve adequate
(based on currently accepted 95% confidence intervals within ± 30% of the mean in the Oregon
Plan for Salmon and Watersheds) [27–29] survival estimates results in minimal capital invest-
ment required for such monitoring. However, we caution that these numbers are only a start-
ing point. The actual number to be tagged should also account for the anticipated loss of
tagged fish prior to reaching the estuary and the anticipated detection probability of arrays. In
regard to the design for when the smolts should be tagged, our simulations suggest that the
sampling effort is most effective when it is spread out over some period of the run—generally
the systematic and random sampling designs resulted in the most accurate estimates. Our
results also indicate that the pattern of the survival probabilities throughout the course of the
run can be quite important for the performance of the survival probability estimates. Unfortu-
nately, these patterns are not typically known, but this could be a new area for investigation.
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Smolts tagged upstream of the estuary on the same day distribute themselves throughout
the lower river as they migrate downstream. Several factors influence the distribution of tagged
fish in the lower river (e.g., stream discharge at the time of release and distance between tagging
site and the estuary). Therefore, groups of smolts tagged on the same day enter and migrate
through the estuary over a period of time. The survival estimates from these fish provide an
estimate that will be averaged over the period when they are migrating through the estuary.
This temporal averaging is not incorporated in our simulation.

The primary objective of this manuscript was to illustrate the influence of sampling design
(number of tags, time of tagging) on bias associated with estimates of outmigration survival. As
such, the detection efficiency of acoustic arrays is a confounding factor that we did not con-
sider. Detection efficiency is known to vary substantially over short periods with changes in
environmental noise, resulting in an increase in the size of the confidence intervals associated
with survival estimates. This variation in detection efficiency can be mitigated to a large extent
by ensuring adequate coverage of acoustic arrays (spacing and number of receivers). However,
we acknowledge that achieving perfect detection in a field situation is nearly impossible, and
that assuming perfect detection for an actual survival study would result in erroneous survival
estimates.

There are also considerations that need to be addressed when using a RAND-type sampling
design. For instance, there is a possibility of generating or drawing “unacceptable” random
samples. If each of the four random sampling dates were very close together, or if they incorpo-
rated tagging dates at the very beginning or end of the run then we would consider this to be an
unacceptable option. Based on our prior observations, we also suggest that O.mykiss should
not be tagged at the very beginning, or the end of the migration to estimate survival for a steel-
head smolt population. Juveniles captured at either extreme (early, late) may merely be moving
short distances to feed or rear, and not migrating [13]. The period of acceptable tagging dates
becomes especially important when fish availability is limited (due to small run sizes or poor
trapping efficiency), or trapping effort is delayed during previously scheduled tagging (e.g.,
high water or severe weather). To help avoid some of these issues, for new study sites where
there may be no background data on the number of smolts available we recommend a pilot
year of smolt trapping to collect useful data about migration timing, duration of outmigration,
smolt abundance, and the size of fish available for tagging.

Scientific method begins with a question. Sampling design and analyses are then predicated
on the most appropriate methods to answer the aforementioned question. The focus of our
study was to estimate the survival probability for one cohort of smolts migrating through the
estuary, and the results from the simulations reported here are specific to this question. A
RAND sampling design utilizing a relatively small number of tags would not be appropriate,
for instance, to detect the effect of a given action (i.e., evaluating efficacy of restoration projects)
or detect temporal changes in survival probabilities within a season–which would require
increased sampling effort and a study design tailored specifically to answer these research
questions.

Prior to this simulation exercise we hypothesized that, regardless of sampling protocol,
increasing the number of tags would bring survival estimates closer to the “true survival” real-
ized by a cohort of outmigrating smolts. This was not the case. Increasing the numbers of
acoustic tagged smolts increased the precision of our estimates, but not the accuracy. The simu-
lations illustrate that without a thorough understanding of the underlying variation in survival
probabilities, increased precision resulting from tagging more fish will tend to draw the survival
estimate further from the actual survival value.
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Supporting Information
S1 Fig. Histograms with the number of steelhead smolts captured each year summarized by
week (left, colored histograms; 1999–2007) and normalized run distributions summarized
by the percent of migrants captured each week throughout the run (right, greyscale histo-
grams). Numbers were not corrected for trap efficiencies and represent raw catch numbers
summarized by week. Dotted grey lines symbolize the bimodal distribution with a small pulse
of smolts followed by the larger, main peak of the migration. Solid black lines symbolize pri-
marily unimodal run distribution patters. Scales on the axes (x and y) have not been standard-
ized among basins, as number of smolts captured and period of migration are highly variable
among basins.
(DOCX)

S1 Text. Statistical program R code for running simulations.
(DOCX)

Acknowledgments
We would like to thank Steve Johnson (ODFW), Jim Powers (EPA) and Erik Suring (ODFW)
for providing some of the data used in these analyses, and an anonymous reviewer for their
insightful and constructive comments. Any use of trade names is for descriptive purposes only
and does not imply endorsement by the U.S. Government.

Author Contributions
Conceived and designed the experiments: SC CBS JDR. Performed the experiments: SC CBS
JDR. Analyzed the data: AIG. Contributed reagents/materials/analysis tools: CBS SC JDR AIG.
Wrote the paper: JDR AIG SC.

References
1. NehlsenW, Williams JE, Lichatowich JA (1991) Pacific salmon at the crossroads: stocks at risk from

California, Oregon, Idaho, andWashington. Fish 16: 4–21

2. Slaney TL, Hyatt KD, Northcote TG, Fielden RJ (1996) Status of anadromous salmon and trout in Brit-
ish Columbia and Yukon. Fish 21: 20–35

3. Allendorf FW, Bayles D, Bottom DL, Currens KP, Frissell CA, Hankin D, et al. (1997) Prioritizing Pacific
Salmon stocks for conservation. Conserv Biol 11: 140–152

4. Williams JG, Smith SG, Zabel RW, Muir WD, Scheuerell MD, Sanford BP, et al. (2005) Effects of the
federal Columbia River power system on salmon populations. NOAA Technical Memorandum, NMFS-
NWFSC, 63

5. Melnychuk MC, Welch DW,Walters CJ, Christensen V (2007) Riverine and early ocean migration and
mortality patterns of juvenile steelhead trout (Oncorhynchus mykiss) from the Cheakamus River, British
Columbia. Hydrobiologia 582: 55–65

6. Meffe GK. (1992) Techno-arrogance and halfway technologies: salmon hatcheries on the Pacific coast
of North America. Conserv Biol 6: 350–354.

7. Lichatowich J (1999) Salmon without rivers: A history of the Pacific salmon crisis. Island Press, Wash-
ington, D.C. 317 p.

8. Waples RS and Hendry AP (2008) Evolutionary perspectives on salmonid conservation and manage-
ment. Evol Appl 1:183–188. doi: 10.1111/j.1752-4571.2008.00035.x PMID: 25567625

9. United States Fish andWildlife Service (USFWS) and National Marine Fisheries Service (NMFS).
Lower Snake River Compensation Plan. 1976. Available: http://www.fws.gov/lsnakecomplan/.
Accessed 13 March 2014.

10. Oregon Plan for Salmon andWatersheds. 1998. Available: http://www.oregon.gov/OPSW/Pages/
archives/archived.aspx. Accessed 13 March 2014.

Monitoring Smolt Survival: Effect of Sample Design on Inference

PLOS ONE | DOI:10.1371/journal.pone.0132912 July 21, 2015 10 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132912.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132912.s002
http://dx.doi.org/10.1111/j.1752-4571.2008.00035.x
http://www.ncbi.nlm.nih.gov/pubmed/25567625
http://www.fws.gov/lsnakecomplan/
http://www.oregon.gov/OPSW/Pages/archives/archived.aspx
http://www.oregon.gov/OPSW/Pages/archives/archived.aspx


11. Washington Comprehensive Monitoring Strategy and Action Plan for Watershed Health and Salmon
Recovery. 2002. Executive Report p 1–25. Available: http://www.rco.wa.gov/documents/monitoring/
Executive_Report_final.pdf. Accessed 13 March 2014.

12. Washington Department of Fish andWildlife. 2008. 21st Century Salmon and Steelhead initiative.
Olympia, WA 98501. Available: http://wdfw.wa.gov/publications/00036/wdfw00036.pdf. Accessed 13
March 2014.

13. Clements S, Schreck CB (2003) Juvenile salmonid survival in specific areas of the Nehalem watershed.
Annual report OregonWatershed Enhancement Board (OWEB), Salem, Oregon

14. Clemens BJ, Clements S, Karnowski MD, Jepsen DB, Gitelman AI, Schreck CB (2009) Effects of trans-
portation and other factors on survival estimates of juvenile salmonids in the unimpounded Lower
Columbia River. Trans Am Fish Soc 138: 169–188

15. Johnson SL, Power JH, Wilson DR, Ray J (2010) A comparison of the survival and migratory behavior
of hatchery-reared and naturally-reared steelhead smolts in the Alsea River and estuary, Oregon, using
acoustic telemetry. N Am J Fish Manage 30:55–71

16. Moore M, Berejikian BA, Tezak EP (2010) Early marine survival and behavior of steelhead smolts
through Hood Canal and the Strait of Juan de Fuca. Trans Am Fish Soc 139: 49–61

17. Clements S, Stahl T, Schreck CB (2011) A comparison of the behavior and survival of juvenile coho
salmon (Oncorhynchus kisutch) and steelhead trout (O.mykiss) in a small estuary system. Aquaculture
doi: 10.1016/j.aquaculture.2011.11.029

18. Welch DW, Melnychuk MC, Payne JC, Rechisky EL, Porter AD, Jackson GD, et al. (2011) In situ mea-
surement of coastal ocean movements and survival of juvenile Pacific salmon. Proc Nat Acad Sci 108:
8708–8713 doi: 10.1073/pnas.1014044108 PMID: 21558442

19. Harnish RA, Johnson GE, McMichael GA, Hughes MS, Ebberts BD (2012) Effect of migration pathway
on travel time and survival of acoustic-tagged juvenile salmonids in the Columbia River Estuary. Trans
Am Fish Soc 141:2 507–519 doi: 10.1080/00028487.2012.670576

20. Romer JD, Leblanc CA, Clements S, Ferguson JA, Kent ML, Noakes D, et al (2012) Survival and
behavior of juvenile steelhead trout (Oncorhynchus mykiss) in two estuaries in Oregon, USA. Environ
Biol Fish. doi: 10.1007/s10641-012-0080-8

21. Buchanan RA, Skalski JR, Brandes PL, Fuller A (2013) Route use and survival of juvenile Chinook
salmon through the San Joaquin River Delta. N Am J Fish Manage 33:1 216–229 doi: 10.1080/
02755947.2012.728178

22. Brosnan IG, Welch DW, Rechisky EL, Porter AD (2014) Evaluating the influence of environmental fac-
tors on yearling Chinook salmon survival in the Columbia River plume, USA. Mar Ecol Prog Ser
496:181–196 doi: 10.3354/meps10550

23. Drenner SM, Clark TD, Whitney CK, Martins EG, Cooke SJ, Hinch SG (2012) A synthesis of tagging
studies examining the behaviour and survival of anadromous salmonids in marine environments. PLoS
ONE 7(3): e31311 doi: 10.1371/journal.pone.0031311 PMID: 22431962

24. Adrean L (2013) Avian Predation Program 2012 Final Report. Oregon Department of Fish andWildlife,
Tillamook, OR.

25. Suring E, Constable RJ, Lorion CM, Miller BA, Wiley DJ (2012) Salmonid Life Cycle Monitoring in West-
ern Oregon streams, 2009–2011. Monitoring program report number OPSW-ODFW-2012-2, Oregon
Department of Fish andWildlife, Salem OR.

26. Brown LD, Cia TT, DasGupta A (2001) Interval estimation for a binomial proportion. Stat Sci 16:101–
133

27. Jacobs S, Firman J, Susac G, Brown E, Riggers B, Tempel K (2000) Status of Oregon coastal stocks of
anadromous salmonids. Monitoring program report number OPSW-ODFW- 2000–3, Oregon Depart-
ment of Fish andWildlife, Portland, Oregon.

28. Suring E, Constable RJ, Jr (2009) Abundance monitoring of juvenile salmonids in coastal Oregon and
lower Columbia streams, 2008. Monitoring program report number OPSW-ODFW-2009-1, Oregon
Department of Fish andWildlife, Salem, OR.

29. Brown E, Nott J, Lewis M (2011) Assessment of Oregon coastal adult winter steelhead–redd surveys
2011. Monitoring program report number OPSW-ODFW-2011-09. Oregon Department of Fish and
Wildlife, Salem, Oregon.

Monitoring Smolt Survival: Effect of Sample Design on Inference

PLOS ONE | DOI:10.1371/journal.pone.0132912 July 21, 2015 11 / 11

http://www.rco.wa.gov/documents/monitoring/Executive_Report_final.pdf
http://www.rco.wa.gov/documents/monitoring/Executive_Report_final.pdf
http://wdfw.wa.gov/publications/00036/wdfw00036.pdf
http://dx.doi.org/10.1016/j.aquaculture.2011.11.029
http://dx.doi.org/10.1073/pnas.1014044108
http://www.ncbi.nlm.nih.gov/pubmed/21558442
http://dx.doi.org/10.1080/00028487.2012.670576
http://dx.doi.org/10.1007/s10641-012-0080-8
http://dx.doi.org/10.1080/02755947.2012.728178
http://dx.doi.org/10.1080/02755947.2012.728178
http://dx.doi.org/10.3354/meps10550
http://dx.doi.org/10.1371/journal.pone.0031311
http://www.ncbi.nlm.nih.gov/pubmed/22431962

