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1 | INTRODUCTION

Diabetes is one of the most prevalent chronic diseases, with over 90%
of individuals with diabetes having type 2 diabetes (T2D).! Major car-
diovascular events such as myocardial infarction and stroke are com-

mon in individuals with diabetes and there is a highly significant

Aims: With evidence supporting the use of preventive interventions for prediabetes populations
and the use of novel biomarkers to stratify the risk of progression, there is a need to evaluate
their cost-effectiveness across jurisdictions. Our aim is to summarize and assess the quality and
validity of decision models and model-based economic evaluations of populations with predia-
betes, to evaluate their potential use for the assessment of novel prevention strategies and to
discuss the knowledge gaps, challenges and opportunities.

Materials and methods: We searched Medline, Embase, EconLit and NHS EED between 2000
and 2018 for studies reporting computer simulation models of the natural history of individuals
with prediabetes and/or we used decision models to evaluate the impact of treatment strategies
on these populations. Data were extracted following PRISMA guidelines and assessed using
modelling checklists. Two reviewers independently assessed 50% of the titles and abstracts to
determine whether a full text review was needed. Of these, 10% was assessed by each reviewer
to cross-reference the decision to proceed to full review. Using a standardized form and double
extraction, each of four reviewers extracted 50% of the identified studies.

Results: A total of 29 published decision models that simulate prediabetes populations were
identified. Studies showed large variations in the definition of prediabetes and model structure.
The inclusion of complications in prediabetes (n = 8) and type 2 diabetes (n = 17) health states
also varied. A minority of studies simulated annual changes in risk factors (glycaemia, HbA1c,
blood pressure, BMI, lipids) as individuals progressed in the models (n = 7) and accounted for
heterogeneity among individuals with prediabetes (n = 7).

Conclusions: Current prediabetes decision models have considerable limitations in terms of their
quality and validity and do not allow evaluation of stratified strategies using novel biomarkers,
highlighting a clear need for more comprehensive prediabetes decision models.
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association between glycaemic levels and the development of
diabetes-related complications.?

Early identification and management of individuals at risk of T2D
provides an opportunity to prevent or delay its development. Individuals
with prediabetes, a condition characterized by intermediate hyper-

glycaemia, that is, impaired fasting glucose (IFG) and/or impaired glucose
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tolerance (IGT), are at high risk of developing diabetes. In addition, indi-
viduals with prediabetes may face an increased risk of cardiovascular dis-
ease, early stage nephropathy, chronic kidney disease and diabetic
retinopathy.®

Lifestyle interventions in the form of diet and physical activity*~”
and/or pharmacological interventions®’ have been shown to prevent
or delay the onset of T2D in individuals with prediabetes. New devel-
opments concerning biomarkers for glycaemic deterioration poten-
tially allow a more detailed stratification of the risk of developing
diabetes, its progression and evaluation of novel treatments. 1012
Such risk stratification strategies, based on biomarkers and clinical
characteristics, could allow optimizing the management of individuals
with prediabetes and diabetes based on expected treatment response,
pharmacological or non-pharmacological, the likelihood of developing
diabetes or complications and the potential for disease remission.*>14

As the number of preventive interventions for individuals with predi-
abetes grows, based on risk stratification or not, there is an increased
need to assess whether the potential health gains justify the cost of
implementation. Decision analysis models, based on computer simula-
tions, are well suited to provide such evidence in the setting and time
frame of interest to decision makers.t® This is particularly relevant in pre-
diabetes and diabetes, which develop over a long period of time.>*¢”

Several models have been developed and validated for T2D
populations and used in a variety of ways, such as estimating long-
term clinical outcomes and costs of a clinical trial and aiding decision
makers in choosing between available interventions in these
populations.*®*82° Similar to the situation with T2D, computer
models of prediabetes populations must be clinically credible, based
on the best available evidence, and must be reproducible and vali-
dated against clinical data. Furthermore, novel biomarkers and risk
stratification introduce new requirements for these models, such as
explicit modelling of screening and management of individuals at risk,
simulating glycaemic deterioration trajectories over time and translat-
ing these trajectories into diabetes onset and progression. Evaluating
novel diabetes-prevention programmes requires more comprehensive
models capable of translating changes in several risk factors (eg, BMI,
blood pressure) into lifetime costs and outcomes in a way that allows
the possible inclusion of benefits broader than simply the prevention
of diabetes itself (eg, heart disease, cancer). In addition, it must be
ensured that the estimated prevention of cardiovascular and non-
cardiovascular events is not overestimated in these populations.

The aim of this systematic review was to summarize and assess the
quality and validity of peer-reviewed and published decision models that
simulate progression from prediabetes onset onwards and report health
economics outcomes. We also evaluated the potential of these models
to inform the evaluation of novel prevention strategies that use stratifica-
tion and/or target more than one risk factor. Finally, we identified and
discussed the research gaps to be addressed to inform future evaluations

targeting prediabetes populations, based on computer models.

2 | MATERIALS AND METHODS

The protocol for the literature review was registered in the PROS-

PERO international prospective register of systematic reviews

(registration number CRD42016047228) and has been published else-
where.?* We did not deviate from the published protocol. Briefly, we
searched Medline (via OVID), Embase (via OVID), EconlLit (via
ProQuest) and NHS EED (via the Cochrane Library) between 2000
and 2018 for peer-reviewed studies that reported computer simula-
tion models of the natural history of individuals with prediabetes
and/or used decision models to evaluate the impact of interventions
on these populations. Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines were followed.??
Search terms are described online in Supporting Information
(Appendix S1; Supporting Information Tables SA1.1-SA1.4). Studies
were restricted to those published in the English language since 2000.
No geography restrictions were applied to the search. Abstracts or
conference presentations were not included as these are without suf-
ficient data to allow critical appraisal of the decision models. The ref-
erence lists of the studies identified in the review were also searched,
as well as those of previous literature reviews.

The inclusion criteria used to identify relevant studies were as

follows:

e Studies with decision models of disease progression of prediabe-
tes populations that reported health economics outcomes such as
costs, (quality-adjusted) life expectancy and diabetes-related
complications;

e Studies with model-based economic evaluations of intervention(s)
aimed at prediabetes populations such as cost-consequences,

cost-utility, cost-effectiveness and cost-minimization studies.

Any recognized method of establishing prediabetes in an individ-
ual was considered, including, but not limited to, impaired fasting glu-
cose (IFG), impaired glucose tolerance (IGT), raised fasting plasma
glucose or raised glycated haemoglobin (HbA1c). Studies concerning
pre-existing diagnosis of diabetes were excluded as well as studies in
gestational diabetes or mature onset diabetes of the young (MODY).
Economic evaluations that reported solely short-term outcomes such
as incidence of type 2 diabetes and/or cases detected and costs fol-
lowing screening/detection were excluded.

References were managed using ENDNOTE X7, Thomson
Reuters. Duplicates were removed by one reviewer, after which two
reviewers independently assessed 50% of the titles and abstracts to
determine whether a full text review was necessary. A further 10%
was assessed by each reviewer to cross-reference the decision to pro-
ceed to full review. Any disagreement between the two reviewers
was resolved by inclusion of a third reviewer for assessment.

Data extraction was performed using a standardised form
(Appendix S3). If a decision model was found to be associated with
multiple publications, data were extracted from the study that
described the model in greater detail, the model supported by other
publications and online documentation that was judged to be relevant.
Four reviewers each extracted 50% of the identified studies, with
each study seen by two reviewers. Any disagreements were resolved
by consensus.

The main outcomes analysed were: 1) prediabetes definition
used; 2) model structure and rationale; 3) incorporation of individual

heterogeneity; 4) hierarchy of evidence informing baseline clinical
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data, primary effect size and duration of primary effect, resource use,
costs and quality of life/utilities; 5) model uncertainty and validation.
We used a hierarchy of evidence developed for economic analyses in
which the data source used to inform a certain aspect of the model is
awarded a score of one (highest quality) to six (lowest quality, expert
opinion).2® See “Data Details” in the Data Extraction form for full defi-
nitions of the hierarchy scale and respective rank (Appendix S3).

Two reviewers independently performed a quality appraisal of
the studies. The Philips et al.2* checklist was used to assess the quality
of reporting of the decision models and model-based economic evalu-
ations, as recommended in the Cochrane Handbook for Systematic
Reviews of Interventions.?> The AdViSHE (A Validation-Assessment
Tool of Health-Economic Models for Decision Makers and Model
Users)?® checklist was used to assess model validation. The AdViSHE
checklist was developed to support structured reporting of the model
validation efforts performed and to increase model transparency. For
the current review, it was used as a checklist to determine which
aspects of model validity were reported in the publications. Disagree-
ments were resolved by consensus and arbitration by a third reviewer.
We had problems in consistently scoring the Phillips checklist, given
the potential interpretations of its 57 items and we needed additional
rounds of consensus seeking to reach the final agreement. Findings
from the review were synthesised in a narrative format.

This systematic review is exempt from ethics approval and con-
sent of participants because the work was carried out with published

documents.

3 | RESULTS

A total of 29 studies were identified that reported decision models
simulating prediabetes populations from at least the onset of predia-
betes onwards. Figure 1 shows the flow of studies throughout the
review. An overview of each model is outlined in Table 1, sorted by
year of publication. Models were set in the USA (n=6,
21%),273052424450 the UK (n =3, 10%)>>°2 Australia (n =3,
10%),243746 other European countries (n = 7, 24%)333¢6:39:41:4347.54
the Americas (n = 3, 10%),27*%% Asia (n = 5, 17%)*04849-3355 and in
multiple countries (n = 2, 7%).2831 The type of intervention evaluated
included screening programmes (n = 3, 10%), interventions (lifestyle
and/or pharmacological) (n = 8, 28%), screening plus intervention
(n =17, 59%) and current care only (n = 1, 3%) (more detail in Appen-
dix S2; Supporting Information Table SA.2.1). A total of 14 (48%)
models presented results from the perspective of the healthcare payer
(ie, included medical costs reimbursed by public single payer or third-
party payers); 12 (41%) models used the societal perspective; one
(3%) model used the perspective of the healthcare provider; one (3%)
model did not report the perspective; and one (3%) model did not
include costs. Cohort Markov models (n =12, 41%) and micro-
simulation models (n = 9, 31%) were the most common. The majority
of models implemented an annual cycle length (n =26, 90%),
accounted for costs and outcomes over 20 years or more (n = 20,
69%), and involved cost-utility (n = 23, 79%) or cost-effectiveness
analysis (n = 3, 10%). Almost all studies reported that interventions

were cost-effective relative to usual care or to no intervention
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(n =24, 83%) (Appendix S2; Supporting Information Table SA.2.1).
Only two studies reported that interventions were not cost-effective,
and in three studies no full economic evaluation was performed. Fur-
ther details concerning discounting and model uncertainty are

reported in Appendix S2; Supporting Information Table SA.2.2.

3.1 | Definitions of prediabetes

A total of 21 studies (72%) defined prediabetes using blood glucose
measurement criteria (n = 17) from the American Diabetes Associa-
tion (ADA) (n = 7), the World Health Organisation (n = 5), the Diabe-
tes Prevention Programme (DPP) Trial (n =4), the UK National
Institute for Health and Care Excellence (n = 1) or using blood glucose
values and other risk factors (n =4) (Table 1 and Appendix S2;
Supporting Information Table SA.2.3). Among the 17 studies using
solely blood glucose measurement criteria, prediabetes was defined
according to IGT (n=7), IGT and/or IFG (n =7), HbAlc (n=1),
HbA1lc and/or IFG (n = 1) or IFG (n = 1). Six studies (21%) did not
define prediabetes according to explicit criteria but reported use of
IGT (n = 3), IGT and/or IFG (n = 2) or IFG (n = 1). Finally, two studies
(7%) did not define prediabetes.

32 |

Table 2 highlights aspects of model structure. The Sheffield group
models (Gillett 2015, Breeze 2016) and the CDC/University of Michi-
gan group models (Hoerger 2007, Herman 2005) reported that they

Model structure

explicitly based their diabetes models on previous T2D decision
model(s). Three studies (Gillett 2015, Breeze 2016 and Herman 2005)
developed new T2D model structures but reported these to be based
on previous T2D models, such as Eastman 1997.°¢ The remaining
studies reported an apparently new model structure, with the aim of

addressing their particular research question.
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Complexity of the model structure varied across studies. Table 2
reports the health states explicitly included in the models. All models
simulated progression from prediabetes to T2D and could be catego-
rized into six types of model structure according to the health states
included (Table 2 and Appendix S2; Supporting Information
Figure SA.2). These categories ranged from relatively simple three-
state models (n = 2), with prediabetes, diabetes and death, to compre-
hensive models that also included NGT and complications in non-
diabetes/prediabetes and diabetes states (n = 7).

Modelling of the disease pathway also varied greatly, with
18 (62%) of the 29 models including a screening component and/or
screening costs, 12 (41%) models allowing the individual to regress
from prediabetes to normal glucose tolerance (NGT), four models
(14%) allowing individuals with T2D to return to prediabetes, and two
models (7%) allowing direct progression from NGT to T2D. In models
with a screening component, individuals were mass screened for IGT,
IFG or elevated HbAlc (n = 4), or were stratified before screening (eg,
by age, BMI, diabetes risk score) (n = 11) (Appendix S2; Supporting
Information Table SA.2.1 and SA2.3).

Large variations were seen in the modelling of events and
diabetes-related complications stemming from the defined health
(Table 2 and Appendix
Table SA.2.4). A minority of models allowed the individual to develop

states S2; Supporting Information
complications in a prediabetes state (n = 8, 28%), which were mostly
cardiovascular (eg, myocardial infarction, ischaemic heart disease,
stroke, heart failure). Two models (Bertram 2010 and Breeze 2016)
simulated explicitly the risk of major cardiovascular events (ischaemic
heart disease, stroke, heart failure) in non-prediabetes and non-T2D
populations, and one (Breeze 2016) also simulated non-vascular
events such as cancer (breast and colorectal), osteoarthritis and
depression across all states of glucose tolerance. No other model
incorporated non-cardiovascular events. More models simulated
diabetes-related complications in the T2D state (n = 17, 59%) such as
macrovascular (eg, myocardial infarction, stroke and heart failure) and
microvascular events (eg, retinopathy, nephropathy and neuropathy).
However, the number and type of complications varied across models
as did the sources used to inform the risk of such events (eg, Framing-
ham Heart Study, UKPDS Risk Engine, UKPDS outcomes model,
QRISK2, previous decision models, etc.). Table SA.2.4 in Appendix S2
describes the type of complications simulated by each model, as well
as the respective sources used to inform the risk. In models simulating
complications in both prediabetes/non-diabetes and diabetes states
(n = 8), the incidence of diabetes marked the use of a different source
for risk of complications in six models (75%). Two studies used the
same risk prediction model, with one applying the diabetes covariate
to differentiate risk between prediabetes and diabetes states
(lannazzo 2008), while the other assumed equal risks (Lindgren 2007).

Death was included in the majority of models (n = 26). All models
simulating an NGT health state assumed these individuals to have the
same mortality as the general population, even when allowing for
regression from a prediabetes state. Eleven models explicitly assumed
an increased risk of death in prediabetes populations relative to NGT
or general populations, although there was considerable variation in
the magnitude of the risk (Bertram 2010, Caro 2004, Dalziel 2007,
Herman 2005, Hoerger 2007, lannazzo 2008, lkeda 2010, Neumann

2011, Palmer 2004, Palmer 2012, Smith 2010, Wong 2016). Another
eleven models assumed no increased risk of death in prediabetes
populations (Breeze 2016, Colagiuri 2008, Dall 2015, Gillies 2008, Liu
2013, Mortaz 2012, Neumann 2017, Postmus 2012, Schauffer 2010,
Sullivan 2011, Wong 2017) and the remaining seven models did not

report whether prediabetes carried an additional risk of death.

3.3 | Incorporation of risk factors, novel biomarkers
and individual heterogeneity

Seven of the 29 models simulated annual changes in risk factors such
as glycaemia (HbA1c, FPG, and/or 2-hr glucose), blood pressure (sys-
tolic and/or diastolic), BMI and lipids (total cholesterol and/or HDL) as
individuals progressed in the model (see Table 2 and Appendix S2;
Supporting Information Table SA.2.5 for details). No other biomarkers
informed the models.

The simulated trajectory of the changing risk factors subsequently
informed the risk of onset of diabetes and/or complications. In three
of the seven models (Breeze 2016, Dall 2015 and Eddy 2005) the
impact of interventions was simulated via reduction in risk factors
such as BMI and HbA1c, which then had a knock-on effect on pro-
gression to diabetes and complications. In the remaining 26 models,
the impact of screening and interventions was simulated through a
direct reduction in progression to T2D, which was then translated into
fewer diabetes-related complications, higher life expectancy, better
quality of life and potential cost-savings compared to usual care. One
model (Breeze 2016) also simulated the impact of interventions on
non-diabetes-related complications by further assuming that interven-
tions that reduce BMI could also reduce the incidence of cancer and
severe osteoarthritis, while interventions that reduce progression to
diabetes could also reduce the incidence of severe osteoarthritis and
depression.

Six models (Breeze 2016, Dall 2015, Eddy 2005, Gillett 2015,
Herman 2005 and Hoerger 2007) simulated HbA1c annual deteriora-
tion in T2D populations, of which three (Breeze 2016, Dall 2015 and
Gillett 2015) also simulated HbAlc annual deterioration in non-
diabetes/prediabetes populations, albeit using different risk factors
and equations before diagnosis of diabetes, and after. In pre-
diabetes/non-diabetes populations, the change in HbAlc was also
modelled differently across the three models and depended on risk
factors such as BMI, previous HbA1c value, smoking, alcohol, family
history of T2D, ethnicity, age, sex and total cholesterol values. In dia-
betes populations, five of six models used the UKPDS study (n = 3) or
the UKPDS Outcomes Model (n = 2) to inform annual changes in
HbA1c, with the latter predicting annual changes conditional on previ-
ous HbA1c values, time since diagnosis of diabetes and HbA1c value
at diagnosis. Two models (Breeze 2016 and Eddy 2005) also simulated
annual changes in fasting plasma glucose in non-diabetes/prediabetes
populations, with the latter simulating these changes as a function of
insulin resistance that was assumed to increase with T2D progression.

Table 2 shows that seven studies accounted for heterogeneity
among individuals in a non-diabetes and/or prediabetes health state.
Five of these studies (Breeze 2016, Eddy 2005, Gillet 2008, Dall 2015
and Neumann 2017) allowed the progression to T2D to vary as a

function of factors such as age, sex, ethnicity, marital status, lipid
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levels, plasma glucose levels (IGT, FPG, HbA1c), family history of T2D
and BMI. The remaining two studies (Bertram 2010 and Liu 2013)
explored heterogeneity by varying the risk of progression to T2D by

age group and sex.

3.4 | Hierarchy of evidence informing models

Data from a range of studies were used to inform the prediabetes
models. Table 2 shows that a minority of studies (n = 4) outlined a
systematic method in which data were identified. The hierarchy of
evidence used in the models is summarized in Figure 2, ranging from
high quality (rank 1: eg, meta-analysis or single RCT with direct com-
parison between comparator therapies for effect size) to low quality
(rank 6: expert opinion). The majority of studies (86%) reported use of
high-quality data to inform the effect size estimates. More details are
presented in Appendix S2; Supporting Information Table SA.2.6.

35 |

According to the AdViSHE checklist, 26 21 of 29 studies reported that

one or more validation checks had been performed. However, ten

Model validation

studies that reported on validation limited their reporting to single
tests, such as comparing model outcomes to other similar models.
Two studies (Breeze 2016 and Eddy 2005) presented elaborate valida-
tion efforts on all aspects of the modelling cycle (conceptual model
validation, input data validation, code verification and operational vali-
dation). Appendix S2, Supporting Information Figure SA.2.3, shows
the number of studies that undertook each of the validation tech-
niques outlined in the assessment tool (full results in Appendix S2;
Supporting Information Table SA.2.7).

mYesmNo mNA

26%

STRUCTURE DATA CONSISTENCY

TOTAL

FIGURE 3 Quality of modelling studies according to the Philips
checklist. Legend: A “yes” answer was assigned if a criterion was
fulfilled. A “no” answer was assigned to criteria that were not fulfilled.
NA indicates not applicable

3.6 | Model quality

According to the checklist from Philips et al.?* the percentage of
criteria fulfilled were unequally distributed across studies and dimen-
sions of quality (model structure, model data and model consistency).
Figure 3 shows that, on average across all studies, model structure
ranked the highest, with 64% of criteria for quality being met,
followed by model data (42%) and model consistency (21%). (Full
results in Appendix S2; Supporting Information Table SA.2.8).

4 | DISCUSSION

Given the high cost and burden of diabetes, there is significant inter-

est in identifying strategies that prevent or delay the disease and that

Sita 7% mRank 17
o High
3% 21% m Rank 2
® Rank 3} Medium
m Rank 4
mRank 5 - Low
69% m Rank
21% NR/NA
62%
10%
14%
41%
3%
24%
39% ° 3% 21% 21%
10%
3% 7% 7% °
Pre-diabetes Diabetes Duration of  Effect size Resource Use Costs Utilities
effect

FIGURE 2 Hierarchy of evidence informing the 29 models. Legend: Quality of data input is ranked from 1 (highest: eg, meta-analysis of RCTs
with direct comparison between comparator therapies, measuring final outcomes for effect size) to 6 (lowest: expert opinion). Abbreviations: NR,
data source not reported; NA, not applicable. See Data Extraction form in Appendix S3 for full definitions of each rank
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are cost-effective. Economic decision models simulating disease pro-
gression from normal glucose tolerance throughout the period of pre-
diabetes to diabetes and its complications may support the economic
evaluation of various screening and prevention strategies. Such com-
puter models enable extrapolation from short-term empirical studies
to predict health benefits and cost consequences over the lifetime of
an individual. However, in order to assess stratified prevention strate-
gies, such models should have a scope wide enough to capture the
identification of individuals, their management and their response to
treatment. Also, they should allow individual heterogeneity in risk of
progression, according to biomarkers levels and their changes over
time, to be taken into account. Furthermore, prediabetes models
should consider all relevant outcomes, including onset of relevant
comorbidities, in addition to the onset of T2D.

Our review identified 29 studies that use decision models to pre-
dict the progression of prediabetes and to evaluate prevention strate-
gies. An assessment of these studies indicates considerable limitations
in current models in terms of their quality and validity. Furthermore,
their potential to evaluate the impact of novel biomarkers, and of
stratified prevention strategies using such biomarkers, seems limited,
despite the growing evidence base linking biomarkers to prediabetes
disease progression.10-12

We found that the definitions of prediabetes varied considerably
across the 29 models. Some models defined prediabetes as IGT,
others as IFG, or both. Furthermore, studies used different glycaemic
threshold values to define these states. The variation seemed to be
largely a function of the clinical studies used to inform the model and
their inclusion criteria, as well as changes in the classification and diag-
nosis of (pre)diabetes over time. This is relevant, as disease progres-
sion will differ according to the definition of prediabetes.’® For
example, IFG and IGT are considered distinct pathophysiological
mechanisms and may lead to differing risks of developing diabetes or
complications.® Thus, there is a need for agreement and standardiza-
tion concerning the way prediabetes is defined in these models. This
will also allow a better understanding of their findings, facilitate com-
parisons across models and allow transparent assessments of their
validity. With increasing attention being given to heterogeneity
among individuals with diabetes, heterogeneity in prediabetes may
also require attention and current definitions may need to allow for
larger variety in prediabetes subtypes.>”

The complexity of risk prediction models for diabetes incidence

d°85? were in stark contrast with the

and the variety of covariates use
assumption, made in the majority of models, that the rate of progres-
sion to T2D was constant across the entire prediabetes population.
Furthermore, several well-validated T2D computer models allow pre-
diction of many types of diabetes complications (eg, Ml, stroke, heart
failure, ischaemic heart disease, renal failure, blindness, etc.),* as well

161820 conditional on baseline and/or time variant

as second events,
risk factors (eg, age, sex, cholesterol levels, HbAlc, history of compli-
cations, physical activity, etc.). However, the models identified in this
review did not share the same complexity, and either simulated com-
plications as a whole or simulated fewer complications, or simply did
not simulate any complications. This is probably due, in part, to chal-
lenges in identifying suitable input data sources for prediabetes

populations, as this requires a representative cohort that has been

appropriately tested for prediabetes. While a diabetes cohort can be
relatively easily recruited from diagnosed patients, a prediabetes
cohort inevitably requires some form of screening and a longer follow
up sufficient to identify the onset of diabetes and/or any subsequent
complications.

Changes in glycaemia, blood pressure, BMI and/or lipids were
simulated in seven models, but no other biomarkers were identified in
our review. In terms of glycaemic deterioration, only three models
simulated trajectories of HbAlc in the non-diabetes/prediabetes
populations and based these on different methods and data sources.
However, these models allowed for a discontinuity in disease progres-
sion before and after diagnosis by simulating HbAlc deterioration
after diabetes diagnosis, using risk factors and populations other than
those informing HbA1c progression prior to diagnosis. Furthermore,
of the six models simulating HbAlc deterioration after diagnosis of
diabetes, five used data from a single source, the UK Prospective Dia-
betes Study, and one relied on assumptions. Concern about the lack
of continuity in disease progression extended to the remaining risk
factors being modelled, before and after diagnosis of diabetes. Here,
either the same source was used to inform the trajectories without
any adjustments for progression after diagnosis of diabetes or very
different sources and populations informed trajectories before and
after diagnosis. This makes the case for more comprehensive models
that are capable of better capturing the continuity in disease progres-
sion and, also, of incorporating the identification of novel biomarkers
and the respective development of new risk-stratification tools. Such
models will need to simulate individual-level glycaemic deterioration
trajectories and account for heterogeneity, given that disease progres-
sion and risk of complications depend on a range of factors within pre-
diabetes and diabetes populations.

We found that normal glycaemia, prediabetes and T2D were
largely handled as discrete events in the models. Although this was a
convenient simplification of reality, it fails to model glycaemia deterio-
ration as a continuum of risk and to account for the differing risk
levels of disease progression among individuals with plasma glucose
readings towards the upper limit of the normal range.® Also, with
models informed by a variety of data sources and populations, it may
introduce bias in terms of rates of disease progression when these are
dependent on the study and the population informing the model
rather than on the stage of disease. For example, models predicted
vascular events using risk equations from T2D-only populations (eg,
UKPDS Risk Engine and UKPDS Outcomes Model) together with
equations from populations with subgroups of individuals with diabe-
tes (eg, Framingham Heart Study or QRISK2) depending on whether
the individuals had progressed to T2D. Furthermore, even for models
using the same data source (eg, UKPDS Risk Engine or Framingham
Heart Study) to predict vascular events, validity is likely to vary across
non-diabetes and diabetes populations,®* and we did not identify a
model that used the same data source to inform disease progression
during both prediabetes and T2D.

All interventions under evaluation in the models discussed in this
review required identification of individuals with prediabetes within
the general population. However, several models did not include or
account for identification strategies. This is another necessary layer of

complexity in prediabetes models; in particular, if the usefulness of



LEAL ET AL.

WILEY_L ¢

novel biomarkers is to be evaluated, the screening and identification
of individuals at risk must be accounted for. Furthermore, some inter-
ventions may have an impact beyond diabetes. There is then the
question of how comprehensive the models must be to provide reli-
able estimates for decision making. This reinforces the need for a clear
rationale for model structure, for thorough consistency checks, to
ensure that cardiovascular and non-cardiovascular events are not
overestimated in these populations when informed by varied sources,
and for incorporation of relevant aspects of natural history such as
regression from prediabetes or diabetes, aspects that were largely
ignored by the majority of studies in this review.

The Philips and AdViSHE checklists highlighted concerns about
the data and the validation status of the models. Few studies reported
any model validation, despite ADA guidelines on modelling diabetes.*”
This raises questions about the validity of the models as being repre-
sentative of relevant populations and in providing estimates suffi-
ciently robust to inform policy making.

Previous systematic reviews have assessed economic evaluations
of diabetes prevention programmes, with the aim of comparing cost-
effectiveness results across interventions and studies.®?>7¢¢ Roberts
et al.®® also utilized an ISPOR checklist®” to evaluate the relevance
and credibility of results for policy makers. Our review contributes to
existing reviews as it focuses on the health economic decision models.
It uses recognized modelling checklists2*?® to provide a formal
assessment of the models used to inform decision making in the pre-
vention of diabetes.?°

Our findings highlight the need to develop models that allow pre-
diction of disease progression at an individual level and identification
of new sub-classifications of prediabetes and diabetes based on novel
biomarkers and clinical characteristics. Glycaemic deterioration should
be modelled as a continuum before the diagnosis of diabetes, whether
or not the diagnosis of diabetes implies discrete changes in the risk of
complications, and treatment response should be carefully considered
and validated. To inform these models, prediabetes cohorts with a
follow-up period sufficiently long and measurement rounds suffi-
ciently frequent are needed. To evaluate stratified treatment strate-
gies, models should include sufficient detail all along the simulated
patterns of care, from identification of prediabetes cases to assess-
ment of all relevant outcomes, beyond diabetes per se. Finally, it is
key to perform extended validation of any developed model to assess
robustness and to inform policy.

Concerning strengths and limitations, this is the first systematic
review to critically assess the quality and validation of existing predia-
betes models. It highlights that current prediabetes models have con-
siderable limitations and may not be suitable to evaluate novel
interventions such as those derived from the discovery of new bio-
markers, an area of research that is receiving increased attention. This
review has a number of limitations. First, risk prediction models for
diabetes incidence and budget impact models were excluded from the
review. Prediction models could have provided insights into the vari-
ables that are relevant to economic models that aim to evaluate novel
biomarker strategies,®® whereas budget impact models could have
made apparent the variables relevant to assessment of financial
impact. However, the aims of such models differ from the evaluation

of novel prevention strategies and require different extraction forms,

as well as quality and validation checklists. Second, only studies publi-
shed in English were included in this review. Third, there may be a
degree of publication bias as models that show an intervention to be
cost-effective may be more likely to be published. Finally, the assess-
ment of study quality may be biased as some studies were not
described in full detail because of word count constraints; however, in
the current era of online appendices, this bias should be less relevant.

Findings from this review have identified the need for validation
of existing prediabetes models and for the development of more com-
prehensive models to more accurately evaluate novel biomarker-
based stratified interventions. Furthermore, use of the Philips check-
list demonstrated the lack of quality data being used in current predia-
betes models. Future research can focus on gathering high-quality
data in order to build a more robust decision model.

To conclude, novel biomarkers have the potential to identify cost-
effective strategies that aim to prevent or delay the disease. Current
prediabetes decision models have considerable limitations in terms of
quality and validity, and they are not equipped to evaluate novel bio-
markers for glycaemic deterioration, highlighting the clear need for
the development of more comprehensive prediabetes decision

models.
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