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Single-cell RNA sequencing (scRNA-seq) technologies have precipitated the
development of bioinformatic tools to reconstruct cell lineage specification and
differentiation processes with single-cell precision. However, current start-up costs
and recommended data volumes for statistical analysis remain prohibitively expensive,
preventing scRNA-seq technologies from becoming mainstream. Here, we introduce
single-cell amalgamation by latent semantic analysis (SALSA), a versatile workflow
that combines measurement reliability metrics with latent variable extraction to infer
robust expression profiles from ultra-sparse sc-RNAseq data. SALSA uses a matrix
focusing approach that starts by identifying facultative genes with expression levels
greater than experimental measurement precision and ends with cell clustering based
on a minimal set of Profiler genes, each one a putative biomarker of cluster-specific
expression profiles. To benchmark how SALSA performs in experimental settings, we
used the publicly available 10X Genomics PBMC 3K dataset, a pre-curated silver
standard from human frozen peripheral blood comprising 2,700 single-cell barcodes,
and identified 7 major cell groups matching transcriptional profiles of peripheral blood
cell types and driven agnostically by < 500 Profiler genes. Finally, we demonstrate
successful implementation of SALSA in a replicative scRNA-seq scenario by using
previously published DropSeq data from a multi-batch mouse retina experimental
design, thereby identifying 10 transcriptionally distinct cell types from > 64,000 single
cells across 7 independent biological replicates based on < 630 Profiler genes. With
these results, SALSA demonstrates that robust pattern detection from scRNA-seq
expression matrices only requires a fraction of the accrued data, suggesting that
single-cell sequencing technologies can become affordable and widespread if meant
as hypothesis-generation tools to extract large-scale differential expression effects.

Keywords: scRNA-seq, NGS, RNA, single cells, heterogeneity, sparsity, reproducibility, hypothesis generation,
transcriptomics analysis, biomarker discovery and validation
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INTRODUCTION

Next-generation sequencing technologies are transforming how
biologists characterize the molecular features of organogenesis
and the composition of heterogeneous tissues; among them,
RNA sequencing (RNA-seq) is one of the most widely adopted
modalities (Mortazavi et al., 2008; Oshlack et al., 2010;
Roy et al., 2011). RNA-seq on cell lines, sorted primary
cells, and bulk tissues can be used to understand how
transcriptional networks regulate cell fate determination and
lineage specification during organogenesis, development, and
disease (Cloonan et al., 2008; Gong et al., 2014; Oikawa et al.,
2015; Li and Bushel, 2016; Li et al., 2017; Huynh et al.,
2018). Yet, although bulk RNA-seq experiments have sufficed
to determine gene expression signatures that underlie whole-
organ physiology, they are inadequate to distinguish critical
transitions in cell type-specific transcriptional dynamics, as they
do without the inherent variation of gene expression across
individual cells.

The traditional approach to interrogate transcriptional
heterogeneity in tissues by RNA-seq relies on purifying
subpopulations of collected cells (McClelland et al., 2015).
However, this can be done only if relevant markers are
known for each cell type in advance. It is also known that
transcriptional output in single cells is exquisitely sensitive to
how they are handled, meaning that the averaged transcriptome
of a sorted cell subpopulation based on stable lineage markers
may not match their gene expression dynamics in vivo (van
den Brink et al., 2017). Single-cell transcriptomics circumvents
many of these obstacles. A diverse catalog of single cell RNA-
seq (scRNA-seq) platforms and workflows is available today,
and still growing, that help reconstruct cell types and lineage
specification processes in heterogeneous tissues at the level of
individual cells (Picelli et al., 2013, 2014; Klein et al., 2015;
Macosko et al., 2015; Cao et al., 2017, 2018; Rosenberg et al.,
2018). Using bioinformatic tools, data from individual cells is
deconstructed, sorted by gene expression similarities, and used
to infer underlying cell types based on patterns of transcriptional
signatures and functional ontology, directly from dissociated
tissues, and without prior cell sorting or biomarker knowledge
(Trapnell et al., 2014; Satija et al., 2015; Briggs et al., 2018;
Farrell et al., 2018).

Still, with access to numerous customizable single-cell
techniques comes new challenges for researchers on analysis of
scRNA-seq data, chief among them data sparsity. In this work,
we introduce a workflow, named single-cell amalgamation by
latent semantic analysis (SALSA), that extract patterns of gene
expression and single cell clusters from scRNA-seq datasets by
leveraging their inherent sparsity. We benchmarked the cell type
discriminative power of SALSA against the publicly available
and widely regarded PBMC 3K standard, a single-run scRNA-
seq reference dataset produced by 10X Genomics from human
frozen peripheral blood (Zheng et al., 2017). After confirming
that PBMC 3K is a scRNA-seq dataset with an ultra-sparse gene-
cell expression matrix, we show how SALSA prioritizes gene
data using statistical reliability metrics. Then, SALSA anchors
clustering and differential expression analysis to a subset of

genes with the most robust measurement features, which we call
Profiler genes, and detects expression patterns that match the
transcriptional signatures and relative abundance of cell types
found in peripheral blood. Most importantly, we show that
the Profiler gene fraction is sufficiently informative to identify
the expected composition of blood cell types in PBMC 3K.
By extension, we conclude that biological insight from similar
scRNA-seq datasets may be at hand once sparsity is accounted
for, and demonstrate it further by applying SALSA to integrate
scRNA-seq data across multiple specimens in an unsupervised
manner using Macosko’s DropSeq mouse retina dataset as test
case (Macosko et al., 2015).

As we interpret it, the task at hand from the perspective
of an experimenter performing scRNA-seq assays has less to
do with establishing an expression atlas, and more to do
with defining the most robust markers to recognize newly
identified cell subpopulations in heterogeneous tissues. If that
goal is attainable using the littlest amount of information
possible, then scRNA-seq can be repurposed to yield manageable
numbers of cell type-specific marker candidates quicker and
with leaner sequencing expenses than in current practice; doing
so affords small research groups with the ability to both
embark in single-cell sequencing technologies and perform
orthogonal confirmatory assays (e.g., PCR panels, ISH) that
validate their findings. In this context, bridging the practical
gaps between scRNA-seq bioinformatics, assay affordability,
and experimental practice requires analytical workflows that
prioritize information maximization rather than expression
matrix completeness—SALSA being one possible embodiment of
such core philosophy.

SYSTEM AND METHODS

Publicly Available PBMC 3K Dataset
From 10X Genomics
Count-level scRNA-seq data for peripheral mononuclear blood
cells of a healthy human subject retrieved from a commercially
available frozen stock (Zheng et al., 2017) is available for
download from 10X Genomics1. Further details on scRNA-seq
library assembly process, sequencing data acquisition, and
single-cell barcode discrimination pipelines are available in the
original publication by Zheng et al. (2017). For our analyses,
we used a consensus curated version of the PBMC 3K dataset,
available online courtesy of Rahul Satija’s research group
at: https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/
pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz.

Publicly Available Mouse Retina
scRNA-Seq Dataset via DropSeq
Raw data was retrieved from NCBI Gene Expression Omnibus
(GEO) under accession GSE63473 (Macosko et al., 2015) and
processed into create an unfiltered gene × cell expression matrix
using Seurat (Macosko et al., 2015; Satija et al., 2015).

1https://support.10xgenomics.com/single-cell-gene-expression/datasets

Frontiers in Genetics | www.frontiersin.org 2 October 2020 | Volume 11 | Article 511286

https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-511286 October 7, 2020 Time: 22:18 # 3

Lozoya et al. SALSA for Sparse scRNA-Seq Analysis

ALGORITHM

A Probabilistic Mixture Model Finds
Informative Subsets Within scRNA-Seq
Expression Matrices
In most instances, massively paralleled scRNA-seq data is
produced using droplet-based encapsulation or split-pooling
methods, resulting in highly dimensional datasets known as
expression matrices, consisting of tallied unique molecular
identifiers (UMIs), which correspond to individual cDNA
starting templates, per sequenced gene and per detected barcode
(Figure 1). Then, the first step in scRNA-seq analysis is to
infer which detected barcodes represent single-cell data. In all
types of scRNA-seq pipelines, barcodes are deemed as single-
cell flags based on context: one cell has less mRNA molecules
than multiple cells, and therefore a single-cell barcode should
be found in less cDNA templates than a multi-cell barcode. In

FIGURE 1 | Basic steps of tissue-to-data process for massively paralleled
single-cell RNA-seq technologies. To assemble an expression matrix for
thousands of cells in a single run, biological specimens are dissociated into
single cell suspensions, partitioned for barcoding and adapterization by
droplet encapsulation (e.g., DropSeq) or split-pooling approaches (e.g.,
sci-RNA-seq), and sequenced with short-read high-throughput SBS
instrumentation.

turn, starting from a minimally degraded specimen, a barcode
representing data from a single cell should encompass more
UMIs than a barcode with data derived only from nucleic acid
debris found in the cell suspension medium. As long as the
cDNA yield in single cells is greater than the density of ambient
debris in the cell suspension medium, distinguishing between
artifactual, single-cell, and multi-cell barcodes should be able to
rely on the disparate apportionment of total UMI counts among
them (Figure 2A).

A useful barcode curation strategy should be widely applicable
for scRNA-seq data from cells compartmentalized by different
techniques. In the past, extreme event models have found broad
applications in diverse research fields, including computational
thread scheduling (Nair et al., 2010) and financial forecasting
in econometrics (Cont, 2001), in which recognizing the advent
of extreme events as they arise is key to decision-making.
In such models, low-valued events are predominant, high-
valued ones are rare, and their probabilistic spreads can be
parametrically described as functions of the inflection point
(scale parameters) and speed of transition (shape parameters)
when moving between low and high values in the distribution
of events (Supplementary Figures S1A,B). We deduced the
behavior of total UMIs per barcode in sc-RNAseq datasets
could match features of extreme value probabilistic models,
and recognized at least two instances in which extreme value
theory could be invoked: multi-cell barcodes are “rare events”
relative to single-cell barcodes on the high-end of total UMI
counts; and single-cell barcodes are “rare” relative to ambient
artifacts at low UMI counts (Figure 2A). If so, we inferred,
a mixture model of 2 or more extreme value distributions
combined, each predominant in different scales of UMI tallies,
could be used as an empirical parametric descriptor of total
UMI counts per cell (or per gene) for the scRNA-seq dataset
altogether. With this in mind, we defined a general two-
component mixture distribution, the PC-PD mixture model
(Supplementary Figure S1A), that bridges two extreme scenarios
to expect from different scRNA-seq techniques: (a) a finite
number of barcodes is available, and all detected artifact and
single-cell barcodes share a similar baseline level of UMI counts
derived from nucleic acid debris throughout the biological
specimen (“noise lifts barcodes,” akin to combinatorial based
scRNA-seq techniques, Frechét distribution); and (b) there are
substantially more artifact barcodes with low total UMI counts
than single-cell barcodes with higher total UMI counts (“noise
gets barcodes,” akin to droplet-based scRNA-seq techniques,
Weibull distribution). Following quantile regression of total
UMI counts per barcode to a parametric 2-component Weibull-
Frechét mixture model and a heavy-tailed Frechét model,
best-fit PC-PD scale and shape parameters are combined
algebraically to project lower and upper bounds for single-cell
total UMI coverage, which estimates the boundaries between
barcodes representing artifacts, cell singlets, and cell multiplets
(Figures 2A,B and Supplementary Figure S1B). Using a similar
logic, we use the same approach to segregate facultative genes
from rare or constitutively expressed ones (Figures 2A,C). From
here on in the analysis, and after having removed “extreme”
tallies that disproportionately weigh on the information density
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FIGURE 2 | Depiction of expression matrix focusing by total per-gene and per-barcode coverage with the parametric PC-PD mixture model. (A) Sorted count data
from scRNA-seq experiments exhibits transitions in total UMI counts per barcode, reminiscent of distinct regimes of UMI density between background (ambient
noise), single-cell, and multi-cell barcodes; total UMI counts per gene exhibit an analogous profile, with distinct regimes between rare, facultative, and constitutively
expressed genes. Latent patterns of expression within gene-cell matrices are most discriminative at the intersection of facultative genes and single-cell barcodes
regimes, referred to as the focused expression matrix. To infer coverage regimes per barcode (B) and per gene aligned (C) from the raw gene-cell expression matrix,
total UMI count data are fit to a 2-component mixture probabilistic parametric model; regime thresholds are defined systematically from estimated scale and shape
parameters. (D) Stratified differential expression analysis starting from a focused expression matrix in SALSA. The flow chart depicts transformations used in SALSA
toward generalized linear modeling (GLM) of expression data, and statistical criteria to extract significant gene subsets with rising statistical stringency.
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inside the scRNA-seq expression matrix, we focus exclusively
on data from “best-guess” single-cell barcodes and facultative
genes to perform downstream unsupervised clustering and
differential expression analysis. A detailed description of count-
level data treatment using the PC-PD mixture model is found in
Supplementary Material.

Differential Expression Analysis of
scRNA-Seq Data Using Single-CELL
AMALGAMATION by Latent Semantic
Analysis (SALSA)
At its core, the SALSA methodology (Figure 2D) prioritizes
information from facultative genes (those most likely to vary
between individual barcodes) and projects it into multivariate
space as an imputable eigenvalue problem. To do so, expression
levels of individual genes (Ensembl annotation) in individual
cells are calculated as the normalized rate of deduplicated
and uniquely aligned UMIs-per-thousand total (UPT) per
cell. Then, SALSA calculates “bulk” expression levels of each
facultative gene (i.e., all single cells added together) to use
as a “reference mean,” extract a best-fit parametric threshold
distribution of expression intensities from the exponential
family of distributions, and fits them against single-cell UPT
rates to determine a linear predictor «B(θ)» of single-cell
expression scores via generalized linear modeling (Nelder and
Wedderburn, 1972). Once transformed into normally distributed
linear predictors, expression scores can be interrogated further
using multivariate analysis and latent pattern detection tools
in common practice. SALSA defines prospective cell clusters
based on «B(θ)» scores via an implicitly restarted Lanczos
bidiagonalization algorithm (IRLBA) coupled with Euclidean
hierarchical clustering (Ward’s method) (Baglama and Reichel,
2005), and then carries out differential expression analysis
between the resulting clusters. Statistical tests of differential
gene expression are performed using a two-way ANOVA model
(gene × cluster blocks) of log2-transformed fold changes in
single-cell UPT rates (Log2FC) relative to the gene reference
mean, weighted for both resolution of mean gene coverage
(such as in the LSTNR method; Lozoya et al., 2018) and for
an often overlooked parameter: gene representation rates within
clusters. Within-cluster gene representation rates are defined
as the ratio of cells with aligned UMIs vs. total cells within
a cluster for each gene. Gene-wise significance of Log2FC
variation based on double-weighed ANOVA tests are adjusted
by the Benjamini-Hochberg method for multiple comparisons
(Benjamini and Hochberg, 1995).

We argue it is critical to consider gene representation
rates when analyzing scRNAseq data because the meaning
of “differentially expressed gene” in bulk vs. single-cell scales
is fundamentally different. Most scRNA-seq data sets exhibit
gene-cell matrices that are not only characterized by their
sparsity (Mohammadi et al., 2018) but also by low gene × cell
UMI counts. For example, knowing whether a target gene is
expressed in similar frequency among cells from two separate
cell subpopulations can be more informative than estimating
whether transcript abundance among expressing cells between

both groups is statistically significant. Without accounting
for gene representation, such a scenario can go unnoticed
in scRNA-seq analyses, particularly if the cells from both
groups express similar numbers of overall transcripts per
cell (equal denominators) and the target gene is transcribed
in similar abundance among expressing cells regardless of
group (equal numerators). Moreover, in cases where UMI
coverage differs substantially between cell subpopulations,
gene representation rates help balance statistical comparisons
to distinguish whether inferred expression differences derive
from true discrepancies in expression rates per cell (different
numerators) or simply reflect overt normalization bias (different
denominators).

Without gene prioritization criteria, it is difficult to anticipate
which statistically significant differences in gene expression levels
are most likely to elicit a functional outcome, can be replicated by
independent scRNA-seq assays, or reproduced using orthogonal
validation techniques. In SALSA, we address this challenge by
sifting SGs through increasingly stringent filters of statistical
significance, including “stress tests” against dynamic ranges
of gene expression measurements, gene representation rates,
and mutual exclusivity tests of expression between cell clusters
(Figures 2D, 3A). For example, we define a signal-to-noise
ratio threshold (SNR = 1) equal to the 95% tolerance interval
(95% TISSR) of log-fold expression residuals around means of
prospective cell clusters. With it, SALSA can identify leveraged
signal-to-noise ratio genes (LSTNRs) as those SGs with mean
log-fold expression levels at SNR > 1 in at least one cell cluster.
Going further, LSTNRs can then be stratified into DEGs (i.e.,
LSTNRs with pairwise significant differences between clusters),
DEGREEs (DEGs with reproducible expectation estimates,
with differences between cell majors greater than SNR = 1)
and finally Profiler genes (DEGREEs that are still statistically
significant even when the effect of gene representation rates per
cluster is ignored).

As differentially expressed genes are sifted through
increasingly stringent filters of statistical significance, “true”
DEGs with higher probability of replication in independent
experiments are retained, and “anecdotal” DEGs particular to
a specimen or experimental batch lose statistical support and
drop out along the SALSA workflow. At the same time, random
effects of sequencing noise are muted. In the end, this gene
stratification results in Profiler genes with large-scale effect sizes,
either because they are only expressed in specific cell clusters,
or because normalized expression levels between clusters
with matching gene representation rates are quantitatively
distinct. Profiler gene sets from SALSA are usually smaller
than gene sets other pipelines report, which is advantageous
for two substantial experimental purposes: being a small set
of genes, validation of scRNA-seq data around Profilers is
affordable; and being statistically significant independent of
gene representation rates, Profilers are prospective biomarkers
with a large probability of success in validation assays using
bulk specimens. We convey gene stratification results hereafter
using a short-hand graphical aid, the “frosty” plot, that illustrates
the transition in data retention across filters of rising statistical
stringency (Figure 3B).
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FIGURE 3 | Facultative gene stratification with the SALSA workflow. (A) Progressive facultative gene strata with increasing levels of prospective experimental
reproducibility. (B) Frosty plot of gene stratification across rising levels of statistical significance. Head (black circle, top), body (largest encasing circle, middle), and
base (dim gray rectangle, bottom) depict the make-up of detected genes from a single-cell library based on their constitutive, facultative, or rarely expressed status;
number of facultative genes admitted past significance criteria in each stratum are also shown as encasing circles with varying sizes and grayscale intensities. Stick
arms flag the gene stratum chosen as the agnostic expression marker gene set for final inferential clustering of single-cell barcodes into cell majors. Retention rates
of input and output single-cell barcodes following gene stratification are represented by the relative heights of stick arms going from 100% of inferred cells with
facultative gene data (left arm) to a subset of inferred cells expressing agnostic markers.

RESULTS

Validation With PBMC 3K, a Standard
scRNA-Seq Reference Dataset
PBMC 3K Exhibits Near-Unary Architecture
To evaluate SALSA, we analyzed a publicly available “silver”
standard dataset that is widely regarded for its single-cell
coverage richness: the frozen Peripheral Blood Mononuclear
Cells data set with 2,700 barcodes (or PBMC 3K) available
through 10X Genomics. This dataset was originally produced
by 10X Genomics from a single Illumina NextSeq 500 high-
output flow cell run (Zheng et al., 2017). As is, the PBMC 3K
set is available in a pre-filtered fashion, in that each of the
represented 2,700 barcodes is presumed to represent a single cell.
Overall, UMIs from single-cell barcodes aligned to 16,634 genes
(hg19 reference).

PBMC 3K has a maximum allocation, or span, of 2,700
barcodes × 16,634 genes = 44.9M available spaces for non-zero
UMI tallies in the gene-cell matrix. Notably, PBMC 3K contained
a grand total of 6,390,631 barcode × UMI combinations which,
once tallied, correspond to ∼2.3M barcode × gene data-positive
UMI counts—accounting for only ∼5.1% of the available span
(Table 1). Such data-positive fraction of PBMC 3K, composed
of tallies of 1 or more UMIs per barcode × gene combination,
was not strewn uniformly in the gene-cell matrix. For example,
of the ∼2.3M data-positive fraction in the PBMC 3K gene-cell
matrix, approximately 70, 12, 4, and 14% had counts of 1, 2, 3, and
4, respectively (Figure 4). Also, 1-valued barcode × gene UMI
tallies contained alignments to 99.7% of all detected genes (16,588
genes), whereas only 23.6% of detected genes (3,929 genes)
were represented in 4+-valued data-positive fields—with an
astounding 84% of those 4+-valued tallies stemming from UMI
alignments to only∼1% of all detected genes (166 genes). Among
those 166 “overrepresented” genes we found 8 protein-coding

mtDNA genes, 75 ribosomal protein subunits, 8 HLA chains,
and housekeeping genes like β-actin, GAPDH, and vimentin
(Supplementary Table S1).

In general, scRNA-seq data like PBMC 3K are compiled
into gene-cell expression matrices which are sparse, dominated
by low-count UMI tallies, and incompatible with traditional
multivariate analytical methods or bulk RNA-seq analysis
pipelines. In our view, such features of scRNA-seq expression
matrices are best handled by dynamic sparsity-tackling algorithm
such as IRLBA, which is designed to handle indexed data in
stacked format (Baglama and Reichel, 2005). In the case of
PBMC 3K analysis with SALSA, our approach meant retaining
only the ∼2.3M data-positive barcode × gene UMI counts
for analysis, a mere ∼5.1% of the data footprint required
by a traditional zero-filled gene-cell expression matrix in
other workflows.

Expression Matrix Focusing of PBMC 3K by
Parametric Sweeping
To determine the best candidate subset of highly variable genes
to use for cell type discrimination and differential expression
analysis in PBMC 3K, we tallied and recorded aggregate
UMI counts per aligned gene, ranked them between those
with low overall detection rates (i.e., rare transcripts) and
extraordinarily high counts at “outlier levels” across the board
(i.e., constitutive genes), and fit their probabilistic spread to
our PC-PD mixture model to implement matrix focusing based
on per-gene coverages (Supplementary Figure S1A). In this
approach, the subset of facultative genes is then chosen by
parametric sweeping as follows: an empirical cut-off for the
minimum gene coverage considered informative is imposed, a
best-fit distribution regression is performed on the coverage rates
of admitted genes, and best-fit PC-PD parameter estimates are
recorded; then, the coverage cut-off is raised, and a new set
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TABLE 1 | Sparsity analysis of the PBMC 3K silver standard dataset by gene stratum.

Total UMI detected 6,390,631

Gene-cell matrix span (16,634 × 2,700): 44,911,800

Data stratum (gene × cell block size | span) # fields % matrix % stack % block span

Total (16,634 × 2,700 | 44,911,800) 2,286,884 5.1% 100% 5.1%

Constitutive genes (252 × 2,700 | 680,400) 536,804 1.2% 23.5% 78.9%

Facultative genes (3,305 × 2,700 | 8,923,500) 1,308,249 2.9% 57.2% 14.7%

SGs (2,519 × 2,700 | 6,801,300) 1,046,003 2.3% 45.7% 15.4%

LSTNRs (2,519 × 2,700 | 6,801,300) 820,191 1.8% 35.9% 12.1%

DEGs (1,244 × 2,700 | 3,358,800) 558,892 1.2% 24.4% 16.6%

DEGREEs (464 × 2,700 | 1,252,800) 209,238 0.5% 9.1% 16.7%

Profilers (462 × 2,700 | 1,247,400) 209,089 0.5% 9.1% 16.8%

Rare transcripts (13,077 × 2,700 | 35,307,900): 441,831 1.0% 19.3% 1.3%

For reference, total accrued data volume metrics are shown (top row, bold) to compare against the Profiler gene stratum fraction used for cell type clustering (penultimate
row, bold).

FIGURE 4 | Graphical representation of data sparsity in the PBMC 3K expression matrix. Dots in the large rectangular frame (top) represent individual count values
throughout the gene-cell expression matrix based on accrued sequencing data; missing data fields are blank. Vertical dotted gray lines demarcate the estimated
boundaries between rare, facultative, and constitutively expressed genes. Make-up of count data values among data-positive fields (top left), with blow-up windows
of ∼300 genes × 230 cells each (bottom) in the PBMC 3K expression matrix for rare, facultative, and constitutive gene regimes at high, middle, and low per-cell total
UMI coverages, respectively.

of best-fit parameters are estimated and recorded (Figure 5A).
After sweeping through all gene coverage values, estimated PC-
PD parameters are plotted across iterations. The plots of evolving
PC-PD parameter values vs. their respective coverage cut-offs
are explored for “spikes,” which highlight steep transitions in
coverage values from rare, facultative, and constitutive genes
(Figure 5B). Such spikes are expectable since the SALSA
parametric sweep uses a continuous-valued best-fit regression
to fit a discrete-valued empirical distribution—i.e., the spikes

stem from numerical solver instabilities that occur when the
admission cut-off lands in between genes whose coverage shifts
suddenly. Last, best-fit PC-PD parameters flanked by “spike”
solutions are used to estimate the range of “inlier” per-gene
coverages that correspond to facultative genes (Figure 5C). In
PBMC 3K, each reported barcode has been scored as a single
cell in advance; thus, no barcode filtering was needed for our
analyses. Because of its parametric nature, we argue our filtering
approach to recognize facultative genes can be implemented in
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FIGURE 5 | Parametric sweeping implementation for facultative gene extraction from the PBMC 3K silver standard dataset. (A) Example quantile plots for PC-PD

mixture model fitting at varying minimum coverage admission thresholds over all 16,634 aligned genes: no threshold (left, black label lettering), 5,749 aligned genes
with > 81 total UMI counts (middle, green label lettering), and 2,494 with > 256 total UMI counts (right, red label lettering). (B) Parametric sweep with rising minimum
coverage admission thresholds per gene of PC-PD and heavy-tailed projection models. Green and red vertical dotted lines demarcate the span of best-fit parameters
for the inferred facultative gene regime, flanked by numerical solver instabilities, that correspond to quantile plots in (B) with matching label colors. (C) Traditional
gene knee plot displays of the PBMC 3K data set with an additional z-axis showing numbers of genes sharing ranking positions (log-scale), showing all detected
genes (bottom left) and highlighting inferred facultative genes (bottom right) through matrix focusing. Inferred facultative genes are shown in a low-to-high total UMI
coverage color gradient (green-to-black-to-red; bottom right).
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FIGURE 6 | Differential expression analysis and cell type inferences in the PBMC 3K dataset using SALSA. (A) Frosty plot of gene stratification across rising levels of
statistical significance in PBMC 3K. (B) Putative cell types matched to cell majors and their inferred transcriptional proximities displayed in latent 2D space by
unsupervised clustering of mean linear predictor estimates «B(θ)» for expression rates of agnostic markers. (C) Heatmap overlay onto two-way clustering
dendrograms from (B) showing increasing quantile scores of Log2FC values relative to library-wise UPT grand mean (tan-to-cyan-to-blue); missing data fields are
shown in black. (D) Violin plots for total UMI coverage per barcode (x-axis) within cell majors; inset legends report total number of barcodes per cell major. (E) Violin
plots of Log2FC values relative to library-wise UPT grand means (x-axis) for 15 landmark expression genes of blood cell types across cell majors in PBMC 3K; inset
legends report total number of barcodes with UMIs for each landmark gene. Relative “yes/no” representation rates of landmark genes, i.e., the ratio of expressing vs.
total cells within cell majors, are illustrated by coloring of violin plot backgrounds: in light gray, majors with high expression levels for a given landmark gene; in dark
gray, majors with high expression levels and representation rates combined. (F) Topographs showing the patterns of expressed landmark gene enrichment across
the latent 2D space map from (B), overlayed with a non-parametric quantile heatmap highlighting “weighed gene expression” scores, i.e., the composite score of
single-cell Log2FC values and within-major representation rates per gene; individual expressing cells are shown as black dots in 2D clustering maps.

a systematic way—without compromising on data individuality
from independent scRNA-seq libraries.

Based on the PC-PD parametric sweep of the PBMC 3K
data set, we partitioned the 16,634 detected genes into three
categories: 13,077 rarely aligned genes (1–168 total UMIs each);
3,305 facultative genes (169–2,799 total UMIs each); and 252
constitutive genes (2,814–161,685 total UMIs each) (Table 1
and Figure 4). The structure of the PBMC 3K data set was
notable in that the data-positive fields were unevenly apportioned
among the three gene coverage regimes. For example, rare
genes portion of the matrix had a 95.8% rate of 1-valued count
fields. SALSA labeled these transcripts as rare because they were

detected few and far between, peppered throughout the matrix
at frequencies reminiscent of indiscriminate sequencing artifacts,
and presumably without apportionment bias among single cells.
In contrast, the constitutive genes portion of the matrix was
dominated by multi-count data-positive fields (20.6 vs. 53.7%
rates of 1-valued vs. ≥ 4-valued count fields, respectively). This
suggests that many of the constitutive genes were often, or
always, detected multiple times in most, if not all, single cells.
Designation of these genes as constitutive is also supported by the
fact that each of the 166 genes designated earlier in the workflow
as “overrepresented,” based on their predominantly multi-count
data make-up, were parametrically assigned to this stratum.
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Everything considered, the 3,305 × 2,700 facultative gene
portion of the matrix accrued more data than the constitutive
and rare gene portions combined. Facultative genes also showed
an intermediate diversity in the make-up of count values with
81.3% of the data coming from 1-valued count fields, 13.5% for
2-valued count fields, and all other fields with 3 or higher UMI
counts (Figure 4). In principle, these data features would suggest
many genes in this subset were detected somewhat frequently
among single cells. Genes in this subset have a gradient of count
values—some cells express them, some do not, and some express
the transcripts at rates that wax and wane.

We propose that parametric focusing of gene-cell matrices for
the PBMC 3K data set, and arguably, for any scRNA-seq data sets,
is a systematic curation strategy that favors retention of diverse
blocks of single-cell expression data for subsequent analysis. This
strategy for data curation strikes a balance between data volume,
computational performance, and statistical variation. Of note, we
did not perform parametric focusing at the barcode level on the
PBMC 3K dataset because the source files we used only reported
single-cell barcodes; even then, parametric focusing on genes
alone identified gene subsets to withdraw from further analysis
and greatly reduced the computational data load. In the PBMC
3K data set, SALSA reduced the data to be analyzed to a ∼1.3M
UMI count stack vs. the original ∼45M zero-filled count matrix
(Table 1). In practical terms, our parametric focusing approach
to pre-processing raw scRNA-seq datasets efficiently distills the
informative fraction of expression data from the prominently
empty-valued matrix for further analyses.

SALSA Identifies Cell Types in PBMC 3K Using Data
From Stratified Facultative Genes Alone
After extracting facultative gene data from PBMC 3K, we used
the SALSA workflow to infer distinct transcriptional groupings
among detected cells and perform differential expression
analyses. Briefly, based on facultative gene data alone, we
identified 2,519 LSTNR genes (Table 1 and Figure 6A) among
7 prospective clusters without barcode dropouts (Table 1). These
clusters were refined into “cell majors” by re-clustering cells based
exclusively on LSTNR gene expression data (Figure 2D). Then,
we recorded how often each LSTNR gene was detected in cells
within a major, combined those representation rates with mean
expression differences between clusters, and stratified LSTNR
gene subsets as a function of their reproducibility potential
in benchtop assays. A detailed description of our analysis
progression is available in the Supplementary Discussion.

The frosty plot for the PBMC 3K data using SALSA-based gene
stratification is shown in Figure 6A. By sequentially “stressing”
statistical comparisons among cell majors from a starting list
of 2,519 LSTNR genes, we sifted the pool down to: (a) 1,244
DEGs, a subset of LSTNRs whose net Log2FC pairwise differences
between cell majors are statistically significant and mutually
exclusive regardless of their location within the dynamic range
of sequencing detection; (b) 464 DEGREEs, a subset of DEGs
with statistically significant pairwise differences greater than the
SNR = 1 noise benchmark between cell majors; and (c) 462
Profilers, a subset of DEGREEs with expression levels between
cell majors that remain statistically significant even if gene
representation rates between separate cell majors are ignored

in the analysis. Notably, even though the number of retained
gene × cell count data fields dropped as the number of genes
decreased between strata (Table 1) our stratification approach
led to a substantial improvement on information density.
Ultimately the 462 × 2,700 Profiler block represents ∼0.5% of
the gene-cell matrix allowance, however, this span is over 3-
times more populated as a subset than the gene-cell expression
matrix overall (outlined in Table 1). These results suggest that
facultative gene stratification retains underlying transcriptional
profiles of single cells, thereby pointing to SALSA successfully
extracting a parsimonious subset of testable, agnostically defined
candidate biomarkers.

To inspect if profiler-based unsupervised clustering reflected
distinct signatures among peripheral blood subpopulations,
we focused on expression data from a reference subset
of 15 “landmark” genes encoding 14 widely recognized
protein markers (Figures 6C,E,F and Table 2). We also
devised “topographs” consisting of neighbor-joining trees that
simultaneously highlight differences in the intensity and
predominance of expressed genes among cell majors (Figure 6F
and Supplementary Figure S2). Altogether, single-cell clustering
based on Profiler genes in the 3K PBMC dataset revealed 7
distinctive single-cell clusters (Figures 6B,C) split into two broad
transcriptome categories: the first one containing both the A-D
ensemble and the intermediate E stem (2,071 cells), and the
second one with the F-G stem (629 cells).

The first transcriptome category hosted 1,864 cells with
transcriptional signatures characteristic of lymphoid-derived
T cells (majors A, C, and E) and B cells (major D); this
contribution is consistent with the reported 4:1 ratio, for cells of
lymphoid vs. myeloid origin in the source PBMC stock (Zheng
et al., 2017). Cells in major B showed expression signatures
corresponding with granulocyte functions cells (Hambleton et al.,
1996; Shi et al., 2004; Wakabayashi et al., 2006; Bednar et al.,
2014; Supplementary Figures S2, S3). When violin plots failed
to highlight differences between majors A, C, and E in the
PBMC 3K data set (Figure 6E), topographs performed better
by simultaneously revealing log-fold expression, representation
rates, and the location of expressing individual cells in clustering
maps for a gene of interest (Figure 6F). By using topographs
for landmark genes (Table 2) we recognized majors E, A and
C as naïve, memory and cytotoxic T cells, respectively, this is
in agreement with varying degrees of enrichment for additional
T cell maturation markers (Supplementary Figure S2; Khattri
et al., 2003; Yagi et al., 2004; Ahlers and Belyakov, 2010; Churlaud
et al., 2015; Hu et al., 2018).

The second transcriptome category constituted majors F
and G. Though similar to granulocytes (cell major B), cells
in major G clustered apart and were also distinct in critical
ways, primarily by their high expression levels of monocytic
and macrophage-enriched genes CD16(FCGR3A) and MS4A4A,
respectively (Figures 6B,C,E; Mandl et al., 2014; Sanyal et al.,
2017; Hu et al., 2018). We concluded that cell major G
represents a combined pool of monocyte-derived subtypes
including monocytes, macrophages, and mono-derived dendritic
cells. Finally, we surmised clustering proximity between majors F
and G may have resulted from converging physiologies. In turn,
we found cells in major F were best matched to lymphoid-derived
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TABLE 2 | Landmark genes, their gene stratum classification by SALSA, and their expression levels among cell types in the PBMC 3K silver standard dataset.

Landmark gene
name [Entrez
symbols]

Gene stratum Naïve T-cell Memory T-cell Cytotoxic
T-cell

B-cell NK cell Granulocytes Monocyte and
M-derivatives

CD3 [CD3D/E/G] DEG ++ ++ +

CD4 Facultative + + ++ ++

CD44 Profiler + ++ + + ++

CD45RA/B/C/O

[PTPRC]
Profiler + ++ ++ +

CD7 Profiler + ++ ++

CD8 [CD8A/B] LSTNR + ++

GZMB Facultative ++

CD19 Rare ++

CD20 [MS4A1] Facultative ++

FcεRI [FCER1A/G,
MS4A2]

Constitutive + ++ ++

LYZ Constitutive + + ++ ++ +

CD14 LSTNR ++ ++

CD16 [FCGR3A] LSTNR ++ ++

MS4A4A Rare ++

natural killer (NK) cells based on some defining features: (1)
a strong ontological relationship with monocytic cell types, (2)
their relative frequency in the data set (∼9% of single cells), and
(3) presentation of innate immunity signatures (Hanna et al.,
2004; Gustafsson et al., 2008; Pokkali et al., 2009; Poli et al., 2009;
Romee et al., 2013; Zheng et al., 2017).

Finally, the segregation of T cell subtypes, B cells, and
antigen-presenting granulocytes under the same transcriptome
category when using the SALSA workflow was consistent with
an underlying and powerful biological feature: those four cell
types constitute the adaptive immune system. Conversely, the
second transcriptome category depicted the main players in the
innate immune response: NK cells and monocyte-derived cells.
We found that unsupervised clustering of single cells inferred
by SALSA recapitulated the expression patterns of traditional
marker genes and proportions of cell types expected from PBMC
specimens without data preconditioning. Thus, by performing
single-cell profiling on the “silver” standard PBMC 3K dataset,
we demonstrate the core strengths of the SALSA workflow. With
SALSA, a minimal fraction of well-resolved expression data from
agnostic Profiler genes successfully sorted like cells, recapitulated
experimentally demonstrated transcriptional signatures, and
retained latent linkages that evoke converging physiologies
among interconnected cell types.

Salsa as an Integrative Workflow for
Replicative scRNA-Seq Analysis
Macosko’s DropSeq Mouse Retina Dataset, a
Reference Multi-Batch scRNA-Seq Experimental
Design
From a reproducibility perspective, identifying candidate
biomarkers from scRNA-seq experiments is best if data from
multiple and independently sequenced specimens (i.e., biological
replicates) from an experimental group can be integrated.

Candidate biomarkers inferred from scRNA-seq that are detected
in all biological replicates are also more likely to succeed in
orthogonal validation assays. SALSA provides the means to
refine the process of identifying candidate biomarkers from
replicative assays even further: it can take independently
sequenced scRNA-seq libraries, determine subsets of replicated
genes ranking at different levels of prospective reproducibility
for each—from facultative to profiler genes—and prioritize
which commonly detected genes to include for an all-at-once
scRNA-seq analyses.

To benchmark how such an integrative approach would
perform in a replicative experimental setting, we analyzed
publicly available scRNA-seq data from a mouse retina profiling
study (Macosko et al., 2015). This dataset offers key advantages to
test integrative performance of scRNA-seq workflows: it contains
data from 7 individual DropSeq libraries, each assembled from an
independent biological specimen, prepared across 4 experimental
rounds (day 1: specimen 1; day 2: specimens 2 and 3; day 3:
specimens 4, 5 and 6; day 4: specimen 7), and sequenced in
separate NextSeq 500 high-output flow cells. Macosko’s retina
dataset compiles > 108M total UMIs aligned to > 21,500
annotated genes (mm10 reference genome).

In dissecting Macosko’s retina dataset, we identified a subset
of 14,472 protein-coding non-ribosomal genes that harbored
UMIs from all independently sequenced libraries (range of
total protein-coding non-ribosomal genes aligned per specimen:
17,959–19,154; median: 18,356). Data from the replicated 14,472-
gene subset were spread across 521,628 barcodes overall (range
of total barcodes per specimen: 40,118–103,602; median: 83,167).
For our handling of the data, we did not assume that UMI tallies
were distributed equivalently between independent libraries in
our analyses; instead, we determined a list of inferred singlets to
include in subsequent analyses by performing PC-PD parametric
sweeps on total UMIs per barcode for each specimen separately.
Using this stratified approach, we inferred 71,917 singlets overall
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(Figure 7A), with a total ∼69.5M UMIs contained within the
replicated 14,472-gene subset and arranged into ∼41.7M non-
zero gene × barcode UMI tallies (1-valued: 72.2%; 2-valued:
16.4%; 3-valued: 5.3%, 4 + -valued: 6.1%). Based on these
metrics, our analytical space for Macosko’s retina dataset started
as a 14,472 × 71,917 gene-cell expression matrix with an
occupancy rate of 41.7M ÷ [14,472 × 71,917] ∼4.0%. Within
this analytical gene-cell expression matrix, 1-valued UMI tallies
(∼30.1M data-positive fields) contained alignments to all genes
in the replicated 14,472-gene subset; in contrast, 50% of all
4 + -valued UMI tallies (∼2.5M data-positive fields) stemmed
from alignments to only 150 “overrepresented” genes (∼1% of
replicated genes), with the rest of 4+ -valued UMI spread among
10,407 other genes (71.9% of replicated genes). As expected,
ontological analysis by Enrichr (Kuleshov et al., 2016) using
the 150 “overrepresented” genes correlated with enrichment
of phototransduction-associated pathways, rhodopsin-mediated
biological processes, and the expression atlas of retinal pigment
epithelia in mice (Supplementary Table S2).

As reported originally (Macosko et al., 2015) we found that
UMIs for Rho transcripts were ubiquitous among all inferred
singlets, which matched with its ranking as a constitutive gene
in all independent specimens. This observation is consistent with
suspected solubilization of transcripts from rod photoreceptors,
the most abundant cells in retina (∼65%), when preparing retinal
cell suspensions. As a result, data from genes highly expressed
in rod cells such as Rho are expected to “bleed-through” across
the expression matrix; along the same lines, we also found
the rod-specific α1-transducin gene Gnat1 (Lin et al., 2013)
displayed constitutive abundance (Figure 7B). In comparison,
the α2-transducin gene Gnat2, a known cell-specific marker of
cone photoreceptor cells (Lin et al., 2013; Ronning et al., 2018),
ranked as a facultative gene across specimens, which can also
be explained by the same logic used for Rho from rod cells but
leading to significantly lower UMI totals due to the few numbers
of cone photoreceptors overall in retina (∼4% of cells) (Jeon et al.,
1998). As counterexample, the closely associated Gnat3 gene,
encoding the α3-transducin subunit, always ranked as a rarely
aligned gene (Figure 7B), which is consistent with its known
tissue-specific expression in taste receptors but not in the eye
(McLaughlin et al., 1992). Altogether, these assessments support
our matrix focusing strategy as a systematic means to prioritize
variable and informative genes in both single- and multi-replicate
scRNA-seq analyses, and discard detected transcripts from rarely
aligned genes that may represent experimental or bioinformatics-
derived artifacts.

Moving into cross-replicate integration, we honed our SALSA
analysis toward a “consensus” subset of facultative genes
(Figure 7C). The consensus facultative gene subset consisted
of 2,223 replicated genes that: (a) ranked as “batch-consistent”
facultative genes for all biological replicates from the same
experimental round (e.g., gene is facultative in all specimens from
day 3); and (b) repeated as “batch-consistent” facultative genes in
most experimental rounds (i.e., in at least 3 out of the 4 days that
DropSeq libraries were prepared). One advantage to this strategy
is that it identifies facultative genes simply by carrying out PC-PD
parametric sweeps on total UMIs per gene for each independent

specimen and requiring no further analysis. Another advantage
is that it devotes computational resources to genes that score
as facultative in a reproducible manner. Also, by representing
an intersection of data from separate specimens, the 2,223-gene
consensus facultative set is smaller than any of the specimen-
specific ones (range of facultative genes per specimen: 40,118–
103,602; median: 83,167) suggesting that experiments with more
biological replicates make for leaner scRNA-seq analyses across
increasingly reproducible genes. Finally, this stratified approach
lowers the probability of bioinformatic inferences reflecting a bias
toward gene expression data from botched biological replicates,
either because relative contributions of facultative genes to
the consensus set become glaringly obvious when a particular
replicate is imbalanced compared to all others, or because genes
with artificially (or artifactually) distorted representation rates in
a particular replicate do not score frequently enough as facultative
among the rest—i.e., they are anecdotal facultative genes, not
reproducible ones.

As a group, the 2,223 consensus facultative genes were
represented in all 71,917 inferred singlets (range of consensus
facultative genes per inferred singlet: 9 – 2,096; median:
227), totaling ∼39.5M UMIs arranged into ∼23.6M non-zero
gene × singlet UMI tallies (1-valued: 67.6%; 2-valued: 19.0%;
3-valued: 6.7%, 4 + -valued: 6.7%) for an occupancy rate
of 23.6M ÷ [2,223 × 71,917] ∼14.8% within the consensus
facultative block of the integrated expression matrix. Following
gene stratification by SALSA (Figure 7D), we reduced the
integrated expression dataset to 623 Profiler genes, expressed
by 64,891 high-confidence inferred cells (i.e., 90.2% singlet
retention rate). Conversely, this result also meant 7,026 initially
inferred singlets dropped out from our analysis; upon further
inspection, we found that inferred singlet dropouts within
all specimens consistently accrued more UMIs (median UMIs
per singlet within specimens: 2,767–3,638) than their retained
counterparts (median UMIs per singlets within specimens: 372–
757) (Figure 7E). Given their large differences in total UMIs
per barcode compared to retained singlets, our analysis suggests
that singlets dropped out after gene stratification with SALSA
likely represent multi-cell barcodes that exhibit similar UMI
counts for profiler genes than single-cell barcodes, but go
on to fail signal-to-noise filtering because their normalized
expression rates are overly “diluted” by their high UMI
counts. This observation would also suggest single cell RNA-
seq datasets contain apparent single-cell barcodes that are
unrecognizable from high-confidence single-cell ones by total-
UMI-per-cell diagnostics alone unless (and until) they are
statistically sieved through signal-to-noise filters based on
normalized gene expression rates. This is an important, but
otherwise inconspicuous, distinction between high-confidence
and apparent single-cell barcodes that SALSA and few (or no
other) scRNA-seq processing methods currently available can
discern, through agnostic and systematic gene stratification, by
unsupervised scRNA-seq expression analysis.

Based on data from the 623 integrated profiler genes expressed
among the 64,891 total cells we recognized in Macosko’s retina
dataset [specimen 1: 6,311 cells (9.7% of total), specimen 2: 10,054
(15.5%), specimen 3: 7,526 (11.6%), specimen 4: 12,576 (19.4%),
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FIGURE 7 | Differential expression analysis and cell type inferences in Macosko’s mouse retina DropSeq dataset using SALSA. Knee plots for (A) detected barcodes
and (B) aligned genes from Macosko et al. (2015) dataset, highlighting inferred singlets and facultative genes by separate parametric sweepings within each
specimen using the PC-PD mixture model. Rankings corresponding to the highest- and lowest-count inferred singlets in barcode knee plots, as well as positions of
Gnat1, Gnat2, and Gnat3 in gene knee plots, are shown for each specimen separately. Plot colors depict specimens collected and processed in each of 4 separate
experimental rounds; total barcodes and genes detected per specimen are shown within each knee plot (top right). (C) Stepwise selection of consensus facultative
gene set used to implement cross-specimen integrative analysis of Macosko’s retina dataset by SALSA. (D) Frosty plot of gene stratification across rising levels of
statistical significance of the integrated Macosko’s retina dataset. (E) Distribution of total UMI per cell rates in dropped vs. retained single cell barcodes per specimen
after integrative gene stratification analysis using SALSA. (F) A set of 10 inferred retinal cell phenotypes across 64,891 retained single cell barcodes in latent 2D
space (main plot; Rod, rod photoreceptors; Cone, cone photoreceptors; R-BP, rod bipolar cells; C-BP, cone bipolar cells; Hz, horizontal cells; Am, amacrine cells;
RG, retinal ganglion cells; Mic/Ast, microglia and astrocytes; Fib/MG, fibroblasts and Müller glia; End, endothelial cells) in relation to 18 agnostically determined cell
majors (inset, grayscale). (G) Violin plots for 64,618 single cell barcodes expressing retinal cell markers. Left-most column: total UMI coverage per barcode; inset
legends report total number of barcodes per phenotype. Rest: weighed expression levels across 13 landmark genes relative to library-wise grand means (x-axis,
dashed line); inset legends report total number of barcodes with UMIs per phenotype for each landmark gene. (H) Contingency plots for contribution per specimen
to each inferred cell phenotype; far right: overall fractions among 64,618 landmark-expressing cells of rod, cone, and all other retinal cells combined.

specimen 5: 11,313 (17.4%), specimen 6: 6,888 (10.6%), specimen
7: 10,223 (15.8%)] SALSA identified 18 agnostic cell clusters that
matched transcriptional profiles of 10 distinctive and previously

reported cell subpopulations in the mouse retina (Figure 7F;
Macosko et al., 2015), as shown by the expression patterns of cell
type-enriched landmark genes among 64,618 (99.6%) of the total
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cells integrated by SALSA (Figure 7G; Furukawa et al., 1997; Jeon
et al., 1998; Koike et al., 2007; Puthussery et al., 2010; Sarin et al.,
2018). Overall, we found that rod and cone photoreceptor cells
accounted for the two most abundant subpopulations among
cells expressing landmarks [Rod: 41,242 cells (63.8% of cells
expressing landmark genes); Cone: 6,945 (10.7%)]; in term of
relative abundance, photoreceptor cells were followed by rod
bipolar [R-BP: 4,145 (6.4%)], horizontal [Hz: 2,918 (4.5%)],
amacrine [Am: 2,599 (4.0%)], endothelial [End: 2,129 (3.3%)],
retinal ganglion [RG: 1,712 (2.6%)], and cone bipolar cells [C-BP:
1,121 (1.7%)], and finally by two mixed-phenotype fractions: one
expressing landmark genes for microglia and astrocytes [Mic/Ast:
953 (1.5%)]; and another expressing fibroblast and Müller glia
signatures [Fib/MG: 854 (1.3%)].

In general, contributions to each cell type from independent
specimens were commensurate to each specimen’s relative
representation within the overall 64,618 integrated cells tally
(Figure 7H). Still, we observed some discrepancies that depended
on the cell type in terms of their relative contributions to the total
cell tally; those discrepancies in cell type-specific contributions
traced back to specific experimental rounds, and included Rod
and C-BP in the sample from day 1 (underrepresented relative to
other inferred cell types from that specimen preparation batch),
RG and Mic/Ast (mostly absent from day 1 data), as well as Cone,
Am, and End cells (disproportionally sourced from the single day
4 specimen) (Figure 7H).

Altogether, the final 623 × 64,891 profiler block from the
integrated expression matrix comprised ∼7.2M UMIs arranged
into ∼5.2M non-zero gene × cell UMI tallies (1-valued: 75.3%;
2-valued: 17.8%; 3-valued: 4.6%, 4 + -valued: 2.3%) for an
occupancy rate of 5.2M ÷ [623 × 64,891] ∼12.9%, i.e., over
3-times more populated than the 14,472 × 71,917 replicated
gene-cell expression matrix overall (4.0% occupancy rate, as
previously stated). Put in perspective, the ∼5.2M non-zero
UMI tallies within the 623 × 64,891 integrated profiler block
represent ∼0.5% of the allowable 14,472 × 71,917 real estate
inside the replicated gene-cell expression matrix at the start of the
analysis, and 0.07% if considering all 521,628 barcodes expressing
replicated genes prior to barcode filtering; similarly, the total
∼7.2M UMIs tallied within the 623 × 64,891 integrated profiler
block represent ∼10.4% of the total 69.5M UMIs represented in
the replicated gene-cell expression matrix, and less than 7% of the
total UMIs aligned in the study.

DISCUSSION

Merits of scRNA-Seq Data Analysis as a
Latent Variable Extraction Problem
In addition to housekeeping genes that satisfy basic survival
needs, different cell populations within a multicellular system also
express specialized genes that perform key roles. Historically, cell
types are defined around specialization genes whose expression is
detected reliably and with the largest variation among individual
cells. Following similar logic, the governing principle behind
SALSA is also that of parsimony: SALSA explores transcript
counts from sc-RNAseq expression matrices, extracts a facultative

subset of highly variable genes, and anchors differential single-cell
expression analysis around them. Afterward, SALSA advances
statistical metrics to qualify measurement reliability across
facultative genes, ending with minimal sets of reproducible and
cell type-specific Profiler genes to validate independently with
bioinformatics-free assays.

SALSA, like other recently reported tools for unguided
bioinformatic inferencing of hierarchical associations in biology
(Cong et al., 2016; Moussa and Mandoiu, 2018), leverages the
concepts behind latent semantic analysis (LSA) methods: the
concepts of “genes” and “single cells” found in scRNA-seq
data can be thought of as interchangeable with the concepts
of “terms” and “documents” in natural language processing
algorithms (Luhn, 1958; Salton and Buckley, 1988; Sparck-
Jones, 2004; Wu et al., 2008). Both SALSA and LSA perform
eigenvalue optimization driven by explicit count data in ultra-
sparse matrices using “local” measures of relative frequency for
gene/term counts in a cell/document, such as UMI-per-thousand
(UPT) or count-per-document total scaling. Additionally, both
SALSA and LSA implement “global” weight systems to adjust
for the overall frequency of a gene/term vs. all order gene/terms
detected anywhere. SALSA and LSA differ in how they compile
the preponderance of detected gene/term counts into a useful
statistical kernel. In LSA, “global” weights are used to adjust for
the incidence of terms throughout a known corpus of documents
ahead of inferential testing, with the inverse document frequency
being the most commonly used “global” weighting statistic. In
the SALSA workflow, normalized expression values are estimated
from counts of UMIs which must initially be deduplicated,
disambiguated, and ascribed to an unknown number of single
cells. These values are inferred from a pool of observed barcodes
and then must be empirically transformed into linearized and
normally distributed metrics via generalized linear modeling
(Nelder and Wedderburn, 1972; Aitkin and Clayton, 1980;
Bullard et al., 2010; Hansen et al., 2011; Oberg et al., 2012; Li and
Tibshirani, 2013; Law et al., 2014; Finotello and Di Camillo, 2015;
Li and Bushel, 2016; Lozoya et al., 2018).

The implementation of SALSA as a latent variable extraction
problem confers two major advantages to scRNA-seq data
analysis: it reduces the number of genes needed for inferential
testing and increases statistical robustness. By handling the
data in this way, we introduce expression transformants that
lend single-cell DEG extraction with statistical compliance. In
addition, with this approach we can utilize highly efficient and
widely available multivariate analyses algorithms that rely on
linearity and homoscedasticity assumptions, such as ANOVAs
and hierarchical clustering.

Extending Latent Variable Extraction
Methods Like SALSA to scRNA-Seq
Analyses
To date, the predominant approach to circumvent scRNA-seq
data sparsity is by assembling a single gene × cell expression
matrix (regardless of experimental replication) in which empty
data blocks, or “dropouts,” are artificially filled in with zeros
(Shalek et al., 2013; Wu et al., 2014; Zilionis et al., 2017;
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Zhang et al., 2018). Instead, SALSA combines highly efficient
SVD-driven algorithms for sparse matrix imputation and
latent variable extraction techniques per individual biological
replicate, which do without artificial zero-inflation, yields smaller
gene expression files, and cuts down on the computational
footprint required by conventional scRNA-seq data post-
processing workflows (Baglama and Reichel, 2005; Picelli, 2017;
Haghverdi et al., 2018; Qiu et al., 2018; Zhang et al., 2018).
Critically, the methodological enhancements in SALSA prioritize
expression data from genes expressed with enough diversity
and prevalence—e.g., abundant in some cell subsets within a
multicellular specimen but not others—as well as consistently
across replicates, that they are more likely to be detected
by alternative and less bioinformatics-dependent benchtop
techniques in targeted biomarker confirmatory screens.

Experimentally, the probability of capturing transcripts that
encode cell type-specific proteins from individual cells within
a cell type-specific phenotype is not only stochastic, but also
in an active “trade-off” against available intracellular protein
stocks (Raj et al., 2006; Liu et al., 2016; Moulana et al., 2018;
Hausser et al., 2019; Larsson et al., 2019). In scRNA-seq data, this
phenomenon presents as gene × cell expression matrices with
ultra-sparse contents and high dropout rates (Mohammadi et al.,
2018). Some argue that sparse expression matrices populated only
with 1-valued count data suffice to yield statistical insight (Zhang
et al., 2018). In our study, we further show that even in reference
scRNA-seq benchmark datasets (Macosko et al., 2015; Zheng
et al., 2017) which we analyzed and integrated satisfactorily
by SALSA, gene × cell expression matrices have near-unary
structure, i.e., almost all accrued count data having values of 1,
and dropout rates well over 90% of the gene × cell matrix real
estate. Given this backdrop, we anticipate SALSA can analyze
other scRNA-seq datasets meaningfully if their gene × cell
expression matrices show similar information content densities,
and may even improve on predictive biomarker extraction from
scRNA-seq experiments in the future as transcript retention
rates rise with newly enhanced scRNA-seq benchtop chemistries
(Di et al., 2020).

SALSA differs from other scRNA-seq workflows in the way
it exploits gene representation rates. In other workflows, the
inability to dissect expression differences between cell subsets
derives from large differences in their UMI totals, which inflates
normalized expression rates in single cells with low UMI counts
and dilutes them in cells with high ones. We argue that
it is critical to consider gene representation rates not only
because of the general sparsity of scRNA-seq datsets, but also
due to fundamental differences in what defines a DEG in
bulk vs. single-cell scales. In bulk RNAseq, the contribution
of transcripts from individual cells to a grand total within a
cell conglomerate is “averaged out” and compared to those
from other cell conglomerates as a continuum. In scRNA-seq
data, “average” expression differences between cell conglomerates
can result from having all cells from one group expressing
less transcripts than all cells in another, having transcripts
scattered unevenly or in different proportions between two cell
groups that express them, or a combination of both cases.
In SALSA, we seek to bridge between bulk and single-cell

scales by weighing normalized per-cell expression rates with
cluster-level representation rates for each individual gene. By
doing so, scRNA-seq data is collapsed into “pseudo-bulked”
RNA-seq data compartments, defined by single-cell clusters,
and akin to performing independent RNA-seq assays on sorted
cell subpopulations. Once again, this approach defines a cell
sorting strategy that can be corroborated experimentally using
bioinformatics-free methods.

SALSA: A Bridge Between Exploratory
scRNA-Seq Analysis and Biomarker
Discovery Assays
The SALSA workflow helped us infer which single-cell
transcriptomes in both PBMC 3K and Macosko’s mouse
retina DropSeq datasets fell into classes of overarching cell
profiles; each of these profiles exhibited a transcriptional
signature driven by a core group of DEGs. We show that matrix
focusing prioritizes regions within scRNA-seq data harboring
the most informative subset of DEGs within the dynamic
range of differential expression measurements. Because SALSA
defines matrix focusing thresholds parametrically, it allows for
systematic replication of statistical analysis between researchers.
In all, SALSA minimizes the volume of scRNA-seq data needed
for reproducible statistical analysis.

From an experimenter’s perspective, SALSA’s stratification
of detected genes highlights important considerations to
interpret scRNA-seq data more effectively; it also offers
one key warning: without proactive precision benchmarking
of sequencing output, the risk of committing experimental
resources into validating bioinformatics artifacts grow, e.g.,
cell types and expression markers based on scRNA-seq data
unduly burdened with measurement noise. As the single-cell
genomics field keeps moving forward, technologies become more
affordable, and datasets get larger, bioinformatic filters that
guard against measurement noise during scRNA-seq pattern
extraction grow even more relevant. In SALSA, this task
is realized in the form of Profiler genes, which represent
the top prospective candidates to validate scRNA-seq-based
predictions on the bench.

In broad terms, performing matrix focusing helps channel
computational resources to the “most variable gene” fraction
in the expression matrix, calculate measurement error rates,
and establish signal-to-noise thresholds empirically (we don’t
know of any existing pipelines that do so). Once filtered
against noise, the focused dataset is used in unsupervised
clustering and tested for differential expression analysis. From
that perspective, the driving purpose for SALSA differs from
other imputation-driven scRNA-seq pipelines—such as MAGIC
(van Dijk et al., 2018), DeepImpute (Arisdakessian et al., 2019),
scImpute (Andrews and Hemberg, 2018), or SAVER (Huang
et al., 2018) to mention some—that render a prospective non-
sparse expression matrix; instead, SALSA profiles information
densities inside scRNA-seq expression matrices (in both per-gene
and per-barcode basis) with the available sequenced data to infer
the best-candidate subspace that drives unsupervised single-cell
clustering based on differential gene expression. SALSA is not

Frontiers in Genetics | www.frontiersin.org 15 October 2020 | Volume 11 | Article 511286

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-511286 October 7, 2020 Time: 22:18 # 16

Lozoya et al. SALSA for Sparse scRNA-Seq Analysis

conceived as an imputation workflow, but as an information
maximization one to coerce scRNA-seq into a cell type-
specific marker discovery scheme that exploits imputation-driven
clustering (e.g., IRLBA) to prioritize easy-to-catch transcripts
and circumvent computational hurdles that arise when dealing
with sparse data.

From strictly statistical perspectives, the benefits of tying
scRNA-seq analysis to cell type-specific markers with large
expression differences have been noted: genes less prone to
scoring as “false-positives” by significance testing between
cell types using imputed expression matrices are differentially
expressed gene candidates with large effect sizes (Andrews and
Hemberg, 2018)—in the context of SALSA, those represent the
facultative gene subset. By aiming scRNA-seq data interrogation
toward facultative genes shared across independently assayed
biological specimens, SALSA increases the probability of
devoting analytical resources to extracting batch-insensitive
sets of “true” replicated and agnostically determined cell
type-specific markers. Our results also show it is possible
to devise standard best-practices for reproducible scRNA-
seq analysis and validation. Therefore, we conclude that
the greatest asset of the SALSA workflow is its ability to
recognize explicit transcriptional patterns across independent
biological replicates, by stratifying detected genes, and from a
fraction of the accrued sequencing data that existing scRNA-
seq pipelines use.

Based on our observations, the most logical question that
arises is also the most intriguing: if it is possible to get
meaningful biological insight without “breaking the bank”
on sequencing depth, how can we tell between “shallow”
and “sufficient” scRNA-seq experiments? The answer is by
no means absolute, because it depends on the purpose of
the assay—a scRNA-seq experiment in a heterogeneous tissue
aimed at finding cell type-specific biomarkers should not
require full-exome coverage; a scRNA-seq study to pinpoint
differentially expressed genes with alternative splicing in the
same biological scenario has no choice. The one certainty
is that no single scRNA-seq experiment alone can answer
any or all types of biological questions at once and, like
other bioinformatics-driven tools, must be corroborated by
experimental evidence.

By reframing scRNA-seq analysis as a latent variable scheme
with formal reproducibility metrics, we reveal that sparsity-
handling data mining strategies with small computational
footprints like SALSA can extract testable biological insights
through data focusing strategies. Most strikingly, and under
the assumption that sparse scRNA-seq data is inevitable, our
findings imply that currently recommended sequencing depths
for scRNA-seq assays may be excessive—or even wasteful—
for experiments meant as hypothesis-generation tools. In
time, savings on sequencing expenses per scRNA-seq test
could be reinvested to run multiple independent specimens
per scRNA-seq study, thereby helping biological replication
become the norm for single-cell “omics” at large. Bottom
line: SALSA was developed to enhance insight and maximize
utility from expensive scRNA-seq data in a world with
limiting resources.
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Supplementary Figure 1 | Statistical overview and implementation of the SALSA
workflow. (A) Parametric focusing in the SALSA workflow. Quantile fitting of a
PC-PD mixture model and a heavy-tailed projection model on per-barcode or
per-gene coverages is used to estimate parametric factors and calculate “inlier”
coverage bounds. (B) Graphical representation of “inlier” coverage bounding.

Supplementary Figure 2 | Topographs for 55 landmark and supplemental
expression markers of blood cell types, as detected in the PBMC 3K dataset.

Supplementary Figure 3 | Profiler genes enriched in cell majors B, F, and G of
the PBMC 3K dataset, based on multinomial logistic regression of weighed
expression rates.
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Supplementary Table 1 | List of 166 genes in the PBMC 3K dataset with
multi-count UMI alignments (4 or more counts) among gene × cell data-positive
expression matrix fields.

Supplementary Table 2 | List of 150 overrepresented genes in the Macosko’s
mouse retina DropSeq dataset with multi-count UMI alignments (4 or more
counts) among gene × cell data-positive expression matrix fields.
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