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IPSC-based disease modelling and pluripotency studies have sparked widespread
enthusiasm for more than 16 years of research. All this effort and knowledge have presented
an unprecedented opportunity in high-throughput drug discovery platforms and safety
pharmacology in association with three-dimensional multicellular organoids, personalized
organs-on–chips, gene/base editing, 3D chromatin organization, artificial intelligence, and
high-throughput “omics” methodologies.

In this Special Issue of Cells, four up-to-date reviews on stem cells unravelling the
molecular mechanisms of pluripotency to promote somatic cell reprogramming and its
differentiation potential for clinical applications are published [1–4]. Reprogramming
patient cell lines have become the gold standard, as these cells continue to find new
applications in disease modeling, mechanistic studies, drug development, biobanking, and
therapeutic strategies across a diverse range of pathologies [5,6]. However, for iPSCs to
be used clinically, the optimization of the starting donor cell type and the reprogramming
method must meet certain criteria.

In this Special Issue, Guisseppe Scesa recovers all the information regarding the
different reprogramming methods and highlights the presence of certain epigenetic memory
of those iPSCs in relation to their tissue of origin which conditions their differentiation
efficiency especially at early passages [3,7]. However, broader transcriptional studies
regarding the donor cell type, showed that the tissue of origin accounted for less than 4% for
the transcriptional variation. In contrast, inter-individual genetic variation was responsible
for 38% of the total, with <1% attributable to differences between iPSCs and ESCs [8].
Indeed, differences in gene transcription were maintained throughout differentiation and
clustered with the donor rather than with the tissue of origin, causing a variable outcome
upon differentiation [9]. This constitutes an important factor to keep in mind since such
differences are maintained after transplantation, impacting engraftment and differentiation
potential in vivo [10]. Another point of consideration is that the donor cells should be
mutation free, accessible, and amenable to reprogramming. Overall, the reprogramming
protocol must produce transgene-free iPSCs in a highly efficient manner. There are now
a wide range of methods available to generate iPSCs as Guisseppe Scesa extensively
described in this Special Issue [3]. The episomal-based vector system, as well as the mRNA
system seem to be the most promising reprogramming methods for the clinic. Additionally,
to succeed in the reprogramming process, it is desirable to consider the reprogramming
protocol, the culture media, the cell type, as well as the age and passage number of the
somatic cells. Regarding the culture media conditions, the work performed by Molina-Ruiz
et al. commented here, has shown that the standardization of culture conditions and
the implementation of a Quality Management System (QMS), such as ISO9001-2015 with
routine genomic screening, can significantly decrease the prevalence of genomic alterations
affecting hPSCs used for either research applications and clinical transplantation [11].
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Another thing to consider is that many of the diseases that will be treated with
iPSCs are diseases associated with advanced age like Parkinson, macular degeneration,
etc. Ideally, cell replacement therapies will be done with autologous cells although as a
counterpart aged cells retain their DNA mutations during reprogramming [12]. For this
reason, Mohamed at al. has proposed the use of umbilical cord mesenchymal stem cells
(CT_MSC) as another possible source of young cells for the derivation of histo-compatible
iPSCs, however those cells will not be autologous [13].

As an alternative, the use of patient mesenchymal stem cells (MSCs) has also been
explored as autologous therapy. These cells although they present a limited differentiation
potential, able to differentiate into chondrocytes, osteoblasts, adipocytes, tenocytes, or
myocytes [14], they have shown utility in specific treatments. Proof of that, is the work
presented in this Special Issue by Jacob Mark and collaborators where they explored the
generation of induced pluripotent mesenchymal stem cells (iP-MSCs) for autologous trans-
plantation after irradiation treatment because of certain carcinomas [15]. This mesenchymal
stem cells are relatively easy to reprogram and considering the epigenetic memory they
tend to differentiate back into the mesenchymal estate [16]. Results showed that, although
the iP-MSC did not achieved the complete immunological profile of the MSCs regard-
ing IL-6 and IL-8 cytokine release; they reacquired major functional properties, such as
suppression of CD4+ T cell proliferation.

Although there is still more work to do to fulfill the generalized use of iPSCs in cell
replacement therapies, other field where iPSC is becoming quite useful is their use for
accelerating drug discovery and personalized precision medicines after many cancer treat-
ments. It is well-known that many cancer drugs, are often poorly tolerated by the body,
generating cardiac, liver or kidney toxicity. For this reason, the strategy of biobanking
iPSC-derived cells for testing oncologic treatments is raising interest as these cells are
human-based, patient-derived, and constitute a genetically variable platform that can be
applied to the study of chemotherapy-induced toxicity previously inaccessible through ani-
mal models [17,18]. Dr Lee’s group presents here a great revision about the cardiotoxicity
of antineoplastic therapies and the use of iPCs derived cardiomyocytes for personalized
therapies [1]. Therefore, patient-derived iPSCs show great potential in the field of person-
alized medicine although future efforts should focus on the improvement of the iPSCs
derived cells to resemble more derived accurately mature cells.

To solve this lack of maturity in the iPSC-derived cells, many studies are deepening
about the impact of reprogramming methods and how the cell resets the non-GpG methy-
lation patterns during the reprogramming process [19]. In particular, Andreas Hörnblad
thoroughly reviews the chromatin accessibility, enhancer function and 3D chromatin or-
ganization in the process of reprogramming to pluripotency. All these kind of studies
have allowed us to start identifying non-coding regulatory elements in the genome (e.g.,
enhancers) that control cell-type specific gene expression. The activation of poised ESC-
specific enhancers early in reprogramming seems to allow a quick switch to the active
enhancer state at later stages of reprogramming when it is crucial to efficiently coordinate
the activation and expression of ESC-specific genes. Although what determines the func-
tional interactions between regulatory factors and their target sequences in the genome is
still not completely understood.

For this reason, basic and translation stem cell research need to go together as the
deciphering of the regulatory mechanisms in stem cells through multi-omics assays holds
the key to understand its differentiation potential [20,21]. Nowadays, many studies are
being focused on methylation as histone methylation governs gene expression programs.
Indeed, methylases play an important role in development controlling the balance between
self-renewal and differentiation, which could give us some hits about the reprogramming
process. As an example, Dr. Aguiló brings us all the functional details of the Lysine-specific
demethylase 1 (LSD). The capability of LSD1 to interact with many other proteins explains
the plethora of cellular processes in which this protein participates [2]. In particular, in
stem cells, although LSD1 is not essential for ESC self-renewal it is required for differentia-
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tion [22]. LSD1 is poised at the enhancers of pluripotent factors where p300/HAT inhibits
its activity and, therefore, transcription can occur. During differentiation H3K4me1 LSD1-
mediated demethylation, switches off the expression of pluripotent factors. Understanding
these cellular processes will enhance our differentiation and maturation efficiency. In sum-
mary, coupling iPSC progress with other technologies, such as Crispr-Cas9, 3D organoids,
and microRNA switches, will farther advanced the already rapid pace of iPSC-based dis-
ease modeling and therapeutic development. Accumulating data of cellular phenotypes of
iPSC models from a cross-sectional variety of diseases will significantly contribute to new
stratifications and deep understanding the different diseases, which could also lead to new
cross-sectional treatment approaches for personalized medicine.
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