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Abstract

Background: The question of whether a score for a specific antiretroviral (e.g. lopinavir/r in this analysis) that improves
prediction of viral load response given by existing expert-based interpretation systems (IS) could be derived from analyzing
the correlation between genotypic data and virological response using statistical methods remains largely unanswered.

Methods and Findings: We used the data of the patients from the UK Collaborative HIV Cohort (UK CHIC) Study for whom
genotypic data were stored in the UK HIV Drug Resistance Database (UK HDRD) to construct a training/validation dataset of
treatment change episodes (TCE). We used the average square error (ASE) on a 10-fold cross-validation and on a test dataset
(the EuroSIDA TCE database) to compare the performance of a newly derived lopinavir/r score with that of the 3 most
widely used expert-based interpretation rules (ANRS, HIVDB and Rega). Our analysis identified mutations V82A, I54V, K20I
and I62V, which were associated with reduced viral response and mutations I15V and V91S which determined lopinavir/r
hypersensitivity. All models performed equally well (ASE on test ranging between 1.1 and 1.3, p = 0.34).

Conclusions: We fully explored the potential of linear regression to construct a simple predictive model for lopinavir/r-
based TCE. Although, the performance of our proposed score was similar to that of already existing IS, previously
unrecognized lopinavir/r-associated mutations were identified. The analysis illustrates an approach of validation of expert-
based IS that could be used in the future for other antiretrovirals and in other settings outside HIV research.
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Introduction

The treatment of human immunodeficiency virus (HIV)-positive

individuals with combination antiretroviral therapy (cART) has

significantly reduced the morbidity and mortality associated with

HIV [1,2]. However, the development of antiretroviral-resistant

HIV mutations remains one of the factors that can impair the

efficacy of cART [3,4]. Lopinavir/ritonavir (LPV/r), approved by

the FDA in September 2000 and in Europe in April 2001, has

been widely used in the management of treatment-experienced

patients. It represents one of the options for initiation of treatment

in antiretroviral-naı̈ve patients in resource-rich countries and first

choice for second-line treatment in resource-limited countries

[5–7]. Prediction of the impact of specific patterns of protease

mutations on the efficacy of ritonavir-boosted protease inhibitors

(PI/r) is complicated, as clinically relevant resistance generally

requires multiple mutations and can develop through the interplay

of major and minor mutations in a variety of patterns. Several
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genotypic interpretation scores for LPV/r have been developed

[8–14], but there is little consensus on their relative value and little

attempt has been made to date to create a set of meta-rules

standardized across interpretation systems (IS) [14]. In addition to

these scores, clinicians often consult web-based IS such as the

Agence nationale de recherches sur le SIDA (ANRS), REGA and Stanford

IS. One of the analyses of the TITAN trial attempted to

standardize the ‘cut-off levels’ used by seven currently proposed

IS to divide patients into those likely to have or not to have

reduced susceptibility to LPV/r and identified potentially more

sensitive cut-offs, although in the specific context of deciding

whether to use LPV/r or darunavir [15]. The common issue with

these IS is that they are mainly expert-based and although very

transparent about the mutations that are included, how each of

them are weighted and why, typically weights are not derived

using methods of statistical inference. In addition, the Stanford IS,

for example, makes the implicit assumption that there is a

marginal effect of each mutation for a specific drug which is the

same, regardless of other concomitantly detected mutations (i.e.

there are no interactions between mutations). These IS often differ

in the mutations ascribed to reduce or enhance susceptibility. In

general, the question of whether a score for specific antiretrovirals

could be derived from analyzing the correlation between genotypic

data and virological response using statistical methods which is

superior to currently existing expert-based IS remains largely

unanswered [16,17]. The aim of this analysis was two-fold: i) to

compare a small number of covariate selection strategies in the

linear regression framework, known to perform well for prediction

in the context of high dimensional data, ii) to use the best

performing covariate selection method to derive a new LPV/r

score and to compare its predictive value to that of available expert

web-based IS. In order to achieve this objective, we used the data

from two large, independent and well characterized cohort studies

of HIV-positive individuals in Europe: the EuroSIDA cohort and

the merged data of the UK Collaborative HIV Cohort (UK

CHIC) Study and the UK HIV Drug Resistance Database (UK

HDRD).

Materials and Methods

Dataset
Using the data of the patients in the EuroSIDA cohort and in

the UK CHIC Study, for whom genotypic data were stored in the

UK HDRD, we constructed a database of treatment change

episodes (TCE) similar to those used in other previous collabora-

tive studies [16–20]. Clinical data are collected in the 2 cohorts

following rigid criteria which have been extensively described in

detail elsewhere [21,22]. Briefly, all viral loads as well as dates of

starting and stopping all antiretroviral drugs are routinely collected

in all patients enrolled in these cohorts. EuroSIDA requests that

both genotypic tests performed at the clinical sites and plasma

samples are collected prospectively. Please see Information S1 for

study structure and contributing clinical sites in UK CHIC and

EuroSIDA cohorts.

Retrospective genotypic sequencing has been carried out on

samples identified for specific projects. HIV-1 RNA is isolated

from patient blood plasma using QIAamp kit (Qiagen, Barcelona,

Spain) and sequence analysis of HIV-1 RT and PR reading frames

is performed using the Trugene HIV-1 genotyping Kit and

OpenGene DNA Sequencing System according to the manufac-

turer’s recommendations (Bayer, Barcelona, Spain). Data on

resistance for the patients included in the UK CHIC cohort are

obtained through the linkage with the UK HDRD, which contains

information on genotypic resistance tests performed on behalf of

most HIV clinics in the UK. Mutations are identified by

comparison against a reference sequence of the subtype B isolate,

HXB2 in both databases.

All patients provided written consent to participate to UK

CHIC and EuroSIDA, following procedures in accordance with

the ethical standards of the responsible committee on human

experimentation and the Helsinki Declaration. Ethics approval

(for the use of the databases) from the Institutional Review Board

(IRB) at all institutions/hospitals where participants were recruited

and human experimentation was conducted was obtained. No

specific consent for inclusion in the current analysis was needed.

A TCE entailed any change in therapy in which a patient

initiated LPV/r with a viral load .400 copies/mL as part of a

combination including $2 antiretrovirals (cART) (although we

refer to ‘‘treatment change episodes’’ it should be noted that

initiations of lopinavir/r-based cART from ART-naı̈ve patients

are also included in this analysis and TCE could entail simply the

addition of LPV/r to a failing regimen). For each TCE we

recorded: all drugs initiated together with LPV/r, all drugs

currently received as part of cART, the viral load and the results of

a genotypic resistance test performed in the 6 months preceding

the initiation of LPV/r and a follow-up viral load measured over

the first 4 months from starting LPV/r. When multiple baseline or

follow up data were available, the value closest to month 3 after

initiation of LPV/r was used (Figure 1). Because only a minority of

patients (,5%) contributed more than one TCE (more than one

distinct combination of these 3 key TCE-defining features existed

at 2 or 3 time points) no attempt in the analysis was made to

correct for violation of independence of individual observations.

TCE including drugs not belonging to the 3 original major drug

classes (NRTI, NNRTI and PI) were not considered because only

RT and PR regions of HIV were sequenced. Using the results of

the genotypic tests we could generate a genotypic susceptibility

score (GSS) for all antiretrovirals started together with LPV/r

using the rules of ANRS IS (version 19) [23]. We also derived the

lopinavir predictions using the 3 most common expert-opinion

base IS (ANRS v19, Rega v8.0.2 [24] and Stanford v6.0.10 [25]).

To make predictions of Stanford comparable to the other 2 web-

based IS we grouped ‘‘potential low-level resistance’’ with

‘‘susceptible’’ and ‘‘low-level resistance’’ with ‘‘intermediate’’.

For this analysis, the UK CHIC/UK HDRD databases provided

the training/validation datasets (n = 1,174 TCEs) and EuroSIDA

provided the test dataset (n = 388 TCEs).

Figure 1. Description of a lopinavir-based TCE.
doi:10.1371/journal.pone.0025665.g001
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Statistical analysis
The main characteristics of the TCE were described after

stratification by cohort study. Because it is generally impossible to

know, a priori, which off-the-shelf machine learning/statistical

approaches will perform best for a given prediction problem and

data set, we used a standard linear regression model with

interaction terms for simplicity. The outcome was the change in

viral load from pre-TCE to post-TCE levels on the log10 scale. For

patients whose viral load decreased to undetectable levels we used

the naı̈ve approach of replacing the unobserved undetectable

value with the limit of detection of the assay used. In sensitivity

analyses, we instead replaced the unobserved undetectable value

with K of the limit or with the fixed value of 20 copies/mL.

The basic set of covariates (pre-LPV/r start viral load, exact

month of viral load response (ranging between 1 and 4 months)

and the ANRS predictions for the other drugs started besides

LPV/r were considered in all regression models but were not

forced into a model unless they were found to improve the

prediction performance according to the specific selection criterion

used. We then constructed 4 separate models including: i) the

LPV/r Rega GSS, ii) the LPV/r ANRS GSS, and iii) the LPV/r

Stanford GSS. All web-based GSS were fitted as categorical

variables with ‘‘susceptible’’ as the reference group. Model iv)

included individual PI mutations and 2-way interactions between

these rather than a specific susceptibility score. Candidate PI

mutations to be included were those reported as being a major

mutation with non-zero prevalence associated with PI-resistance in

either the IAS-USA December 2010 [26] list or any of the

considered web-based IS and minor mutations which were

detected with a prevalence .5% (see complete list in the Results).

Three different criteria for the selection of mutations and 2-way

interactions between mutation terms were used -best subset least

squared estimations (LSE), least absolute shrinkage and selection

operator (LASSO) [27] and a hybrid version of least angle

regression (LAR) and LASSO. The hybrid method is a

modification of the LAR originally proposed by Efron et al.

[28]. In this approach, the sequence of models is determined by

the original LAR algorithm but the coefficients of the parameters

for the model at any step are determined using ordinary least

squares. Both LASSO and LAR are shrinkage and selection

methods for linear regression which minimize the usual sum of

squared errors though with a bound on the sum of the absolute

values of the coefficients given by a complexity parameter (Table

S2). This parameter was chosen to minimize the average squared

error (ASE) based on a tenfold cross-validation (CV) on the UK

CHIC/UK HDRD TCE database. Briefly, 10-fold CV works by

dividing the dataset randomly into ten equal parts. The method

fits the model for a range of values of the complexity parameter to

nine-tenths of the data and then computes the prediction error on

the remaining one-tenth. This is done, in turn, for each one-tenth

of the data, and eventually the 10 prediction error estimates are

averaged. From this procedure we obtained an estimated

prediction of the 10-fold CV error (CV PRESS) curve as a

function of the model evolution steps which was used to establish

where to stop the inclusion of the covariates. In practical terms, the

‘‘one-standard-error’’ rule was used by picking the most

parsimonious model within one standard error of the minimum

CV PRESS. In contrast, the training set is used to determine the

coefficients but not to decide when to stop as the CV PRESS in

training decreases monotonically at each step regardless of the

number of steps.

Cross-validation was applied to the UK CHIC/UK HDRD

database (training/validation set) to select the complexity param-

eter for both LASSO and the hybrid version of LAR and LASSO.

In contrast, the EuroSIDA database (test set) was never used for

training but to judge the performance of the selected models. We

identified the mutations marginally associated with the outcome

first and then fitted a separate model incorporating all 2-way

interactions among this subset of mutations only. Although the

categorical variables for the predictions of ANRS, Rega and

Stanford IS were forced to remain in the corresponding models,

the other parameters to be included (from pre-TCE viral load,

GSS of other drugs and exact months from TCE to post-TCE

viral load) were selected using CV.

The performance of the models was tested by comparing the

magnitude of the ASE on the test dataset using analysis of variance

(ANOVA) with robust empirical estimates of the standard errors.

For completeness the R-Square on training and the ASE on both

training and validation were also shown. In addition, we

transformed the continuous outcome into a binary variable (using

the cut-off of reduction of .1.5 log copies/mL), calculated the

accuracy (i.e. the percentage of patients correctly classified) and

performed a likelihood ratio test to compare these percentages by

model from fitting a GEE Poisson regression model. All analyses

were performed using the procedure (for CV), MIXED (for

ANOVA) and GENMOD (for GEE) in SAS 9.2 (SAS Institute,

Cary, NC, USA, 2010).

Results

Table 1 shows the main characteristics of the TCE stratified by

training and test set. These characteristics were extremely similar

in the two cohorts. Viral load decreased by an average of 2.0 log10

copies/mL upon initiation of LPV/r. There was a small

percentage (,3%) of truncated changes in viral load due to the

response viral load being measured with an assay with lower limit

of 400 copies/mL and a substantially higher censoring below 50

copies/mL (30%). The majority of patients did not just add LPV/r

to an existing regimen but started a complete new regimen with an

average of 2 new nucleosides as well as LPV/r. The NRTI most

frequently used was lamivudine (45%). Fewer than 10% of patients

also started a NNRTI (mainly efavirenz). Median calendar year of

TCE was 2003 (range:1998–2008). Only 21 (5%) of the EuroSIDA

patients and 35 (3%) of those from UK CHIC contributed 2

TCEs.

Table 2 shows the extent of PI-resistance captured by the

genotype at the time of the TCE. A minority of patients show

mutations associated with major resistance to LPV/r. The most

prevalent of these mutations was V82F, detected in 5–8% of

patients respectively in UK CHIC/HDRD and EuroSIDA. This

lower prevalence was also reflected in the IS predictions

indicating, on average, that approximately 90% of patients carried

a virus which was susceptible to LPV/r regardless of the system

used. Over 50% of TCE include 2 other newly initiated drugs

which were predicted to be active by the ANRS IS. Among the

more polymorphic PI mutations (nevertheless included in the IAS-

USA December 2010 list as PI-resistance mutations) the most

prevalent ones were E35D, M36I, L63P and V91S reaching a

percentage ranging between 30% and 50%.

When we used the best subset selector, LSE estimates of the

coefficients and 10-fold CV to identify our model potentially

leading to a novel LPV/r score, besides pre-TCE viral load, 5

mutations were selected: I15V (parameter estimate = +0.13),

K20I (estimate = 20.26), I54V (estimate = 20.29), I62V (esti-

mate = 20.11) V82A (estimate = 20.60) and V91S (esti-

mate = +0.11). Figure 2 shows the relative importance of these

factors at each step of the selection process as well as provides

information as to when effects entered the model (the estimates -or

Derivation of a LPV/r Score with Linear Regression
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weights- above are derived directly from the standardized

coefficients at final step 7 and are summarized in Table 3, a

negative weight means a negative impact on viral response).

In contrast, the mutations included in the interpretation rules

for LPV/r of the 3 expert-based IS are shown in Table S1. Figure

S1 shows the evolution of the ASE at each step until final step 7

was reached and inclusion of factors terminated because the ten

error estimates computed by cross-validation (CV PRESS) stopped

showing a decrease using the ‘‘one-standard-error’’ rule. Step 7

was the chosen closing step for most of other fit criteria considered

(including AIC, BIC or adjusted R-square, Figure S2).

The ASE was greatly reduced when pre-TCE viral load entered

the model and additionally reduced when V82A entered the

model. The improvements in ASE after the introduction of viral

load is a key finding as it implies that the models including viral

load are a substantial improvement compared to the null model

(with intercept only) but that adding some of the genotypic

information further improves the predictive performance. Only

minor changes of the ASE were seen after further introducing the

other mutations on the training, validation, and test datasets. Note

that while, as expected, the ASE on the training data decreased

monotonically, the ASE on the validation set (the portions of UK

CHIC/HDRD which were not used for training) started to slightly

increase beyond step number four. This indicates that the models

after step 4 were beginning to overfit the training data. The ASE

on the test set was a lot larger than the validation ASE although

there was no sign of over-fitting.

Interestingly, neither the GSS for other drugs started with LPV/

r nor the exact month of viral load response were retained in the

final model of main effects. Two 2-way interactions were identified

to improve the fit of the models: I62V/A82V (weight of I62V

Table 1. Description of viral load and treatment in the TCE
database stratified by cohort.

Characteristics Dataset

UK CHIC/UK
HDRD EuroSIDA

N = 1174 N = 388

Pre-TCE viral load,
log10 copies/mL

Median (range) 4.63 (2.61, 7.18) 4.52 (2.63, 6.33)

Post-TCE viral load,
log10 copies/mL

Median (range) 2.00 (1.70, 6.15) 2.22 (0.78, 6.31)

Viral load reduction,
log10 copies/mL

Median (range) 2.17 (22.43, 5.21) 1.93 (21.80, 4.60)

% censored below
400 copies/mL, n(%)

26 (2.2%) 11 (2.8%)

% censored below 50
copies/mL, n(%)

440 (37.5%) 92 (23.7%)

Time from TCE to post-TCE
viral load, months

Median (range) 3 (1, 4) 3 (1, 4)

NRTI in regimen
at time of TCE

zidovudine 312 (26.6%) 78 (20.1%)

stavudine 214 (18.2%) 79 (20.4%)

lamivudine 565 (48.1%) 173 (44.6%)

emtrcitabine 85 (7.2%) 12 (3.1%)

tenofovir 576 (49.1%) 136 (35.1%)

didanosine 391 (33.3%) 154 (39.7%)

abacavir 340 (29.0%) 150 (38.7%)

NNRTI in regimen
at time of TCE

efavirenz 125 (10.6%) 73 (18.8%)

nevirapine 78 (6.6%) 32 (8.2%)

etravirine 5 (0.4%) 3 (0.8%)

PI in regimen
at time of TCE

saquinavir-HG 59 (5.0%) 23 (5.9%)

saquinavir-SG 10 (0.9%) 19 (4.9%)

indinavir 11 (0.9%) 30 (7.7%)

ritonavir 1174 (100%) 388 (100%)

amprenavir 26 (2.2%) 33 (8.5%)

atazanavir 14 (1.2%) 5 (1.3%)

darunavir 0 (0.0%) 1 (0.3%)

nelfinavir 15 (1.3%) 3 (0.8%)

No. new drugs started
at time of TCE

Median (range) 4 (3, 8) 3 (3, 7)

NRTI newly started
at time of TCE

zidovudine 276 (23.5%) 74 (19.1%)

stavudine 146 (12.4%) 67 (17.3%)

lamivudine 466 (39.7%) 119 (30.7%)

emtrcitabine 82 (7.0%) 12 (3.1%)

Characteristics Dataset

UK CHIC/UK
HDRD EuroSIDA

N = 1174 N = 388

tenofovir 511 (43.5%) 129 (33.2%)

didanosine 299 (25.5%) 140 (36.1%)

abacavir 285 (24.3%) 107 (27.6%)

NNRTI newly started at time of
TCE

efavirenz 109 (9.3%) 75 (19.3%)

nevirapine 61 (5.2%) 31 (8.0%)

etravirine 5 (0.4%) 3 (0.8%)

PI newly started at time of TCE

saquinavir-HG 39 (3.3%) 24 (6.2%)

saquinavir-SG 10 (0.9%) 19 (4.9%)

indinavir 6 (0.5%) 28 (7.2%)

ritonavir 1174 (100%) 388 (100%)

amprenavir 26 (2.2%) 33 (8.5%)

atazanavir 14 (1.2%) 4 (1.0%)

darunavir 0 (0.0%) 1 (0.3%)

nelfinavir 3 (0.3%) 3 (0.8%)

doi:10.1371/journal.pone.0025665.t001

Table 1. Cont.
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decreased to 20.51 when A82V was not detected) and I15V/

A82V (weight of I15V increased to +0.50 when A82V was not

detected, likelihood ratio test p = 0.0001). However, the introduc-

tion of these terms did not lead to a further decrease in ASE

(Table 4).

Both the LASSO and the LAR/LASSO models only include a

maximum of 3 main effects: pre-TCE viral load and mutation

V82A (LAR) and pre-TCE viral load and mutations I54V and

V82A (LASSO) as well as their interactions with viral load. Table 4

shows the comparison between the final ASE across the models

considered. All models seemed to perform equally well with little

difference in the ASE although the Rega algorithm seemed to

perform better both in validation and test datasets in the specific

cross-validation shown (ANOVA p-value on test p = 0.34). A

difference in ASE of 0.037 between Rega and Stanford

corresponds to a difference in root mean square error (RMSE)

of 0.19, meaning that the error in predictions (calculated as

predicted minus observed) between the two systems was of 0.19 log

copies/mL. Of note, the ASE on the test set was always larger than

the ASE on the validation set regardless of the model used. For

completeness, Table 4 also reports ASE and R-Squares in training.

As expected on average, the derived scores tended to perform

better in training although this tendency was reversed in the

validation and test set comparisons. All models seem to be able to

correctly classify 65% of participants and all performed equally

(p = 0.98). A sensitivity analysis conducted after replacing

unobserved undetectable viral load values with K of the limit of

lower detection or with the fixed value of 20 copies/mL, provided

similar results (data not shown).

Discussion

Increasingly complex prediction methods are used to try to

improve prediction of viral load response, in the light of existing

expert-based IS. The aim of this analysis was to assess a likely

incremental benefit of one of these more sophisticated approaches.

The availability of a well characterized TCE database extracted

from 2 large cohorts of HIV-positive patients in Europe gave us

the opportunity to explore some relatively novel methodologies for

Table 2. Description of HIV drug resistance prior to TCE
stratified by cohort.

HIV resistance Dataset

UK CHIC/UK
HDRD EuroSIDA

N = 1174 N = 388

Mutations in HIV
protease, n(%)

L10I 194 (16.5%) 61 (15.7%)

I13V 346 (29.5%) 52 (13.4%)

I15V 306 (26.1%) 49 (12.6%)

G16E 87 (7.4%) 3 (0.8%)

K20I 91 (7.8%) 15 (3.9%)

K20R 84 (7.2%) 38 (9.8%)

V32I 6 (0.5%) 10 (2.6%)

E35D 437 (37.2%) 65 (16.8%)

M36I 476 (40.5%) 80 (20.6%)

M46I 46 (3.9%) 43 (11.1%)

I47A 0 (0.0%) 0 (0.0%)

I47V 4 (0.3%) 7 (1.8%)

I54V 56 (4.8%) 34 (8.8%)

D60E 86 (7.3%) 16 (4.1%)

I62V 283 (24.1%) 80 (20.6%)

L63P 593 (50.5%) 120 (30.9%)

I64V 212 (18.1%) 36 (9.3%)

H69K 294 (25.0%) 18 (4.6%)

A71V 116 (9.9%) 53 (13.7%)

A71T 77 (6.6%) 17 (4.4%)

L76V 1 (0.1%) 2 (0.5%)

V77I 322 (27.4%) 49 (12.6%)

V82A 4 (0.3%) 8 (2.1%)

V82F 63 (5.4%) 32 (8.2%)

V82T 4 (0.3%) 10 (2.6%)

V82S 1 (0.1%) 1 (0.3%)

I84V 38 (3.2%) 23 (5.9%)

L89M 251 (21.4%) 16 (4.1%)

L90M 117 (10.0%) 64 (16.5%)

V91S 428 (36.5%) 89 (22.9%)

IS predictions, n(%)

ANRS lop/r

Susceptible 1129 (96.2%) 339 (87.4%)

Intermediate 36 (3.1%) 30 (7.7%)

Resistant 9 (0.8%) 19 (4.9%)

Rega lop/r

Susceptible 1115 (95.0%) 333 (85.8%)

Intermediate 49 (4.2%) 43 (11.1%)

Resistant 10 (0.9%) 12 (3.1%)

Stanford lop/r

Susceptible 1045 (89.0%) 306 (78.9%)

Intermediate 114 (9.7%) 72 (18.6%)

Resistant 15 (1.3%) 10 (2.6%)

HIV resistance Dataset

UK CHIC/UK
HDRD EuroSIDA

N = 1174 N = 388

ANRS GSS other drugs
(predicted no. of active)

0 32 (2.7%) 30 (7.7%)

0.5 46 (3.9%) 13 (3.4%)

1 253 (21.6%) 44 (11.3%)

1.5 63 (5.4%) 16 (4.1%)

2 651 (55.5%) 218 (56.2%)

2.5 14 (1.2%) 1 (0.3%)

3 102 (8.7%) 55 (14.2%)

.3 13 (1.1%) 11 (2.8%)

In bold major IAS-USA December 2010 mutations for lopinavir/r.
doi:10.1371/journal.pone.0025665.t002

Table 2. Cont.

Derivation of a LPV/r Score with Linear Regression

PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e25665



the construction of statistically-based IS such as LAR and LASSO

in the context of linear regression.

The first main result of our analysis is that in our example of

lopinavir-based TCE the performance of a model based on linear

regression was similar to that obtainable by currently available

largely expert-opinion based IS. If anything, the use of the Rega IS

seemed to provide better predictions on both validation and test

datasets than linear regression even when predictors were selected

with the more efficient LASSO criterion. Similar conclusions were

previously drawn by other authors performing almost identical

analyses although not in the context of LPV/r resistance and using

a binary viral load outcome [17,18]. In practical terms, after

transforming the continuous outcome into a binary variable

indicating failure (#1.5 log copies/mL viral reduction from

baseline) or success (.1.5 reduction) all models seemed to be able

to correctly classify 65% of the participants.

A second main result was the fact that adding interaction terms

to our model did not improve the predictions. This finding has

potentially two implications: the assumption made by web-expert

opinions (e.g. Stanford) that there is no interaction between

mutations for LPV/r and that mutations can be given a single

weight for their marginal effect may be valid. Indeed, in our

analysis whilst we found evidence that the weight for mutation

I62V should be different according to whether A82V was also

detected, the incorporation of this information did not lead to an

improvement in predictions. Although not proved by this analysis,

the second implication is that other commonly used non-

parametric non-linear approaches (such as random forests or

neural networks) are also unlikely to lead to improved perfor-

mance in this specific analysis; indeed, preliminary work based on

this dataset (data not shown) and others had already suggested this

point [17]. Of note, the exact time of the post-cART viral load

measurement was a covariate which was not retained in any of the

final models. A possible interpretation of this finding is that the

viral drop upon initiation of a lopinavir-containing regimen is

similar regardless of whether it is measured 1 month or up to 4

months from starting the drug, consistent with the view that it is a

potent protease inhibitor.

Third, the results derived from cross-validation only tell part of

the story. This is because, as previously shown, TCEs coming from

a single source tend to be more similar to each other than TCEs

coming from completely distinct settings [19]. In our analysis this

was clearly shown by the large increase of the ASE in the test

dataset (consisting of patients from EuroSIDA) as opposed to

validation dataset (patients from the UK CHIC Study) and

suggests an inherent limitation of statistical-derived IS aiming at

predicting response in individuals who did not provide data for

training. Reasons for this discrepancy are unclear. In the analysis

by Assoumou et al [19], some of the variability seemed to be

explained by differences in the treatment history of the populations

enrolled in the different cohorts, which influenced the baseline

viral genotypes and by antiretroviral treatment strategies which

differed from one country to another. However, we did not detect

large differences between UK CHIC and EuroSIDA in these

Figure 2. Plot of the standardized coefficients of all the factors selected at each step (from step 1 to final step 7) of the best subset
(LSE) method are plotted as a function of the step number. This enables to assess the relative importance of each factor selected at any step
of the selection process as well as provides information as to when effects entered the model. The lower plot in the panel shows how CV PRESS (the
criterion used to choose the selected model) changes as factors enter or leave the model. Selection was halted at step 7 when the ‘‘one-standard
error’’ rule was achieved.
doi:10.1371/journal.pone.0025665.g002
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parameters. It can also be argued that both EuroSIDA and UK

CHIC are themselves an amalgam of data from diverse clinical

sites although collected in a similar standardized way. The

external validation using the EuroSIDA database (a completely

independent dataset) is an important feature of this analysis which

has rarely been employed in previous similar analyses [17,29].

Several LPV/r scores have been constructed in recent years.

One of the first LPV/r mutation scores was developed by

comparing the genotypes and phenotypes of 112 viral isolates from

early clinical trials [8]. Mutations at 11 amino acid positions in

protease were found to be correlated with increased phenotypic

resistance to LPV/r. Another weighted score was developed using

1,482 clinical samples available from the Monogram Biosciences

database, for which both a genotype and phenotype for LPV/r

had been performed [9] and validated in another analysis [10].

This score consists of 29 mutations at 18 protease positions and

viruses with a score $7 were considered to have reduced

susceptibility to LPV/r. Although this score was based on many

more isolates than the LPV/r mutation score, the investigators

were limited to making genotype-phenotype correlations. A large

Table 3. Coefficients (standard errors) associated with covariates included in the model.

Interpretation
system Mutations, susceptibility scores and interaction effects coefficient (se)

I15V K20I I54V I62V V82A V91S I62V*V82A I15V*V82A VL*I54V VL*V82A I R

Model i) ANRS 2.74
(0.18)

21.46
(0.37)

Model ii) Rega 2.61
(0.16)

21.74
(0.34)

Model iii)
Stanford

2.29
(0.11)

21.38
(0.27)

Model iv) Best
subset LSE
main effects

+.13 (0.07) 2.26
(0.13)

2.29
(0.18)

2.11
(0.08)

2.60 (0.17) +.11 (0.07)

Best subset
LSE main
effects+2 ways
interactions

+.10 (0.07) 2.24
(0.12)

2.28
(0.18)

2.10
(0.08)

+1.89 (0.77) +.13 (0.07) 2.51 (0.34) 2.13 (0.07)

LASSO main
effects

2.12
(0.08)

2.36 (0.21)

LASSO viral load+2
ways interactions

2.07 (0.01) 2.13 (0.08)

LAR/LASSO main
effect

2.80 (0.15)

LAR/LASSO viral
load+2 ways
interaction

2.17 (0.07)

I = Intermediate, R = Resistant.
doi:10.1371/journal.pone.0025665.t003

Table 4. Average squared error, R-squares and accuracy according to selection criteria on the training, validation, and test datasets
at final inclusion step.

Training Validation Test (EuroSIDA)

Interpretation system ASE R-Square ASE ASE* Accuracy**

Model i) ANRS 1.037 0.354 1.207 1.299 0.655

Model ii) Rega 1.074 0.359 0.786 1.258 0.647

Model iii) Stanford 1.059 0.336 1.048 1.295 0.655

Model iv) Best subset LSE main effects 1.032 0.370 1.124 1.330 0.657

Best subset LSE main effects+2 ways interactions 1.018 0.379 1.132 1.338 0.662

LASSO main effects 1.063 0.352 1.109 1.315 0.650

LASSO main effects+2 ways interactions 1.041 0.365 1.130 1.326 0.650

LAR/LASSO main effects 1.051 0.359 1.135 1.374 0.655

LAR/LASSO main effects+2 ways interactions 1.044 0.363 1.136 1.372 0.655

*ANOVA p-value for the difference between models p = 0.34.
**Percentage correctly classified as successes (viral load drop .1.5 log copies/mL) or failures (viral load drop #1.5 log copies/mL); likelihood ratio test p-value from
fitting a GEE model p = 0.98.
doi:10.1371/journal.pone.0025665.t004
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database from France (the ATU database) was used to evaluate the

virological response to LPV/r in 792 treatment-experienced

individuals and generated a LPV/r score [11]. Within the ATU

dataset, mutations at 10 amino acid positions in protease were

found to better predict virological response than the previously

described scores. Some authors proposed and showed the potential

utility of genotypic inhibitory quotients (GIQ) based on the ratio

between LPV/r concentration and number of LPV/r resistance

mutations) [30–32] although due to lack of consensus on which list

of mutations to use, the predictive value of GIQ varies according

to the IS used [32].

Regarding the mutations included in our LPV/r score, besides

mutations I15V and V91S which seemed to be not currently

recognized polymorphisms associated with a better response to

LPV/r, V82A is listed by IAS-USA December 2010 as a major

LPV/r mutation and used in the rules of all previously developed

scores (Abbott 2007 score [12] ANRS and Rega IS [23,24] and

Food and Drug Association (FDA) LPV/r mutations list [13]). In

the Stanford IS this mutation is currently given a weight of +25

which is the 2nd highest weight, after that given to I47A

(weight = +50) while the Rega IS assign a weight of 0.6,

remarkably similar to ours but about half the weight given to

I54V (Table S1). Interestingly, mutation V82A was the first to be

entered in our model leading to the largest decrease in ASE

besides pre-TCE viral load while V82F which was more prevalent

than V82A was not selected at all. Mutations K20I and I54V were

given smaller weights in our score which is consistent with the fact

that are not major IAS-USA mutations but are listed in most

available IS (I54V is not included in ANRS). Finally I62V seemed

to have a marginal negative impact on viral response, especially

when detected in the absence of V82A. Unfortunately we do not

have phenotypic evidence to support this finding (it is scored as

zero in all web-based IS –Table S1- and whilst sometimes

associated with resistance to saquinavir or fosamprenavir [23]

seems to be quite polymorphic). Of note, the weight of I62V was

shrunk to zero by the LASSO procedure suggesting that this was a

spurious association due to chance alone.

Some limitations of this analysis need to be discussed. First of

all, in a setting in which viral load measures are truncated by the

lower limit of the assay, binary outcomes are typically preferred.

Although the percentage of censored response viral load was

relatively low we may have introduced bias by replacing this

unobserved value with the lower limit of detection of the assay.

However, when we performed a sensitivity analysis by replacing

the unobserved undetectable viral load values with K of the limit

of lower detection or with the fixed value of 20 copies/mL results

were similar. We did not choose to evaluate a wider range of

statistical approaches for three main reasons: i) the performance of

specific approaches is likely to vary according to the specific

features of the dataset analyzed and therefore a unique ‘‘best

predictive model’’ may not exist; ii) previous attempts to identify

the best approach have reached discordant conclusions [17,18,20]

and iii) linear regression is simple to implement in SAS (a robustly

validated statistical package), easy to interpret and has been

previously shown to have high predictive power in the field of HIV

resistance [33]. The prevalence of some of the mutations

considered key for lopinavir/r by expert opinion (e.g. V32I,

I47V, L76V) was relatively low and this could have influenced the

covariate selection for our score. Furthermore, we have only

considered PI mutations previously found to be associated with

reduced susceptibility to PI, thus we cannot exclude the possibility

that our model could be outperformed by another one constructed

using all changes from consensus in the PR region. Nevertheless,

this addition would add further complexity and it is beyond the

scope of the current exercise. We aim to repeat this analysis using

a larger dataset including all major cohort studies in Europe.

Similarly, one of the limitations of predictive systems is that

population sequence assays only detect mutations present in major

quasi-species. Indeed it has been shown that the inclusion of other

information coming from ultra-deep sequencing, phenotypic data,

genetic barrier of resistance, phylogenetic-type analyses or even

drug history can significantly improve the predictive capability of a

given model [28,34–39]. Unfortunately besides drug history,

which was not considered, none of these data are yet available in

our cohorts. Other unmeasured factors such as adherence, known

to be associated with the level of resistance, could have

confounded the association between specific mutations and

outcome.

LPV/r was for quite some time the standard boosted PI for

treatment-experienced patients with PI-related resistance muta-

tions. However, with the approval of other drugs such as tipranavir

and particularly darunavir and atazanavir/r, it has become

increasingly important for clinicians to be able to choose between

these newer PI/r and LPV/r for these patients. Our analysis does

not directly address the question of which PI/r should be used and

in which circumstances, but suggests that the choice of LPV/r can

successfully rely on currently available web-based IS predictions.

In conclusion, we fully explored the potential of linear

regression to construct a simple predictive model for LPV/r-

based TCE. Two of the identified mutations (V82A ad I54V) in

our score are recognized LPV/r mutations listed by widely used

expert-based IS. In addition, we identified previously unrecog-

nized mutations I62V ad K20I, which appear to have a modest

impact in reducing viral response, and mutations I15V and V91S

which, in contrast, seem to determine LPV/r hypersensitivity, all

of which need further investigation. Although, the performance of

our proposed score seems to be similar to that of already existing

IS, the same approach of validation of web-based IS could be used

in the future for other antiretrovirals ideally including a larger

number of TCE and in other settings outside HIV research.
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18. Assoumou L, Brun-Vézinet F, Cozzi-Lepri A, Kuritzkes D, Phillips A, et al.
(2008) Standardization and Clinical Relevance of HIV Drug Resistance Testing

Project of the Forum for Collaborative HIV Research. Initiatives for developing
and comparing genotype interpretation systems: external validation of existing

systems for didanosine against virological response. J Infect Dis 15;198(4):
470–80.

19. Assoumou L, Houssaı̈ni A, Costagliola D, Flandre P (2010) Standardization and

Clinical Relevance of HIV Drug Resistance Testing Project from the Forum for
Collaborative HIV Research. Relative contributions of baseline patient

characteristics and the choice of statistical methods to the variability of
genotypic resistance scores: the example of didanosine. J Antimicrob Chemother

65(4): 752–60.

20. Larder B, Wang D, Revell A (2008) Application of artificial neural networks for

decision support in medicine. Methods Mol Biol 458: 123–36.

21. Kirk O () EuroSIDA a multicentre study, 1994–2009. Available: http://www.

cphiv.dk/EuroSIDA/Publications/EuroSIDAamulticentrestudy19942009/tab

id/407/Default.aspx. Accessed 2011 August.

22. UK Collaborative HIV Cohort (UK CHIC) Steering Committee (2004) The

creation of a large UK-based multicantre cohort of HIV-infected individuals:
The UK Collaborative HIV Cohort (UK CHIC) Study. HIV Medicine 5:

115–124.

23. ANRS website. Available: http://www.hivfrenchresistance.org/2010/Algo-

2010.pdf Accessed 2011 August.

24. Rega Institute website. Available: http://www.rega.kuleuven.be/cev/index.

php?id = 30. Accessed 2011 August.

25. Stanford University website. Available: http://hivdb.stanford.edu/pages/asi/

releaseNotes/updates.html#Ver6.0.9_20100824 Accessed 2011 August.

26. IAS-USA HIV resistance list website. Available: http://www.iasusa.org/

resistance_mutations/mutations_figures.pdf Accessed 2011 August.

27. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal

Statist Soc B 58(1): 267–288.

28. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann

Statist 32(2): 407–499.

29. Altmann A, Beerenwinkel N, Sing T, Savenkov I, Doumer M, et al. (2007)

Improved prediction of response to antiretroviral combination therapy using the
genetic barrier to drug resistance. Antivir Ther 12(2): 169–78.
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