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Abstract

Background: The development and testing of functions for the modeling of protein energetics is
an important part of current research aimed at understanding protein structure and function.
Knowledge-based mean force potentials are derived from statistical analyses of interacting groups
in experimentally determined protein structures. Current knowledge-based mean force potentials
are developed at the atom or amino acid level. The evolutionary information contained in the
profiles is not investigated. Based on these observations, a class of novel knowledge-based mean
force potentials at the profile level has been presented, which uses the evolutionary information of
profiles for developing more powerful statistical potentials.

Results: The frequency profiles are directly calculated from the multiple sequence alignments
outputted by PSI-BLAST and converted into binary profiles with a probability threshold. As a result,
the protein sequences are represented as sequences of binary profiles rather than sequences of
amino acids. Similar to the knowledge-based potentials at the residue level, a class of novel
potentials at the profile level is introduced. We develop four types of profile-level statistical
potentials including distance-dependent, contact, ®/Y dihedral angle and accessible surface
statistical potentials. These potentials are first evaluated by the fold assessment between the
correct and incorrect models generated by comparative modeling from our own and other groups.
They are then used to recognize the native structures from well-constructed decoy sets.
Experimental results show that all the knowledge-base mean force potentials at the profile level
outperform those at the residue level. Significant improvements are obtained for the distance-
dependent and accessible surface potentials (5-6%). The contact and ®/¥ dihedral angle potential
only get a slight improvement (1-2%). Decoy set evaluation results show that the distance-
dependent profile-level potentials even outperform other atom-level potentials. We also
demonstrate that profile-level statistical potentials can improve the performance of threading.

Conclusion: The knowledge-base mean force potentials at the profile level can provide better
discriminatory ability than those at the residue level, so they will be useful for protein structure
prediction and model refinement.

Background logical macromolecules [1]. A potential that can discrimi-
The development and evaluation of new energy functions  nate between the native and miss-folded structures is
is critical to the accurate modeling of the properties of bio-  crucial for any protein structure prediction protocol to be
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fully successful. Toward this end, two different types of
potential functions are currently in use [2-4]. The first
class of potentials, the so-called physical-based potential,
is based on the fundamental analysis of forces between
atoms [5-7]. The second class, the so-called knowledge-
based potentials, extracts parameters from experimentally
solved protein structures [8-11]. The advantage of the first
class of potentials is that, in principle, they can be derived
from the laws of physics. The disadvantage is that the cal-
culation of free energy is very difficult because the compu-
tation should include an atomic description of the protein
and the surrounding solvent. Currently this type of com-
putation is generally too expensive for protein folding
[12]. While, with today's computer resources, knowledge-
based potentials can be quite successful at fold recogni-
tion [13] and ab initio structure prediction [14,15].

Much can be learned through statistical analysis of inter-
acting groups in experimentally determined protein struc-
tures. Such analysis provides the basis for knowledge-
based potentials of mean force. Generally, knowledge-
based potentials have used a simple one- or two-point-
per-residue representation, which results in the potentials
at the residue level. Each residue in a protein sequence is
represented by one or two points in three-dimensional
space. These points are usually located at the coordinates
of each residue's C, atoms, Cg atoms or at the coordinates
of the center of each side chain. Discrimination is based
on each residue's preference to be buried or exposed [16],
its preference for a particular secondary structure confor-
mation [17], its preference for the contact number with
other residues [18] and its preference to be in contact at a
particular distance and sequence separation from other
residues [19,20]. However, to capture the finer details of
atom-atom interactions in proteins, a more detailed
description is necessary. Each heavy atom either at the
main-chain or side-chain is represented by an independ-
ent point, which results in the knowledge-based poten-
tials at the atom level. A number of potentials at the atom
level have been designed [21-24]. Because of its atom level
definition, the knowledge-based potentials at the atom
level can provide better discriminatory power than
obtained at the residue level [25].

Although the knowledge-based mean force potentials at
the residue level are based on the coarse description of
protein structures, they are easier to be used in fold recog-
nition or threading than those at the atom level [22].
Many fold-recognition methods use knowledge-based
potentials to interpret probabilistic scoring functions.
Sequence-template alignments are evaluated in terms of a
scoring function and the score of the alignment is inter-
preted as a "free energy" of the sequence in the conforma-
tion imposed by the alignment [26]. This interpretation
indicates that the most probable sequence-structure align-
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ment is the one with the lowest "free energy". The 123D
method [27] applies the pairwise sequence alignment and
contact capacity potentials to fast protein fold recogni-
tion. The SPARK method [18] combines the sequence-
profile alignment and single-body knowledge-based
energy score for fold recognition. The GenTHREADER
method [28] apply neural network to evaluate the com-
patibility of the sequence and the template with pairwise
potentials and solvation potentials as input. In addition
to the fold recognition or threading, knowledge-based
potentials are widely used in selection of native structures
of proteins [29,30], estimation of protein stability [31], ab
initio protein structure prediction [32-34], etc.

The aim of this paper is to develop a class of novel knowl-
edge-based mean force potentials at the profile level,
which uses the evolutionary information of the profile
[35]. Such potentials can provide better discriminatory
power than those at the residue level and can be incorpo-
rated into the process of fold recognition or threading.
Multiple sequences alignments of protein sequences may
contain much information regarding evolutionary proc-
esses. This information can be detected by analyzing the
output of PSI-BLAST [35,36]. The frequency profiles are
directly calculated from the multiple sequence alignments
and then converted into binary profiles with a cut-off
probability for usage. Such binary profiles make up of a
new alphabet for protein sequences. Similar to the knowl-
edge-based potentials at the residue level, a class of novel
potentials at the profile level is introduced. We developed
four types of profile-level statistical potentials including
distance-dependent, contact, ®/¥ dihedral angle and
accessible surface statistical potentials. These potentials
are first evaluated by the fold assessment between the cor-
rect and incorrect models generated by comparative mod-
eling. They are then used to recognize the native structure
from the well-constructed decoy set. Experimental results
show that all the knowledge-base mean force potentials at
the profile level outperform those at the residue level.

Results

Fold assessment on test models

To evaluate the performance of the statistical potentials at
the profile level and those at the residue level, the first
experiment is made to discriminate between the good
models and the bad models on our structure models. The
parameters of various potentials are selected as the opti-
mal values as suggested by others [11,18]. For the dis-
tance-dependent potentials, the interaction center is set as
Cg atom. The distance range is 30 A with distance interval
of 1 A. The sequence separation k varies from 3 to 9. The
rare situation with sequence separation larger than 9 is
included in the last bin. For the contact potential, the
number of contact bin is set to 25. In the rare occasions of
more than 25 contacts, the statistics are included in the
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Table I: Comparative results of potentials at our structure models
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Potentials CP Success rates Z-scores Potentials CP Success rates Z-scores
Distance 0.86 400/431 2.86 Dihedral 0.81 256/431 1.92
Distance_profile 091 422/431 3.26 Dihedral_profile 0.82 270/431 2.08
Contact 0.8l 221/431 1.84 Surface 0.85 309/431 2.33
Contact_profile 0.83 232/431 1.96 Surface_profile 0.90 335/431 2.78

The distance, contact, dihedral and surface refer to the four kinds of potentials at the residue level. The potentials with _profile suffix indicate the
corresponding potentials at the profile level. In the success rates columns, the first number is the number of native structures ranked number one;

the second number is the total number of proteins in the decoy set.

bin for 25 contacts. All the contacts with sequence separa-
tion larger than 1 are computed. For the ®/¥ dihedral
angle potential, each of the torsion is divided into 36 bins.
There are total 1296 bins. For the accessible surface poten-
tial, the interaction center is set as Cg atom. The distance
range (the radius of the sphere) is set as 9 A. The burial
range varies from 0 to 40 atoms with burial interval of 2
atoms. The atoms within the same residues are not con-
sidered for statistics.
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The process of calculating frequency profiles and
converting it into binary profiles. (a) For a given amino
acid sequence, (b) the multiple sequence alignment is
obtained by PSI-BLAST. (c) The frequency profile is calcu-
lated on the multiple sequence alignment and (d) transforms
into a binary profile with a probability threshold. (e) A sub-
string of amino acid combination is then obtained by collect-
ing the binary profile with non-zero value for each position of
the protein sequences.

The statistics of propensity of various potentials are per-
formed on the PDB25 dataset. These potentials are then
calculated to discriminate between good models and bad
models for each of the sequence. The fraction of correctly
predicted case (CP), the success rates, the Z-scores and the
ROC curve are employed to evaluate the performance. The
results are shown in table 1 and Fig. 2. In the ROC curve,
a lower plot corresponds to a better discriminative power.

As can be seen, all the knowledge-based mean force
potentials at the profile level outperform those at the res-
idue level. The improvements of various potentials at the
profile level are different from those at the residue level.
Significant improvements of CP are obtained for the dis-
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ROC curves of various potentials tested on our struc-
ture models. The lower the curve, the better the discrimi-
nation between the good and bad models. Subfigure (A), (B),
(C) and (D) show the performance of residue-level and pro-
file-level potentials of distance-dependent, contact, ®/¥
dihedral angle and accessible surface statistical potentials
respectively. The potentials with _profile suffix indicate the
corresponding potentials at the profile level.
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Table 2: Comparative fold assessment results of potentials at the Baker's set

Potentials CP Success rates Z-scores Potentials CP Success rates Z-scores
Distance 0.77 25/41 2.58 Dihedral 0.75 17/41 1.41
Distance_profile 0.81 30/41 2.74 Dihedral_profile 0.77 20/41 .58
Contact 0.74 15/41 1.36 Surface 0.74 18/41 247
Contact_profile 0.75 17/41 1.27 Surface_profile 0.78 22/41 2.54

See the footnote of table | for the name of the potentials.

tance-dependent and accessible surface potentials (5-
6%). The contact and ®/¥ dihedral angle potential only
get a slight improvement of CP (1-2%).

Tested on Baker's set

The Baker's set [37] is a well-constructed decoy set that is
obtained by large-scale comparative modeling. The data-
set consists of 41 single domain proteins and each protein
is attached with about 1400 decoy structures. The decoy
structures are classified into good models and bad models
by the same criterion as used by our structure models.
Models with >30% structural overlap with the experimen-
tally determined structures are grouped into good models.
Models with <15% structural overlap with the experimen-
tally determined structures are grouped into bad models.
The fold assessment results are shown in table 2.

Overall the knowledge-based mean force potentials at the
profile level still outperform those at the residue level. Sig-
nificant improvements are obtained for the distance-
dependent and accessible surface potentials. The CP
scores of all potentials on the Baker's set are lower than
those on our structure models. There are two reasons for
this phenomenon. The first one is that the Baker's set is
inherently difficult to discriminate. Such dataset is care-
fully constructed and satisfies the so-called four criteria
listed in their introduction [37]. The second one is that the
number and distribution of good models and bad models
in this dataset are different from those in our dataset. In
Baker's dataset, the total models for a sequence are very

Table 3: The results of PROSTAR decoy set evaluation

large (more than one thousand) and the distribution
between the number of good models and that of bad
models is different. For example, the sequence 1ptq has
only 8 good models and 1647 bad models, while the
sequence lres has 1722 good models and only one bad
model. In our dataset, each sequence has about thirty
models and the good models and bad models are equally
distributed (about fifteen respectively).

PROSTAR decoy set evaluation

All the decoy sets from PROSTAR website [38] are well-
constructed and widely used for evaluation of all kinds of
newly developed potentials [21,24]. Three subsets includ-
ing MISFOLD [39], IFU [40] and PDBERR [38] are
selected for testing. The IFU dataset contains a set of mod-
els for small peptides rather than the whole protein
chains. Since direct generation of profiles for such small
peptides may not be reliable, we first generate the profiles
of the whole protein chains and extract the corresponding
profiles for such small peptides. There are two proteins
(3SNS, 1ILB) that are not found in the PDB database [41],
the corresponding decoy models are removed (3SNS_16-
29, 3SNS_6-21, 1ILB_99-110). The results of decoy set
evaluation are given in table 3. When the energy Z-scores
of the native structure are lower than those of the decoy
models, a correct discrimination is obtained.

All the knowledge-based mean force potentials get good
results on the MISFOLD and PDBERR dataset and accept-
able results on the IFU dataset. The IFU dataset is more

Decoy set MISFOLD IFU PDBERR
Number of decoy pair 25 41 3
Distance 25 28 3
Distance_profile 25 35 3
Contact 24 25 |
Contact_profile 25 28 3
Dihedral 25 26 3
Dihedral_profile 25 29 3
Surface 25 21 |
Surface_profile 25 24 3

Given in the table are the number of decoy pair and correctly recognized decoy pair for all potentials on the three decoy sets. See the footnote of

table | for the name of the potentials.
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challenging than the other two dataset, because this data-
set contains the decoy models for small peptides and fold
assessment by statistical potentials is most difficult for the
very small models [11]. Small models are difficult to
assess because of the relatively small number of pairwise
interactions by which they are judged, not because of their
incompleteness. Overall, the potentials at the profile level
still outperform those at the residue level on the IFU data-
set. The best discrimination is achieved by the distance-
dependent potentials at the profile level, which correctly
recognize 35 out of 41 decoy pairs, corresponding to accu-
racy of 85%. Such results outperform other atom-level
potentials such as the Residue specific all-Atom Probabil-
ity Discriminatory Function (RAPDF) [21] and the atom-
ically detailed potentials of T32S3 [24]. These two
potentials get 100% accuracy on the MISFOLD dataset as
done by the profile-level distance-dependent potentials.
They correctly identified 73% and 80% of the decoy pair
on the IFU dataset respectively [24], while the profile-level
distance-dependent potentials correctly identified 85% of
the decoy pair on the same dataset.

Multiple decoy sets evaluation

To give an un-bias result and fair comparison with other
potentials, we use five out of seven multiple decoy sets as
used by Zhang et al. [42]. They include the 4state_reduce
set [43], Imds set [44], fisa set [14], fisa_casp3 set [45],
lattice_ssfit set [46]. Totally, there are 32 multiple decoy
sets available (listed at Table 1 of Zhang et al. [42]). No
decoy structures in the original decoy sets are omitted in
this study. The diverse and comprehensive decoy sets
ensure the fair evaluation of the overall quality of the
potentials. We also compare our potentials with DFIRE-
SCM [42], which is one of the most recent residue-level
potentials. The results are evaluated in terms of success
rates in native discriminations and Z-score for different
decoy sets. The performances of different potentials are
shown in Table 4.

http://www.biomedcentral.com/1471-2105/7/324

As can be seen, all the profile-level statistical potentials
outperform those at the residue-level. Overall, the success
rates of profile-level potentials are better than those of res-
idue-level potentials. Even with the same success rates on
some datasets, the Z-scores of profile-level potentials are
higher than those of residue-level. The distance-depend-
ent knowledge-based potential [19] in this paper is the
Prosall potential as mentioned by Zhang et al. [42], which
is inferior to DFIRE-SCM according to Zhang et al. [42].
The distance-dependent potential at the profile level is
comparable with the DFIRE-SCM potential. The former
correctly recognizes 22 out of 32 decoy structures, while
the latter correctly recognizes 23 out of 32 decoy struc-
tures. The contact, ®/¥ dihedral angle and accessible sur-
face statistical potentials are single-body residue-level
statistical potentials, which are based on the coarse
descriptions of protein structures. Such potentials get
lower performance in comparison with other two-body
atom-level statistical potentials in many experiments
[21,25]. These simple potentials at the profile-level still
outperform those at the residue-level according to our
experiments. These results suggest that the binary profiles
are smarter representations of protein structures than res-
idues.

Discussion

The probability threshold has not significant influence on
the profile-level statistical potentials

The frequency profiles are calculated from the multiple
sequence alignments outputted by PSI-BLAST [35] and
converted into binary profiles by a probability threshold
P,,. The total number of binary profiles is dependent on
the size of the database and the value of probability
threshold P;,. Since each combination of the twenty amino
acids corresponds to a binary profile and vice versa, the
total number of binary profiles is 2720. In fact, only a
small fraction of binary profiles appear. These binary pro-
files substitute for novel alphabets of protein sequences to

Table 4: The success rates and the average Z-scores of different potentials on the multiple decoy sets

Source 4state Lattice_ssfit Lmds Fisa Fisa_casp3 Summary
DFIRD-SCM 6/7 (3.94)2 8/8 (6.19) 3/10 (2.56) 3/4 (4.70) 3/3 (6.05) 23/32 (4.68)
Distance 5/7 (2.48) 6/8 (4.97) 2/10 (1.78) 2/4 (3.06) 1/3 (1.93) 16/32 (2.84)
Distance_profile 717 (3.53) 8/8 (5.72) 3/10 (2.45) 2/4 (3.32) 2/3 (2.94) 22/32 (3.59)
Contact 3/7 (1.38) 4/8 (2.32) 1/10 (0.83) 0/4 (0.65) 0/3 (1.69) 8/32 (1.37)
Contact_profile 3/7 (1.52) 5/8 (2.96) 1710 (1.15) 0/4 (0.72) 0/3 (1.73) 9/32 (1.61)
Dihedral 717 (2.69) 6/8 (3.51) 2/10 (1.62) 1/4 (1.05) 173 (1.72) 17/32 (2.12)
Dihedral_profile 717 (2.72) 7/8 (3.88) 3/10 (1.55) 1/4 (1.22) 2/3 (2.58) 20/32 (2.39)
Surface 4/7 (1.80) 4/8 (3.15) 3/10 (1.21) 1/4 (1.28) 2/3 (2.26) 14/32 (1.94)
Surface_profile 4/7 (2.07) 4/8 (3.57) 5/10 (2.68) 2/4 (1.89) 2/3 (2.96) 17/32 (2.64)

aThe first number is the number of native structures ranked as number one; the second number is total number of proteins in the decoy set. The
numbers in parentheses are the average Z-scores. The results of DFIRD-SCM method are directly taken from Zhang et al., Protein Sci. 2004, 13:

400-411.
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Table 5: The optimized results of probability threshold.

http://www.biomedcentral.com/1471-2105/7/324

Probability threshold ~ Number of profiles Distance_profile

Contact_profile Dihedral_profile Surface_profile

0.04 21355 -
0.05 19868 -
0.06 15935 -
0.08 7444 -
0.10 3145 -
0.12 1442 -
0.14 759 0.907069
0.16 404 0.909359
0.17 303 0.906705
0.18 235 0.909907
0.20 186 0.908468
0.22 138 0.906744
0.24 8l 0.907125
0.26 46 0.904767
0.28 28 0.892552
0.30 21 0.873879
0.32 21 0.872684

0.828263 0.815943 0.899127
0.826101 0.815291 0.900184
0.825473 0.816991 0.900127
0.825815 0.815693 0.898678
0.827828 0.815039 0.900998
0.826786 0.814627 0.899441
0.82626 0.816084 0.899387
0.826889 0.815488 0.899437
0.82597 0.81585 0.899063
0.824466 0.816644 0.899639
0.828051 0.815918 0.899407
0.823012 0.811962 0.896226
0.825444 0.81052 0.895877
0.823669 0.809967 0.896212
0.816189 0.799421 0.887908
0.782432 0.777818 0.867548
0.781907 0.779257 0.866134

Given in the table are the average CP scores of profile-level statistical potentials at different probability threshold. The discrimination is performed
on our structure models. The distance_profile, contact_profile, dihedral_profile and surface_profile refer to the profile-level statistical potentials of
distance-dependent, contact, ®/'¥ dihedral angle and accessible surface respectively. Note that for small P, value (<0.12), the profile-level distance-
dependent potentials cannot produce efficient output, because the parameters of this potential are proportional to the square of the number of

profiles.

develop a class of novel profile-level statistical potentials.
Since the probability threshold P, is a parameter, it needs
to be optimized. The results are shown in table 5. We sur-
prisingly found that the probability threshold P, has not
significant influence on all the profile-level statistical
potentials. When the probability threshold is larger than
0.28, the number of binary profiles is very small and the
discriminative power of all the profile-level statistical
potentials drops quickly. Since the decrease in the number
of residue types reduces the discriminative ability of the
potentials [11], we can draw a similar conclusion that an
increase in the number of alphabets of protein sequences
can improve the discriminative power of the potentials.
This study provides a method for increasing the number
of alphabets of protein sequences, that is, the profile
method.

The energy of profile-level statistical potentials correlates
well with RMSD

Another measure of the potential quality and its global
attraction is the dependence of the energy on the proxim-
ity to the native structure. The proper coordinate to meas-
ure proximity to the native structure is not obvious.
However in numerous cases the RMSD is used [47]. In Fig.
3, the scatter plot of the energy as a function of the decoy
Co RMSD value is plotted. Since the potentials of different
native structures are not comparable, only one of the
sequence (1vcc) and its models are plotted. As can be
seen, the energy of profile-level statistical potentials corre-
lates well with the Co RMSD up to quite large RMSDs.
This suggests that the profile-level potentials can be useful

in simulations that attempt to get closer to the native con-
formation starting from a distant conformation.

L] ®)
‘

Enengy

Energy
Energy

PRI
RMSD RMSD

Figure 3

A scatter plot of energy versus RMSD. A horizontal line
highlights the score of the native state. Subfigure (A), (B), (C)
and (D) show the correlation of profile-level potentials of
distance-dependent, contact, ®/Y dihedral angle and accessi-
ble surface statistical potentials respectively. The total
number of structure models included in each plot is 1858.
Shown in the plot are the structure models of the sequence
Ivee from Baker's dataset.
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Using evolutionary information can improve the
discriminative power of knowledge-based mean force
potentials

In the profile-level statistical potentials, the protein
sequence is represented as a sequence of frequency profile
rather than an amino acid sequence. The frequency profile
contains the evolutionary information of protein
sequences, which is the probabilities of the amino acids
occurred in the specific position of the protein sequences.
Such profiles are used to produce more discriminative
potentials. As the best of our knowledge, this is the first
usage of evolutionary information for developing more
advanced potentials. The potentials at the profile level are
prior to those at residue level according to the experi-
ments. So evolutionary information can improve the dis-
criminative power of knowledge-based mean force
potentials. This conclusion is not surprising, since the
evolutionary information is widely used in lots of biolog-
ical problems such as the protein secondary structure pre-
diction [48,49], remote homologue detection [50,51],
sub-cellular localization [52,53], domain boundary pre-
diction [54], fold recognition [55], protein-protein inter-
action prediction [56], function annotation [57], etc.

Profile-level statistical potentials can improve the
performance of threading

Fold recognition or threading is another application of
knowledge-based mean force potentials. Many methods
combine the residue-level statistical potentials with
sequence alignments for threading, such as the SPARKS
method [18]. We have implemented a threading method
that combines the profile-level statistical potentials with
profile-profile alignments. Such profile-level threading
method (referred as profile-threading) is compared with
the threading method that uses the residue-level statistical
potentials (referred as residue-threading).

Since the multi-body statistical potentials are hard to be
used for threading, a combined potentials has been pre-
sented, which integrate the three single-body potentials of
this study, that is, the ®/¥ dihedral angle, accessible sur-
face and contact statistical potentials:
E(i) = E'(i, #, @) + W EI(i,S;) + we ES(i,N;) ~ (14)

where Ef, Ef, E¢is the ®/¥ dihedral angle, accessible sur-
face and contact statistical potentials respectively, i is
amino acid for residue-level potentials and profile for pro-
file-level potentials at the i-th position of the sequence, wf
and wr are the weights of accessible surface and contact
statistical potentials. The total potential for a protein is
then obtained by summing the potentials of each of the
amino acid or profile. Using the decoy set of PROSTAR,
the optimal parameters of w/ and w¢ for residue-level
potential are selected as 0.5 and 3.375, which correctly

http://www.biomedcentral.com/1471-2105/7/324

identifies 59 out of 69 decoy pairs. The optimal parame-
ters of wfand wre for profile-level potential are selected as 1
and 2.5, leading to correctly identify 62 out of 69 decoy
pairs.

The profile-profile alignment method used here is the
PICASSO3 method [58], which gives the best results of
fold recognition [59]. The profile-profile score to align the
position i of a sequence g and the position j of a template
t is given by:

20
t t
my == | 1S+ Sh i (15)
k=1

where f,9, f;t, Sy9and S;,f are the frequencies and the posi-
tion-specific score matrix (PSSM) scores of amino acid k at
position i of a sequence ¢ and position j of a template ¢,
respectively.

The profile-profile alignment is combined with the
knowledge-based score for threading. The total score is
given by:

utotal = m; + ws E; (s;)

where E(s;) is the combined potentials score of the tem-
plate at position j with the residue type (for residue-
threading) or profile type (for profile-threading) s; of the
position i of the query sequence, w; is the weight factors
for structure scores. The dynamic programming algorithm
is employed to find the minimum of the total score of the
sequence-template alignments.

The HOMSTRAD database [60] is selected to test the align-
ment accuracy of the two threading methods. Only fami-
lies containing two single-chain sequences and with
sequence identities less than 40% are considered. The
resulting dataset contains 390 families and is randomly
divided into training set and test set with ratio of 4:1. The
genetic algorithm is used to find the optimal parameters
on the training set including the structure factor w,, the
gap-open penalty w, and the gap-extension penalty w;.
Such parameters are then applied to test the alignment
accuracy on the test set. The results are shown in Table 6.
The profile-level threading method outperforms the resi-
due-level threading method, so profile-level statistical
potentials can improve the performance of threading.

Conclusion

In this study, a class of novel knowledge-based mean force
potentials at the profile level has been presented. The fre-
quency profiles are directly calculated from the multiple
sequence alignments outputted by PSI-BLAST and con-
verted into binary profiles with a probability threshold.
Such binary profiles make up of a new alphabet for pro-
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Table 6: The results of two threading methods
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Method W, W, W, Training accuracy Test accuracy
Residue-threading 4.5 0.5 0.175 78.2% 75.6%
Profile-threading 5 04 0.348 82.5% 79.4%

WO, W1 and Ws are the gap-open penalty, gap-extension penalty and the structure factor. The training accuracy and test accuracy are the

alignment accuracy on the training set and test set.

tein sequence. Because the binary profiles contain evolu-
tionary information, they provide better descriptions of
protein structures than the residues. We develop a class of
novel statistical potentials at the profile level. Fold assess-
ment and decoy sets evaluation results show that the sta-
tistical potentials at the profile-level outperform those at
the residue level. Future work will aim at application of
the profile-level statistical potentials to protein structure
prediction and exploring other applications of such
binary profiles such as remote homology detection, pre-
diction of protein class etc.

Methods

Dataset

To evaluate the usefulness of the statistical potentials,
large sets of protein structure models are needed [61].
Three datasets are used in this study. The first one is our
structure models generated by large-scale comparative
modeling [62]. The second one is the Baker's models [37]
that also produced by comparative modeling. The third
one is the PROSTAR decoy set [38]. The three datasets are
briefly described as follows.

The freely available software MODELLER [62] is used for
comparative modeling. The protein chains of the Protein
Data Bank (PDB) [41] are downloaded from the SCOP
database [63]. The sequence set and the template set are
taken from the ASTRAL compendium [64] with sequence
identity less than 40% and 80% respectively. Two sets of
models including good models and bad models are calcu-
lated by large-scale comparative modeling. The models
are classified depending on their structural similarity to
the actual structure of the target protein. The good models
are built on the basis of the correct templates and the
structure-structure  alignments between the target
sequences and the template structures. The correct tem-
plates mean that the target sequences and the template
structures share the same fold. The structure-structure
alignment method is the iterative least-squares superposi-
tion method implemented by the MODELLER package
[62]. Models with <30% structural overlap with the actual
experimentally determined structure are eliminated.
Structural overlap [11] is defined as the fraction of the
equivalent C, atoms upon least-squares superposition of
the two structures with the 3.5 A cutoff. The final set con-
tains 4207 good models. The bad models are built on the

basis of templates with incorrect folds but correct align-
ments (the structure-structure alignment) or the templates
with correct folds but incorrect alignments (the sequence-
sequence alignments). Models with >15% structure over-
lap with the actual target structure are eliminated. The
final set contains 7045 bad models.

The Baker set [37] currently consists of 41 single domain
proteins with varying degrees of secondary structures and
lengths from 25 to 87 residues. Each protein is attached
with about 1400 decoy structures generated by ab initio
protein structure prediction method of Rosetta [45]. This
set provides a good challenge for scoring functions and
selection schemes to test themselves against the local
minima around the native state. The Baker set can be
downloaded from http://depts.washington.edu/bakerpg/
using the link "Download the all atom decoys used by
Tasi et al. (pdbs)".

The PROSTAR set contains a set of well-constructed decoy
sets. Three subsets including MISFOLD, IFU and PDBERR
are selected for testing the performance of potentials. Each
decoy set contains one correct and one or more incorrect
or approximate conformations. The MISFOLD decoy set
[39] consists of 25 examples of pairs of proteins with the
same number of residues in the chain, but different
sequences and conformations. The IFU decoy set is based
on a set of 44 peptides that are proposed to be independ-
ent folding units as determined by local hydrophobic bur-
ial and experimental evidence [40]. The PDBERR decoy
set is comprised of three structures determined using X-ray
crystallography which are later found to contains errors
and the corresponding correct experimental conforma-
tions [38].

Known structures for calculating potentials

The database of proteins used for the statistical analysis of
various potentials is a subset of PDB database [41]
obtained from the PISCES [65] web-server. The represent-
ative structures are selected such that they share <25%
sequence identity with each other and better than 2.5 A
resolutions. The structures that contain missing atoms
and chain breaks are excluded. We also remove the over-
lapped protein chains that are used in the three decoy sets.
The resulting database contains 2352 chains and refers to
PDB25 dataset.
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Generating and converting of profiles

The PSI-BLAST [35] is used to generate the profiles of
amino acid sequences with the default parameter values
except that the number of iterations is set to 10. The search
is performed against the NR90 database that is obtained
by culling the NR database of NCBI using the Perl script
from EBI [66]. The redundant sequences with sequence
identity larger than 90% are removed. The frequency pro-
files are directly obtained from the multiple sequence
alignments outputted by PSI-BLAST. The target frequency
reflects the probability of an amino acid occurrence in a
given position of the sequences. The method of target fre-
quency calculation is similar to that implemented in PSI-
BLAST. The multiple sequence alignments are used to cal-
culate the frequency profiles. The sequence weight is
assigned by the position-based sequence weight method
[67]. Since calculation of target frequencies from the mul-
tiple sequence alignments may be influenced by a lot of
factors including small sample size [68] and prior knowl-
edge of relation among the residues [69,70]. We have
implemented the data-dependent pseudo-count method
to estimate the target frequencies [69]. Given the observed
frequency of amino acid i (f;) and the background fre-
quency of amino acid i (p;), the pseudo-count for amino
acid i is computed as follows:

20
& =21 *(a;/p;) (1)
i=1

where g;; is the score of amino acid i being aligned to
amino acid j in BLOSUMG62 substitution matrix that is the
default score matrix of PSI-BLAST.

The target frequency is then calculated as:

Qi=(ofi+ ) a+p (2)

where « is the number of different amino acids in a given
column minus one and S is a free parameter set to a con-
stant value of 10, the value initially used by PSI-BLAST.

Because the frequency profile is a matrix of frequencies for
all amino acids, it cannot be used directly and need to be
converted into a binary profile by a probability threshold
P,,. When the frequency of an amino acid is larger than P,
it is converted into an integral value of 1, which means
that the specific amino acid can occur in a given position
of the protein sequences during evolution. Otherwise it is
converted into 0. A substring of amino acid combination
is then obtained by collecting the binary profile with non-
zero value for each position of the protein sequences.
These substrings have approximately represented the
amino acids that possibly occur at a given sequence posi-
tion during evolution. Each combination of the twenty
amino acids corresponds to a binary profile and vice

http://www.biomedcentral.com/1471-2105/7/324

versa. Fig. 1 has shown the process of generating and con-
verting the profiles.

Knowledge-based mean force potentials

Similar to the knowledge-based potentials at the residue
level, a class of novel potentials at the profile level is intro-
duced. We developed four types of profile-level statistical
potentials including distance-dependent, contact, ®/¥
dihedral angle and accessible surface statistical potentials.
The difference between the potentials at the residue level
and those at the profile level is that each residue is repre-
sented as a binary profile rather than a single residue. For
the residue-level statistical potentials, the interaction
types are the 20 standard amino acids. While for the pro-
file-level statistical potentials, the interaction types are the
binary profiles. Other parameters are same for the two
kinds of statistical potentials. Such representation con-
tains evolutionary information and provides more dis-
criminative power than the single residue according to the
experimental results.

Distance-dependent potential

The distance-dependent statistical potentials are calcu-
lated as described in [20,22]. The energy of two interac-
tion types (ij) with sequence separation k and distance
interval | is given by:

£ ()
)
where M;;, is the number of occurrences for the interaction
type pair ij separated by k residues in sequence:

EJ (1) = RTIn[1+ Mj,0] - RTIn[1 + M0

I (3)

My, = Y f(i, k1) (4)
=1

where n is the number of classes of distances. o is the
weight given to each observation. o = 1/50 is used for
smoothing [19]. fé] (1) is the relative frequency of occur-

rence for the interaction center type pair ij at sequence sep-
aration k in the class of distance I:

iy = L.k 5
KM —Mijk (5)

(1) is the relative frequency of occurrence for all the

interaction center type pairs at sequence separation k in
the class of distance I:
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T

PHW(BAA)
=5 (6)

T m

22 2 kD)

i=1 j=1k=1

in which r is the number of different interaction center
types and m is the number of classes for the sequence sep-
aration. The temperature T is set to 300 K, resulting in RT
of 0.6 kcal/mole, where R is the gas constant.

Contact potential

The contact potential is obtained by the propensity of
each of the interaction types for each of the contact
number. The contact potential [18] is given by:

Nobs (i'k)

Z Nobs (i' k) / Ncbin
k

E(i,N;) = -RTIn

(7)

where i is the interaction types (amino acids or binary
profiles), N; is the contact number of the interaction
center i. N, (i, k) is the number of observed contacts of
interaction center i with other interaction centers at k'th
bin and N, is the number of contact bins. A contact is
defined by the Ca-Ca distance of two interaction centers
within 8 A. The number of contact bins is set to 25. In the
rare occasions of more than 25 contacts, the statistics is

included in the bin for 25 contacts.

@| ¥ dihedral angle

The ®/¥ dihedral angle potential [18] is obtained by the
propensity of each of the interaction types for each dihe-
dral class. The ®/¥ dihedral angle potential is given by:

Nobs(i/@'(Pi) (8)

z Nobs(if@/(pi)/szin
&.9;

E(i,¢t,¢;) =—RTIn

where i is the interaction type (amino acids or binary pro-
files), ®,, ¥, are the torsion angles at interaction center i.
The torsion potential is the logarithm of the number of
observed occurrence of the interaction center type i at tor-
sion angles of ®;, ¥, [N, (i, ®; ¥;)] normalized by the
averaged occurrence. Each torsional angle is divided into
36 bins. That is, N, is equal to 36.

Accessible surface statistical potential

The accessible surface potential is calculated as described
in [16,20]. The accessible surface of an interaction center
is defined as the number of interaction centers within a
sphere around the center interaction center. The radius of
the sphere is the distance range of the potential. From

http://www.biomedcentral.com/1471-2105/7/324

these distributions, the statistical potential is calculated as
follows:

Nobs (i,s)
ZNobs(irS)/Nsbin (9)

N

E(i,S;) = —RTIn

where i is the interaction types (amino acids or binary
profiles), S; is the number of the interaction center i.
N,ys(i;s) is the observed occurrence of other interaction
center with interaction center i at burial class s. Ng,;, is the
total number of burial classes.

Note that the last three potentials don't use the smoothing
technique that is adopted by the distance-dependent
potential, since the known structures for calculating
potentials are very large. We find that the potentials with-
out smoothing have the same discriminative power as
those with smoothing (data not shown).

Energy and energy Z-score

For distance-dependent potentials, the energy of a protein
structure model is the sum of the individual terms over all
interaction type pair i and j, sequence separations k and
distance classes I:

En= Y, E(ijkl)

i<jkl

(10)

For the contact, accessible surface and ®/¥ dihedral angle
potentials, the energy of the model is the sum of the terms
for all of the residues (residue-level) or binary profiles
(profile-level).

Before an energy is used to discriminate between the good
and bad models, it is transformed into a Z-score of energy
[20]:

7 = Em — 1,
Oy

(11)

where E,, is the energy of the model, 4 and o, are the aver-
age and standard deviation of the reference energy distri-
bution respectively. Two different reference energy
distributions are widely used. The first approach involves
randomization of the order of residues in the tested
model (sequence space reference). The second derivation
of the reference energy distribution keeps the original
sequence, but changes its conformation (structure space
reference). Due to the similar performance [11] and the
relative simplicity, the sequence space reference is applied
here. The randomization procedure is repeated 200 times,
generating 200 reference models.
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Performance metrics
The fractions of the false positives (FP) and false negatives
(FN) are defined as:

B C

FP = , =
B+D A+C

(12)

in which A is the number of true positives (good models
predicted as good), B is the number of false positives
(good models predicted as bad), C is the number of false
negatives (bad models predicted as good) and D is the
number of true negatives (bad models predicted as bad).
The fraction of the Correctly Predicted (CP) cases or the
correct classification rate at the optimal value of the
energy Z-score cutoff is used to assess the performance of
a given statistical potential in fold assessment as follows
[11]:

A'+D

CP=———y—
A+B+C'+D

(13)
in which the prime is used to indicated the corresponding

values at the energy Z-score cutoff that results in the max-
imal correct classification rate.

Receiver operating characteristic (ROC) curves [71] are
also used to assess the statistical potentials. An ROC plot
is obtained by plotting the false negatives fraction against
the corresponding false positives fraction for all cutoffs on
the energy Z-score. The area under the ROC curve repre-
sents the probability of incorrect classification over the
whole range of cutoffs, which ranges form 0 to 0.5. If it is
0.5, the scores for the good and bad models do not differ
(no discrimination power), whereas a value of 0 indicates
no overlap between the two sets of models (perfect dis-
crimination).

For decoy set evaluation, two other performance metrics
are adopted [42]. One is the success rate in native discrim-
inations, which is defined as the overall ratio of native-
rank as top 1 rank. The other is the Z-score of the decoy
set, defined as:

Z — score = (< Edecoy > _Enative)/\/< (Edecoy)2 S_< Edecoy 2 (14)

where <> denotes the average over all decoy structures,
and Enative js the energy of the native structure. Z-score is a
measure of the bias toward the native structure.
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