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Abstract: Obesity is a disease characterized by an inflammatory process in the adipose tissue due
to diverse infiltrated immune cells, an increased secretion of proinflammatory molecules, and a
decreased secretion of anti-inflammatory molecules. On the other hand, obesity increases the risk of
several diseases, such as cardiovascular diseases, diabetes, and cancer. Their treatment is based on
nutritional and pharmacological strategies. However, natural products are currently implemented as
complementary and alternative medicine (CAM). Polyphenols and fiber are naturally compounds
with potential action to reduce inflammation through several pathways and play an important role in
the prevention and treatment of obesity, as well as in other non-communicable diseases. Hence, this
review focuses on the recent evidence of the molecular mechanisms of polyphenols and dietary fiber,
from Scopus, Science Direct, and PubMed, among others, by using key words and based on recent
in vitro and in vivo studies.

Keywords: obesity; inflammation; bioactive compounds

1. Introduction

Obesity has been cataloged as a slow-motion disaster [1], so exhaustive research to
find efficient alternatives against obesity has been the subject of continuous debate. In
accordance with the WHO, worldwide obesity has nearly tripled since 1975 (OMS. Global
Health Observatory [GHO] data, 2019), and has been considered as a public health problem.
Mexico is one of the countries with the highest prevalence of obesity. In addition, obesity is
defined as abnormal or excessive fat accumulation that increases the risk of developing a
secondary disease. Adipose tissue was previously considered as a static tissue (reservoir for
energy). Studies have referred to adipose tissue as a dynamic tissue (metabolically active
organ) [2–4]. The morphophysiological change of adipose tissue during obesity induces a
chronic low-grade inflammatory state, also referred to as parainflammation (intermediate
state between basal and inflammatory) or metainflammation (metabolically triggered
inflammation) [5–7]. On the other hand, visceral adipose tissue could have a local immune
response [8], and it is linked with the stimulation and release of detrimental cytokines
and chemokines implicated in metabolic disorders [9]. In addition, the inflammation
associated with obesity could be triggering other comorbid conditions, such as diabetes,
cardiovascular disease, and cancer, among others [2].
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Some researchers have demonstrated that the consumption of plant-based foods could
decline the inflammation state in obesity due to their content of bioactive compounds.
Bioactive compounds are found in a minor amount in these food items and they have been
reported to be effective in the treatment of obesity [10–14]. Among the compounds reported
with beneficial effects are flavonoids, polyphenols, betalains, and fiber, which have been
studied as factors with probable effects on specific pathways (PPARα, cyclooxygenase-2,
glucose transporter (GLUT4), SIRT1, and PGC1-α) conferring anti-inflammatory activities,
with remarkable implications for health and disease [15–17] Therefore, this review aims to
provide a comprehensive overview of recent studies about the possible role and effect of
specific bioactive compounds on weight management and obesity consequences. Several
investigations have been focused on the research for natural alternatives that, in agreement
with the work, tend to be promising treatments against obesity progression.

2. Physiopathology of Obesity

Energy self-regulation is a complex system that includes coordinated neurogastroin-
testinal and endocrine pathways to maintain adequate metabolism and the use of nutrients.
Peripheral or afferent systems generate signals exerted on adipocytes (secrete leptin: mod-
ulate satiety [18], the pancreas (secretes insulin: regulates the body’s energy supply, cell
growth, and metabolism [19]), the stomach (secretes ghrelin: stimulates appetite [20]), and
the ileum and colon (secrete peptide YY: appetite regulation [21]). These signals are gen-
erated and processed by the arcuate nucleus of the hypothalamus and create new signals
that are subsequently emitted by catabolic and anabolic-type neurons. Finally, the efferent
system, constituted by hypothalamic neurons, is controlled by the arcuate nucleus and is,
therefore, responsible for the effect on food inhibition or intake [22]. Therefore, the effect of
food consumption and a lack of caloric expenditure cause obesity through the development
of the preadipocyte to a mature state. This event occurs through transcription factors, such
as peroxisome proliferator-activated receptor γ (PPARγ), and other transcription factors,
including CCAAT/enhancer-binding proteins (C/EBPs, AP-1), signal transducers and acti-
vators of transcription (STATs), and Kruppel-like factor (KLF), that promote preadipocyte
differentiation into mature adipocytes (adipogenesis) [23]. This mature state is character-
ized by presenting a low-grade chronic inflammation state caused by the accumulation of
proinflammatory macrophages. Immune cells, such as eosinophil, neutrophil, treg cells,
and killer T cells, are also responsible for the secretion of inflammatory cytokines, as well as
proteins, such as galectin-3, and exosomes [24,25]. On the other hand, the presence of obe-
sity also triggers the activation of nuclear factor erythroid-2-related factor 2 (Nrf2), whose
function is characterized by the maintenance of redox and metabolic homeostasis, through
regulating the antioxidant endogenous response and decreased inflammatory stress [26,27].

2.1. Inflammation in Adipose Tissue

Under normal conditions, adipose tissue regulates essential biological processes through
the autocrine, paracrine, and endocrine pathways [28–30]. When obesity occurs, an inflam-
matory process originates, which is known as a low–grade chronic inflammation response of
prolonged time [31], and is the result of increasing fat tissue (hypertrophy related to an increase
in the size of adipocytes and an overproduction of pro-inflammatory mediators by exogenous
or endogenous stimuli, Figure 1) due to excess nutrient consumption [32].
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Figure 1. Adipose tissue inflammation. Excessive growth of adipose tissue in obesity induces the 
production of pro-inflammatory cytokines that activate protein kinase pathways, at the same time 
stimulating macrophage infiltration and a change in the phenotype of M2-type macrophages to pro-
inflammatory M1, leading to an inflammatory state with consequences locally and systemically. 
Tumor necrosis factor-alpha (TNF-α), interleukin-1b (IL-1β), interleukin-6 (IL-6), N-terminal c-JUN 
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gation of inflammatory factors known as adipokines, bioactive molecules responsible for 
the origin of inflammation and insulin resistance associated with obesity [43], segregated 
by adipocytes that include TNF-α, IL-6, IFN-γ, plasminogen activator inhibitor (PAI-1), 
monocyte chemoattractant protein-1 (MCP1), IL-1β, IL-8, IL-10, IL-15, leukemia inhibitory 
factor (LIF), hepatocyte growth factor (HGF), apolipoprotein amyloid A3 seric (SAA3), 
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Figure 1. Adipose tissue inflammation. Excessive growth of adipose tissue in obesity induces the
production of pro-inflammatory cytokines that activate protein kinase pathways, at the same time
stimulating macrophage infiltration and a change in the phenotype of M2-type macrophages to proin-
flammatory M1, leading to an inflammatory state with consequences locally and systemically. Tumor
necrosis factor-alpha (TNF-α), interleukin-1b (IL-1β), interleukin-6 (IL-6), N-terminal c-JUN (JNK),
nuclear factor-kappa kinase inhibitor β (IKK), protein kinase R (PKR). Created with BioRender.com.

On the other hand, inflammation of adipose tissue is also described as a body’s natural
or biological reaction against pathogens and harmful stimuli caused by toxic compounds,
damaged cells, and metabolic factors [33]. There are two types of inflammation: acute
(short time), characterized by edema and the migration of leukocytes; and chronic inflam-
mation (long time), differentiated by a constant secretion of proinflammatory molecules
by lymphocytes and macrophages on blood vessels and connective tissue [33–36]. This
inflammatory response depends on the origin of the initial stimulus, the location of adi-
pose tissue in the body, as well as the mechanism to counteract it. Existing factors that
trigger inflammation, such as (1) cell surface pattern-recognition receptors that detect
different detrimental stimuli; (2) the activation of several inflammatory pathways, such as
the mitogen-activated protein kinase (MAPK), nuclear factor kappa-B (NF-κB), and Janus
kinase (JAK)-signal transducer and activator of transcription (STAT) pathways; (3) the
delivery of inflammatory markers as transcription factors: NF-κB, STAT 3, and inflamma-
tory cytokines (TNF-α, IL-1, IL-6, IL-8), pro-inflammatory enzymes as metallopeptidase-9
(MMP-9), cyclooxygenase (COX-2), vascular endothelial growth factor (VEGF), cell adhe-
sion molecules (CAM), such as VCAM-1 and ICAM-1, etc., and (5) the immune response
by hypoxia-induced factor (HIF) [33,37,38]. Therefore, factors such as the production of
inflammatory intermediaries and dysregulating inflammatory pathways cause the chronic
triggering of collateral injury that then impairs tissue homeostasis, developing several
chronic diseases related to low-grade inflammation (LGI), such as atherosclerosis, type-2
diabetes, gout, and multiple neurodegenerative diseases, that negatively affect people’s
health and life expectancy [17,39–42].

Many studies report that, during this inflammatory process, there is excessive segre-
gation of inflammatory factors known as adipokines, bioactive molecules responsible for
the origin of inflammation and insulin resistance associated with obesity [43], segregated
by adipocytes that include TNF-α, IL-6, IFN-γ, plasminogen activator inhibitor (PAI-1),
monocyte chemoattractant protein-1 (MCP1), IL-1β, IL-8, IL-10, IL-15, leukemia inhibitory
factor (LIF), hepatocyte growth factor (HGF), apolipoprotein amyloid A3 seric (SAA3),
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macrophage migration inhibitory factor (MIF), potent inflammatory modulators, such as
leptin, adiponectin, resistin, and C-reactive protein (CRP), and these maintain both negative
and positive effects, such as the maintenance of oxidative stress, changes in autophagy
patterns, tissue necrosis, etc. (Table 1).

It has been observed that obesity is related to metabolic pathways, food intake, and
energy expenditure (Figure 2), which leads to the alteration of various inflammatory
pathways, such as Janus-N-terminal kinase system/signal transducer and transcription
activators (JNK/STAT), IκB-kinase β, and protein kinase C (PKC) [44,45], Besides an
increased infiltration of cells into adipose tissue [46–49], due to the systemic circulation of
inflammatory factors that stimulate the endothelial cells. Thus, an inflammatory state is
triggered by the relationship between adiposity and metabolic pathways, macrophages,
adipocytes, and other factors [7,28,50]. All of these alterations trigger the development of
other diseases.
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Figure 2. Leptin pathway. Leptin binds to the ObR receptor and JAk-2 transphosphorylation occurs,
translocating the phosphate groups, giving rise to the anchoring and phosphorylation of STAT3.
These STA3 travel to the nucleus, where the transcription of target genes, such as POMC (decreases
hyperphagia) and AgRP (increases food intake), takes place. This pathway can be inactivated by the
interaction of tyrosine-protein phosphatase 3 (PTP3) and suppressor of cytokine signaling 3 (SOCS3),
causing resistance to leptin, resulting in hyperleptinemia, which leads to cardiovascular problems,
such as hypertension, as well as causing a decrease in insulin secretion in β cells. Created with
BioRender.com.

Table 1. Adipokines’ effect on obesity.

Adipokines Segregation Molecules Effect Author

CRP

Increases the expression of vascular cell
adhesion molecule-1 (VCAM-1),
intracellular adhesion (ICAM-1), and
E-selectin in vascular endothelial cells
Increases the secretion of monocyte
chemoattractant protein-1 (MCP-1)

Participates in the coronary and aortic
atherosclerosis that leads to cardiac
events

[51]

TNF-α

Decrease of nitric oxide (NO)
Increase of endothelin1 (ET-1),
angiotensin II (ATII), oxidized
low-density lipoproteins (oxLDL),
ICAM-1, VCAM-1, MCP-1,
CD40/CD40L, and leukocyte adhesion

Increases foam cell formation
Increases smooth muscle cell (SMC)
proliferation and migration
Expansion of the injury area
Increases platelet adhesion
Increases leptin concentration

[52]
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Table 1. Cont.

Adipokines Segregation Molecules Effect Author

IL-6
Increases the concentration of free fatty
acids (FFAs), C-reactive protein (CRP),
and nitric oxide (NO)

Induces insulin resistance
Decreases hepatic insulin clearance,
insulin-dependent hepatic glycogen
synthesis, glucose uptake in adipose cells

[53,54]

IL-1β

Inhibition of the insulin-transduction
pathway
Inhibition of β-cell function
Destruction of β-cell mass
Induces the transcriptional activation of
inflammatory genes

[55,56]

MCP1

Strongly implicated in adipose tissue
macrophage (ATM) recruitment, adipose
expansion and remodeling, and
angiogenesis

[30]

IFN-γ Cytokine secretion

Induces attraction of monocytes towards
the activation of M1-type macrophages
originating from proinflammatory
cytokine secretion

[57]

PAI-1
Increases the proliferation and
migration of smooth muscle cells
(SMCs)

Increases foam cell formation
Increases platelet adhesion (thrombosis)
Inhibition of the residual plasminogen
activator

[58]

Resistin

Increases endoteline-1 (ET-1),
angiotensine (ATII), oxLDL,
intracellular adhesion (ICAM-1),
VCAM-1, MCP-1, CD40/CD40L,
leukocyte adhesion, and VSMC
Stimulates the synthesis and secretion
of cytokines in adipocytes and
endothelial cells

Decreases NO release
Increases in foam cell formation
Increases in proliferation and migration
of SMC and the expansion of injury area
Increases in platelet adhesion and, as a
consequence, thrombosis

[59,60]

Visfatin

Induces ICAM-1, VCAM-1, E-selectin,
IL-8, IL-6, MCP-1, fibroblast growth
factor-2(FGF-2), and metalloproteinase
MMP-2/-9 production
Increases the release of ROS (reactive
oxygen species)

[60,61]

Vaspin

Overexpressed in the obesity state
Induces phosphatidylinositol 3-kinase/
Protein kinase (PI3K/AKT) activation,
increases both glucose transporter type-4
(GLUT4) expression and translocation,
and promotes insulin-stimulated glucose

[62]

Angiotensinogen
Stimulates ICAM, VCAM-1, MCP-1,
and factors stimulant of colonies of
macrophages M-CSF production.

Decreases NO bioavailability
Decreases vasorelaxation mechanisms
and increases platelet adhesion to the
vascular wall

[44,63]

Leptin Increases VCAM-1

In hyperleptinemia, the inflammatory
process increases
Increases oxidative stress
Improves vasorelaxation
Increases vascular permeability

[52,64]
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2.2. Obesity and Its Comorbidities

The development of obesity and body mass index (BMI) are concomitant with several
chronic diseases, such as type-2 diabetes, cardiometabolic diseases (including hypertension,
dyslipidemia, and cardiovascular disease), cancer, non-alcoholic fatty liver disease, among
other less prevalent diseases (Table 2) [65–67].

2.2.1. Type-2 Diabetes

Since the 1990s, observational studies in humans described that plasma biomarkers
of inflammation (CRP and IL.6) are higher in type-2 diabetic patients [68]. Studies in vitro
showed that TNF-α could impair insulin signaling in 3T3-L1 adipocytes, leading to the
reduced expression of insulin receptor substrate-1 (IRS-1) and Glut4 [69]. In the early
2000s, it was reported that obesity increases low-grade inflammation by maintaining
the IKK/NFκB, JNK1/AP1, and PKC pathways [70,71], and this correlates with serum
inflammatory markers in type-2 diabetic patients [72,73].

Kahn and collages described immune cell infiltration as concomitant with cytokine secre-
tion by adipose tissue, leading to insulin resistance by retinol-binding protein 4 (RBP4) [74].
They also that found an upregulation of the fatty acid synthesis pathway in the adipose by
carbohydrate response element-binding protein (ChREBP), a transcription factor that regulates
lipogenesis and glycolysis, leads to GLUT4 overexpression [75].

Chronic obesity progression also induces an inflammatory process in the pancreas
caused by the increased flux of no esterified or free fatty acids (FFA) [74] and the subsequent
penetration of macrophages to increase cytokine infiltration, including TNF-a, IL-6, and
MCP-1 [76], leading to β-cell dysfunction [77]. Likewise, an increase in the glucose and
fatty acid levels activates the inflammasome complex in the pancreas, promoting the release
of proinflammatory cytokines, such as IL-1β, CRP, IL-6, TNF-α, MCP-1, IL-8, and PAI-1,
considered as pro-inflammatory markers in diabetes [43,77–81].

As summarized by Ortega and collages [82], obesity increases chronic inflammation
and cytokine production, which affects insulin-dependent tissues and beta cells; peripheral
tissues are impaired by the lipotoxicity exerted by ectopic lipid stores in obese subjects,
and the increased secretion of a set of autocrine and paracrine products by adiponectin
downregulation finally produces the loss of insulin sensitivity concomitant with impaired
insulin production in type-2 diabetic patients.

2.2.2. Cardiovascular Disease

Cardiovascular disease (CVD) is one of the first causes of mortality in several countries.
Hyperlipidemia, T2D, and hypertension are common pathologies that increase the risk
of CVD, and inflammation is a key mechanism for the progression and complications of
CVD [83].

Factors that are considered key to the development of endothelial dysfunction are
plaque formation and plaque instability, which constitute the main mechanism of vascular
damage in atherosclerotic disease. In people with obesity, there is an activation of the
systemic inflammation unchained from the accumulation of macrophages in adipose tissue
that at the same time stimulate the secretion of pro-inflammatory proteins, mainly TNF-α,
IL-6 and C-reactive protein (CRP), leptin, adipocyte fatty acid-binding protein, and several
novel adipokines, such as chemerin resistin, visfatin, and vaspin. These inflammatory me-
diators are responsible for the induction of CVD, such as plaque formation [84], endothelial
dysfunction [85], and cardiac dysfunction [86].

In a two-decade prospective follow-up study, the cardiometabolic profile (HOMA-IR,
hs-CRP, and serum HDL) was more adverse in recent-onset obesity and persistent obesity
youths (23 years old) compared to never obese participants. However, participants who
had obesity in early childhood or preadolescence but transitioned to a non-obesity status
had similar characteristics to those who were never obese [87]. Therefore, the reduction of
weight gain triggers inflammation and cardiometabolic consequences. In a clinical study in
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adults, the use of an anti-interleukin (IL)-1β antibody in patients with hs-CRP > 2 mg/L
decreased the IL-6 and CRP levels associated with decreased cardiovascular events [88].

2.2.3. Cancer

According to different authors, inflammation linked to obesity is considered a risk
factor that improves the initiation and progression of various types of cancer [89]. The
relationship between obesity and cancer due to alterations such as insulin metabolism,
insulin-like growth factor-1 (IGF-1) axis, sex steroids hormones, adipokines, and chronic
low-grade inflammation, has been investigated, which contribute to the adverse effects of
obesity in cancer development and progression [90,91].

Kolb [92] described that excess nutrients lead to the activation of different metabolic
signaling pathways, cytokine release, hyperplasia, and hypertrophy of adipocytes, which, in
turn, increased macrophages on white adipose tissue, triggering a low-grade inflammatory
response on the organism, promoting a carcinogenic environment.

In addition, the presence of macrophages in obesity causes the infiltration of tu-
mors, and increases the inflammatory tumor microenvironment caused by cytokines,
prostaglandins, and angiogenic factors [93]. On the other hand, the obesogenic status also
increases growth factor signaling and vascular perturbations, provoking microenvironment
changes and inflammation, causing an increased risk of cancer or its progression [93].

2.2.4. Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) is a very complex disorder and is the most
common liver disorder related to T2D [94]. NAFLD is characterized by increased lipid
accumulation and subsequent inflammatory response to progress to liver cirrhosis, fibrosis,
or non-alcoholic steatohepatitis (NASH).

The liver is a metabolic organ that uses fat as fuel during starvation. The increase
in ectopic fat and visceral adipose tissue leads to increased secretion of inflammatory
markers, such as TNF-α, IL-6, CCL3, soluble intercellular adhesion molecule-1 (sICAM-1),
and CRP [95,96].

It has been shown that, during NAFLD, hepatic stellate cells (HSCs) and Kupffer cells
increase the secretion of TNF-α and promote the recruitment of immune cells, perpetuating
the inflammatory process [97]. On the other hand, the cytokines produced from adipose
tissue under obese conditions induce hepatic insulin resistance and fibrosis [98].

Table 2. Obesity and its relationship with other diseases.

Diseases Description Author

Dyslipidemia

This pathology is due to the consequence of lipolysis produced in
the adipocyte, increasing the levels of free fatty acids and increasing
the synthesis of hepatic triglycerides, which, in turn, leads to an
increase in VLDL. On the other hand, the decline in HDL-c is due to
the decrease of Apo A-I, CETP, and LCAT, which inhibits the
expression of ABCA1, ABCG1, and SR-B1. The cytokines and
adipokines are responsible for these alterations in the adipose tissue

[99]

Gallbladder disease
Gallstones originate from the accumulation of cholesterol
monohydrate crystals precipitating in gallbladder bile. Therefore,
an increase in weight stimulates the risk of gallstones.

[100]

Hyperuricemia

An alteration with increased serum uric acid level development to
gout due to monosodium urate crystals depositing mainly in the
joints. These conditions increase with obesity due to the production
of urates.

[101]
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Table 2. Cont.

Diseases Description Author

Osteoarthritis

Although the damage is not clear, it has been found that the
dysregulation of adipokines (adiponectin, apelin, leptin, lipocalin-2,
visfatin, chemerin, and resistin) and cartilage extracellular matrix
degradation in the muscle–skeletal system exerts deleterious effects
on the joint.

[102]

Hypothyroidism

Lower free irosin 4 and higher tirosin-stimulating
Hormone levels are associated with fat accumulation.
Modified thyroid function with normal feedback regulation may be
the cause of alterations in energy expenditure with subsequent
increases in BMI and weight

[103]

3. A Brief Overview of the Properties and Dietary Effects of Some Bioactive
Compounds in Obesity

Due to the complicated pathophysiology of obesity, it is necessary to strengthen the
consumption of a healthy diet based on vegetables to favor a decrease in obesity and
its complications. These diets are characterized by the presence of vegetables, grains, or
legumes containing single or mixed compounds with synergistic effects [104–107]. These
are named bioactive compounds or phytochemicals [108,109], and are found in all plants
as secondary metabolites. The concentration of bioactive compounds (such as fiber dietary,
minerals, vitamins, fatty acids, proteins, some carbohydrates, and polyphenols) varies
depending on the parts of the plant growth phase and the season [110].

3.1. Polyphenol Compounds

Close to 8000 polyphenol compounds have been identified in nature [111], with a
great diversity of structures from simple molecules to polymers with high molecular
weight [112]. Known as structures of aglycones, the number of aromatic rings depends
on the structural elements; polyphenol compounds are classified as flavonoids, phenolic
acids, lignans, stilbenes, alkylphenols, curcuminoids, furanocoumarins, phenolic terpenes,
and others. Polyphenol compounds are the most abundant phytochemicals in fruit and
vegetable-based diets [113,114], and are bioavailable after absorption by the intestine into
the circulatory system, after the ingestion of food. However, its bioavailability is affected
by various factors, such as food processing, the amount of food ingested, interactions with
other molecules, or intestinal factors, which may depend on the pharmacokinetic profile
(absorption, distribution, metabolism, and excretion: ADME) [115,116]. Despite this, recent
studies on the natural bioactive compounds present in foods linked them with effects on
cell functions in obesity, such as a decrease in the inflammatory response [117], inhibit
adipogenesis and lipogenesis [118], induce apoptosis [119], regulation genes involved in
adipogenesis, lipolysis, and fatty acid oxidation [120], and others.

On the other hand, the biological effect of phenolic compounds on obesity, these com-
pounds maintain other functions, such as the regulation of insult oxidative, inflammation,
and autophagy in diabetic nephropathy due to the action mechanism of ferulic acid, which
is based on the regulation of the AGE, MAPK, and NF-kB pathways. Additionally, ferulic
acid inhibits excessive ROS production, stimulates autophagy, and inhibits apoptotic cell
death in a high-glucose environment on cultured NRK-52E cells [121].

Quercetin is effective for gut dysbiosis, improving with the administration of 0.2%,
before antibiotic treatment in mice as it restores the diversity of the gut bacteria as well as
intestinal barrier function [122].

Lignans have been found as a neural protector due to their inhibitory effect on NO produc-
tion in LPS-activated microglia. Other compound derivative-lignans attenuate the production
of NO and PGE2, as well as inhibit the expression of iNOS and COX-2 by suppressing I-kB-a
degradation and the nuclear translocation of the p65 subunit of NF-kB [123].
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3.1.1. Phenolic Acids

Phenolic acids confer health-promoting properties due to antioxidant functions by
the reactivity of the phenol moiety (hydroxyl substituent on the aromatic ring) or electron
donation and singlet oxygen quenching [124–126]. The study conducted by Aranaz [127]
reported that phenolic acids have an inhibitory effect on adipogenesis in 3T3-L1 adipocytes
at three different doses (10, 50, and 100 mM) and remained in the medium for 8 days.
Additionally, this effect was accompanied by the down-regulation of Scd1 and Lpl, and
PPARγ activation by phenolic acid [127]. Another study conducted by Hsu and Yen [128],
concluded that 3T3-L1 adipocytes treated with rutin at doses of 0–250 µM for 12 and 24
h have an inhibitory effect on intracellular triglycerides and glycerol-3-phosphate dehy-
drogenase (GPDH) activity, which could be mediated by a decrease in the expression of
adipogenic transcription factors PPAR-γ and C/EBPR, and leptin, as well as an increase
in the expression of adiponectin [128]. In general, some studies on phenolic acids have
demonstrated the inhibition of macrophage infiltration and inflammatory cytokine release,
such as TNFα, MCP-1, and PAI-1 through NF-kB downregulation [129–131]. On the other
hand, phenolic acids contribute to the increased secretion of anti-inflammatory adiponectin
from adipocytes, avoid adipocyte differentiation, and regulate adverse lipid profiles [129].
There is a wide variety of compounds that maintain positive functions against obesity, as
shown in Table 2.

3.1.2. Flavonoids

The biochemical activities of flavonoids and their metabolites depend on their chem-
ical structure, which may vary with one or more hydroxyl substituents, including their
derivatives. According to different studies, flavonoids have been related to the reduction of
weight due to the loss of adipose tissue [132], β-oxidation stimulation [133], adipogenesis,
and lipogenesis inhibition by decreasing the expression of LPL, SREBP1c, and PPARγ [134].
In addition, flavonoids (25–100 µM) decrease the mRNA expression of adipogenic tran-
scription factors (C/EBPá, PPAR-α, and SREBP-1) on 3T3-L1 cells.

Additionally, it has been reported that flavonoids (quercetin to 10, 50, and 100 µM))
induce the apoptosis of mature adipose tissues through the modulation of extracellular
signal-regulate kinase (ERK) 1

2 and JNK on 3T3-L1 [135]. On the other hand, during
the inflammatory response, flavonoids could inhibit the expression and secretion of pro-
inflammatory cytokines [136]. Therefore, flavonoids have shown a positive effect on obesity
and reduce its complications [137].

3.1.3. Betalains

Betalains are water-soluble and nitrogen-containing pigments, divided into beta-
cyanins and betaxanthins [138]. Normally, they are widely used as colorants. Diverse
studies have indicated that betanin has antioxidant, anti-inflammatory [139], hepatoprotec-
tive [140], anticancer [141], and anti-diabetes activities [142].

3.1.4. Carotenoids

Carotenoids have many effects on obesity, such as restricting the adipogenesis and
hypertrophy of adipocytes [143]. According to Mounien et al. [144], carotenoids downreg-
ulate gene expression in adipocytes through NF-κB and MAPK, or via the transcription
factors implicated in detoxification, such as aryl hydrocarbon receptor (AhR), nuclear
factor erythroid-2-related factor 2 (NRF2), or Pregnane X receptor (PXR). In addition,
they have an inhibitory effect on adipocyte differentiation, anti-adipogenic effects via
the regulation of adipogenic transcription factors, such as C/EBPα (CCAAT/Enhancer-
binding Protein α) and PPAR-γ (Peroxisome proliferator-Activated receptor), reducing
LPS-mediated induction of TNF-α in macrophages via NF-κB and JNK, and attenuating
macrophage infiltration [145], among others. The mechanisms of the action of specific
bioactive compounds on animal models of obesity are summarized in Table 3.
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Table 3. Molecular mechanisms of bioactive compounds on animal models of obesity.

Bioactive Compounds In Vivo Mechanisms of Action Toxicity Author

Phenol acids

Caffeic acid C57BL/6 mice with diet
HFD

The mechanism focuses on an
increase of the phosphorylation of
AMP-activated protein kinase and
decreasing acetyl carboxylase, a
downstream target of
AMP-activated-protein kinase
(AMPK).

No maternal toxicity [145]

Ellagic acid High-fat diet-induced
obesity SD rats.

Decreases the mRNA expression of
Zfp423 and Aldh1a1 (responsibilities
of WAT plasticity) and increases the
mRNA expression of the brown
adipocyte, as well as markers UCP1,
PRDM16, Cidea, PGC1α, and Ppar-α;
and beige markers, including
CD137and TMEM26. It also elevates
the expression of UPC1 in iWAT
(specific protein of brown adipocyte).

No-observed-effect level
3011 mg/kg bw/day
(males)
No-observed-effect level
3254 mg/kg bw/day and
778 mg/kg (females) (rats)

[13,146]

Gallic acid Mice (Swiss) model fed
with high-fat diet

Induces an increase in SIRT1 and
PGC1-α, might be responsible for
thermogenesis activation under a
high-fat diet.

Non-toxic >100 mg /L [12,147]

p-Coumaric acid Mouse model of high-fat
diet-induced obesity

The mechanism of the action on
obesity is mediated by the
mTORC1-RPS6 pathway, regulating
the Ucp1, HSL, and GUT-4 proteins

Low toxicity 2850 mg/kg
bodyweight (mice) [14,148]

Vanillic acid

High-fat diet
(HFD)-induced obese mice
and genetically obese
db/db mice

The mechanism of action is due to
the increase in the cellular NAD
levels, and AMPK activates the
NAD-dependent deacetylase SIRT1,
which results in the deacetylation or
activation of PGC1 and, therefore, a
thermogenic effect.

1000 mg/kg b.w (rats) [149,150]

Flavonoids

Capsaicin

Mouse (Adult male WT
and TRPV1−/−
(B6.129X1Trpv1 tm1Jul/J)
model of HFD-induced
obesity.

Intracellular Ca2+ rises via TRPV1
channels stimulated by CAP,
activating CaMKII/AMPK, which
phosphorylates and activates SIRT-1.
This causes the deacetylation of
PPAR-γ and PRDM-16 and facilitates
their interaction to promote the
browning of WAT (white adipose
tissue).

Oral LD50 118.8 mg/kg
for males and 97.4 mg/kg
for females (mice) Male
rats—161.2 mg/kg, and
female rats—148.1 mg/kg

[151,152]

Anthocyanins

Male C57BL/6J mice fed a
modified AIN-93M control
diet containing high
fat/high cholesterol

Inhibition of IKKε expression in
adipose tissue occurs. Prevents the
action of macrophage infiltration by
attenuating the action of IKKε in
energy preservation.

No toxic effects of
anthocyanins identified
20 mg/kg/d mice; >3 g/d
guinea pigs and rats;
>2.4% body weight in
beagle dogs and 9 g/kg/d
in rats, mice, and rabbits

[153,154]
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Table 3. Cont.

Bioactive Compounds In Vivo Mechanisms of Action Toxicity Author

Pterostilbene Zucker rats (fa/fa) model
of genetic obesity

Present effect thermogenic and
oxidative capacity of brown adipose
tissue, due to increase of gene
expression of Ucp1, peroxisome
proliferator-activated receptor γ
co-activator 1 α (Pgc-1α), carnitine
palmitoyl transferase 1b (Cpt1b),
nuclear respiratory factor 1 (Nfr1),
and cyclooxygenase-2 (Cox2);
PPARα, PGC-1α, p38
mitogen-activated protein kinase
(p38 MAPK), UCP1 and glucose
transporter (GLUT4); and enzyme
activity of CPT 1b and citrate
synthase (CS) were assessed in
interscapular brown adipose tissue.

No significant toxic effects [11,155]

Resveratrol

High-fat diet
(HFD)-induced
adipogenesis and
inflammation in the
epididymal fat tissues of
mice C57BL/6J.

There are changes in the GalR1,
GalR2, PKCd, and p-ERK protein
expressions, with subsequent
changes in the Cyc-D and E2F1
expressions, on galanin-mediated
adipogenesis cascades in the
epididymal adipose tissue. Decrease
adipogenic transcription factors
(PPARg2, C/EBPa, SREBP-1c, and
LXR) and their target genes (FAS,
LPL, aP2, and leptin) were
suppressed. TLR4 uses
MyD88-dependent and
MyD88-independent pathways,
whereas TLR2 signals only in the
MyD88-dependent manner. The
MyD88-dependent pathway uses
TRAF6 and IRF5, leading to its
nuclear translocation and
cooperation with NF-kB. The
MyD88-independent pathway uses
TRIF in activating NF-kB in either a
TRAF6-dependent or
TRAF6-independent mechanism.
TRIF associates with TBK1 and IKKi,
which in turn leads p-IRF3.
Resveratrol limits changes in the
expression of TLR2, TLR4, and
downstream molecules (MyD88,
Tirap, TRIF, TRAF6, IRF5, p-IRF3,
and NF-kB), along with the
subsequent changes in the cytokines
(TNFα, IFNα, IFNβ, and IL-6)
implicated in the TLR2/4-mediated
pro-inflammatory signaling cascades
on adipose tissue

No toxic effect in humans [10,156]



Foods 2022, 11, 1232 12 of 23

Table 3. Cont.

Bioactive Compounds In Vivo Mechanisms of Action Toxicity Author

Curcumin Mice C57BL/6 fed a high
fat diet

There is a suppression of acetyl CoA
conversion to malonyl CoA. Lower
levels of malonyl CoA increase
CPT-1 expression, promoting fatty
acid oxidation. The phosphorylated
AMPK also suppresses the
expression of GPAT-1, which results
in reduced fatty acid esterification.
The phosphorylated AMPK inhibits
PPAR-γ and C/EBP-α transcription
factors.

No toxicity from curcumin [157,158]

Quercetin Diet-induced obese (DIO)
ICR mouse

Blocked protein levels of the key
adipogenic factors C/EBPβ,
C/EBPα, PPARγ, and FABP4, and
the TG-synthesis enzymes lipin1,
DGAT1, and LPAAT.
Inhibited MAPK, ERK1/2, JNK, and
p38MAPK, and MCP-1 and TNF-α in
adipocytes and macrophages

285–3000 mg/kg toxicity
present [159,160]

Apigenin
High-fat diet
(HFD)-induced obese
C57BL/6 (C57) mice

Apigenin binds to
non-phosphorylated STAT3, reduces
STAT3 phosphorylation and
transcriptional activity in visceral
adipose tissue, and consequently
reduces the expression of the STAT3
target gene cluster of differentiation
36 (CD36). The reduced CD36
expression in adipocytes reduces the
expression of peroxisome
proliferator-activated
receptor-gamma (PPAR-γ) which is
the critical nuclear factor in
adipogenesis.

300 mg/kg (mice) No
toxicity [161,162]

Scutellarein
Mouse model of obesity
induced by high-fat diet
(HFD) feeding.

There is suppression of the
expression of cytokine genes TNF-α,
IL-6, IL-1β, ICAM-1, VCAM-1, and
NF-κB.

Minimally toxic or
non-toxic in rodents [163,164]

Luteolin
C57BL/6J mice model of
DIO (diet-induced obesity:
high-fat diet)

It is modulated the TLR signaling
pathway on pro-inflammatory
response. There is a decrease in
EMR1 and CCL7, which impacts
adipose tissue, increases lipolysis
and the TCA cycle, reduces the
pro-inflammatory response,
adipokine dysregulation, adipocyte
macrophage infiltration and
accumulation, fibrosis, pancreatic β
cell dysfunction, hepatic lipotoxicity,
insulin resistance, and chronic
inflammation.
Another mechanism of action is the
interaction in the AMPK/PCG1α.
Elevates the expressions of
thermogenic genes and the activities
of AMPK/PCG1a signaling
molecules.

No adverse effect or
toxicity [165–167]
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Table 3. Cont.

Bioactive Compounds In Vivo Mechanisms of Action Toxicity Author

Chlorogenic acid Caffeine ICR mice with high-fat
diet

Increases AMPK phosphorylation
and p-AMPK up-regulates the
expression of ATGL and HSL,
promoting the hydrolysis of
triglycerides and the release of FA.
Elevates ACO expression by the
activation of AMPK (accelerated
β-oxidation). Down-regulation of
LXR-α and increase in p-AMPK
restrain the expression of SPEBP1c,
thereby down-regulating the
expression of SCD1 and FAS to
inhibit lipid synthesis and regulate
lipid metabolism.

[168]

Catechin, Picatechin,
Procyanidins

High-fat diet-fed C57BL/6
mice

Activated AMPK-α also induces the
expression of UCPs and PGC-1a,
which are involved in energy
expenditure and thermogenesis

[169]

Cyanidin-3 O galactoside
Mice (C57BL/6) model
with high-fat diet-induced
obesity

Related to adipogenesis-related
transcription factors (C/EBPs,
PPAR-γ, and SREBP-1c) and
coactivators (PGC-1α), and the
down-regulation of specific
adipogenesis-related genes affected
by these transcription factors.

[170,171]

Other compounds

Betacyanins High-fat diet
(HFD)-induced obese mice

Reduces HFD-induced body weight
gain, and ameliorates adipose tissue
hypertrophy, hepatosteatosis,
glucose intolerance, and insulin
resistance. Increases the expression
levels of lipid metabolism-related
genes (AdipoR2, Cpt1a, Cpt1b,
Acox1, PPAR-γ, Insig1, and Insig2)
and FGF21-related genes (β-Klotho
and FGFR1/2), and decreases the
expression level of Fads2, Fas, and
FGF21

[171]

3.2. Clinical Evidence

Clinical evidence regarding the effect of bioactive compounds to treat obesity and its
comorbidities is limited compared with animal models of obesity, and clinical results are
not conclusive. Although the evidence suggests that bioactive compounds are not effective
for weight loss in humans, the anti-inflammatory response in the obesogenic state is still a
field of research.

Clinical studies with a combination of bioactive compounds showed controversial
results. In a pilot study, the effectiveness of dietary herbal supplements of rhubarb, ginger,
astragalus, red sage, and turmeric was found to reduce food intake and cause weight
loss in women with a 700 kcal/day diet. After 8 weeks, no changes in weight were
observed [172]. The consumption of two cups of strawberry drinks daily by women with
metabolic syndrome after 4 weeks reduced the levels of oxidized LDL without changes
in CRP and adiponectin [173]. The acute consumption of 250 mL of Hibiscus sabdariffa
calyces (HSC) extract, which is rich in polyphenols, for two weeks was proven in men
with cardiovascular disease to increase the flow-mediated dilatation of the branchial artery.
Although Gallic acid, 4-O-methylgallic acid, 3-O-methylgallic acid, and hippuric acid
reached a maximum plasma concentration at 1 to 2 h post-consumption of the extract,
changes in other clinical parameters and the CPR levels were not observable [174]. However,
the chronic consumption of a combination of bioactive compounds (epigallocatechin gallate,
capsaicin, piperine, and L-carnitine) for 8 weeks in overweight subjects showed diminished
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HOMA-IR, leptin/adiponectin ratio, LDL, ghrelin, and CRP [175]. The evidence suggests
that some combinations could reduce their protective effects in clinical trials.

In trials with a single compound, the protective effect seems to be more evident. In a
double-blind, randomized trial controlled with a placebo, 22 subjects with T2D received
180 mg of ellagic acid per day for 8 weeks and 22 subjects with T2D received a placebo. At
the end of the study, fasting plasma glucose, insulin, HOMAIR, and Fetuin A were reduced
and serum sirtuin1 was increased by the treatment of ellagic acid [176].

In a pilot study with subjects with multiple sclerosis, the consumption of 800 mg epi-
gallocatechin gallate and 60 mL of coconut oil decreased IL6 and the fat percentage [177].
In overweight women and those with obesity, the consumption of epigallocatechin-gallate
and resveratrol (282 mg/d and 80 mg/d, respectively) for 12 weeks did not cause changes in
adipocyte size and distribution, but caused changes in pathways related to adipogenesis (β-
estradiol and Prolactin), the cell cycle and apoptosis were downregulated, as well as oxidative
stress (nuclear factor and erythroid 2-like 2 (NRF2)) and inflammation (TNF-α) [178].

Resveratrol consumption (150 mg/day) has been proven in obese men in a random-
ized double-blind crossover study for 30 days. The effects of Resveratrol were: decreased
intrahepatic lipid content, circulating glucose, triglycerides, HOMA index, systolic blood
pressure, and inflammation markers (CRP). Although changes in the BMI were not ob-
servable, this trial suggests that resveratrol induced metabolic changes in obese humans
mimicking calorie restriction [179].

Another factor to take into account is the possible interference with meals. For exam-
ple, a daily intake of 25 mg of pure (-)-epicatechin (EPI) for two weeks does not reduce
cardiometabolic risk factors in overweight and obese adults [180]. However, the consump-
tion of a higher dose of 100 mg of EPI before meals for 4 weeks showed a significant
reduction in the TG/HDL ratio and hsCRP [181].

Additionally, genetic factors could interfere with the observable effects. In a study
(double-blind, placebo-controlled cross-over trial with 6-week treatment periods separated
by a 5-week washout period) with ninety-three overweight or obese adults with metabolic
syndrome, the effect of 150 mg of quercetin was evaluated. The consumption of quercetin
reduced the systolic blood pressure and plasma-oxidized LDL without changes in serum
TNF-alpha and CRP [182]. This could be explained by a genetic predisposition; Egert and
colleagues reported that the reduction of TNF-alpha was dependent on the apolipoprotein
E genotype [183]. Later, the Egert group studied the effect of the consumption of 162 mg/d
quercetin in overweight-to-obese patients with pre- and stage-1 hypertension, without
changes in systemic and adipose tissue inflammation after 6 weeks of treatment [184].

The use of curcumin in clinical trials has been widely evaluated. The effects of
curcumin in a 6-month randomized, double-blind, and placebo-controlled clinical trial with
subjects diagnosed with type-2 diabetes showed a positive effect on the reduction of the
pulse wave velocity and leptin with increased levels of serum adiponectin [185]. Ganjali
and collages conducted a randomized, crossover, and controlled trial in obese individuals
who consumed 1 g of curcumin daily for 4 weeks. They observed a significant reduction
in IL-1β, IL-4, and VEGF with curcumin consumption [186]. In a study on overweight
girls who consumed 500 mg of curcumin per day for 10 weeks, a reduction in serum IL-6
and CRP was observed [187]. However, in another study, the consumption of 1 g of a
phosphatidylcholine complex of curcumin in individuals with metabolic syndrome resulted
in no changes in the BMI and clinical parameters [188]. Additionally, the use of resveratrol
in combination with curcumin has no impact on the postprandial inflammatory markers of
obese individuals in an acute intervention [189], and the use of curcumin alone or with fish
oil in older overweight adults and those with obesity did not result in additional benefits
to the fish oil alone, which improved dyslipidemia [190].

The use of a network platform has been useful to evaluate the synergistic mechanism
of Sanghuang–Danshen (SD) phytochemicals in the homeostatic protection against high-fat-
induced vascular dysfunction in healthy subjects. The acute consumption of 600 and 900
mg of SD phytochemicals had synergistic effects and fumaric acid, cryptotanshinone, and
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ellagic acid would exert a synergistic influence on vascular health by regulating adhesion
molecule production [191]. Therefore, the use of new bioinformatic tools could be useful
for understanding the interactions of bioactive compounds and their potential effects.

3.3. Antioxidant Fiber Dietary

There is a diversity of plant and by-products that have been considered as potential
sources of dietary fiber and bioactive compounds, in such a way that it has been called
“antioxidant dietary fiber” (ADF) and is defined as a product with a content of natural
antioxidants associated with the fiber matrix [192], which is characterized by the combined
beneficial properties of both dietary fiber and antioxidants [193] and could be considered
as a bioactive compound.

Dietary fiber maintains the functional integrity of the gastrointestinal tract, improves
constipation, improves cardiovascular diseases and diabetes, and reduces the risk of de-
veloping cancer [169,193–196]. The action mechanisms that develop the fiber depend on
the dietary fiber type. A diversity of studies on animals has demonstrated the effect of
consuming dietary for obesity control, as well as to decrease gastric bloating and promote
satiety, through the interaction between fiber (soluble and insoluble) and its contact with
water to increase its viscosity, which will depend on different factors, such as the structure
of the fiber, and the chemical composition, concentration, and molecular weight of the
dietary fiber. Additionally, ADF decreases caloric intake, aids in weight reduction (fat),
induces changes in body fat distribution, decreases the fatty tissues, and even inhibits
glucose absorption, and high cholesterol and triglycerides levels [195,197–205].

Zou et al. [206] reported that insoluble fiber induces the expression of IL-22, which in
involved in reducing the attack on the microbiota due to the building of the epithelium
by the regeneration of crypts and the expression of antimicrobials that protect against a
series of inflammatory processes, such as those produced by obesity [206]. The results
obtained by Sanchez et al. showed that the intake of soluble fiber may enhance the pro-
inflammatory state characterized in obesity [207], as fiber could protect against the oxidative
stress characterized by this pathology. On the other hand, Ma. et al. [208] proved that
soluble and insoluble fiber are related to low CRP concentrations, as fiber decreases lipid
oxidation and, therefore, reduces inflammation. In addition, another study reported that
fiber consumption decreases inflammatory markers due to reduced LPS production and
improves gut permeability [209].

4. Conclusions

The modification of lifestyle is suggested as a treatment for obesity control, mainly
including the consumption of natural foods, which could help to improve health due to
the content of bioactive compounds, such as flavonoids, phenolic acids, or dietary fiber.
In addition, other relevant aspects, such as the bioavailability, metabolic pathways, and
action mechanics, of the resultant metabolites of bioactive food compounds are important
aspects that reduce obesity and its related diseases. However, more research is required
to justify the use, efficacy, and safety of foods with bioactive compounds. Additionally,
clinical validation is necessary with finality to implement correct treatment strategies.
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